
SSM - Population Health 27 (2024) 101680

Available online 23 May 2024
2352-8273/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Formative reasons for state-to-state influences on firearm acquisition in
the U.S.

Xu Wang a, James Macinko b, Maurizio Porfiri c,d,e,*, Rifat Sipahi a,**

a Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
b Department of Health Policy and Management, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA
c Center for Urban Science and Progress, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
d Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
e Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA

A R T I C L E I N F O

Keywords:
firearm acquisition
State-to-state networks
Causal influence
Transfer entropy
Exponential-family random graph models

A B S T R A C T

Objectives: Firearm-related crimes and self-inflicted harms pose a significant threat to the safety and well-being of
Americans. Investigation of firearm prevalence in the United States (U.S.) has therefore been a center of
attention. A critical aspect in this endeavor is to explain whether there are identifiable patterns in firearm
acquisition.
Methods: We view firearm acquisition patterning as a spatio-temporal dynamical system distributed across U.S.
states that co-evolves with crime rates, political ideology, income levels, population, and the legal environment.
We leverage transfer entropy and exponential random graph models along with publicly available data, to
statistically reveal the formative factors in how each state’s temporal patterning of firearm acquisition influences
other states.
Results: Results help to explain how and why U.S. states influence each other in their firearm acquisition. We
establish that state-to-state influences, or lack thereof, in firearm acquisition patterning are explained by states’
percent of gun homicide, firearm law strictness, geographic neighborhood, and citizen ideology. Network-based
characteristics, namely, mutuality and transitivity, are also important to explain such influence.
Conclusions: Results suggest that state policies or programs that reduce gun homicides will also help suppress that
state’s influence on the patterning of firearm acquisition in other states. Furthermore, states with stricter firearm
laws are more likely to influence firearm acquisition in other states, but are themselves shielded from the effects
of other states’ firearm acquisition patterns. These results inform future research in public health, criminology,
and policy making.

1. Introduction

Firearm-related harms in the U.S. are a major public health problem,
and the severity of this threat continues to rise. A sharp increase in gun
homicide is observed in recent years (Gramlich, 2023); in 2021 alone,
20,958 people lost their lives due to assaults with firearms (Centers for
Disease Control and Prevention, n.d.). According to the FBI, Americans
faced a 33% increase in active shooter incidents from 2019 to 2020 and a
53% increase from 2020 to 2021 (Federal Bureau of Investigation,
2022). Strikingly, firearms are now the major cause of death for children
and teens (Freedom du Lac, 2023). These problems are further exacer-
bated by self-inflicted harms; on 2010 data, Grinshteyn and Hemenway

(2016) reveal that the U.S. has an eight-times higher rate of
firearm-related suicides than other high-income countries.
Firearm-related harms also bring about profound problems to the public,
including mental health, behavioral impact on victims, and a high
burden of medical care-related costs (Hemenway & Nelson, 2020;
Leibbrand, Hill, Rowhani-Rahbar, & Rivara, 2020).

The complex interplay between firearm-related harms and the
prevalence of firearms is underscored in the literature. Based on a causal
analysis, Kovandzic, Schaffer, and Kleck (2013) explain how gun re-
strictions do not necessarily reduce firearm-related crime rates. This
may be because such restrictions can have little effect on reducing
crimes while suppressing noncriminal gun prevalence - a potential
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deterrent of crimes. Kleck (2015) reviews the landscape of firearm
research, pointing out that there may exist a link between
firearm-related crime rates and firearm prevalence. Andrade et al.
(2020) reveal that more restrictive state firearm laws may paradoxically
help to stimulate gun trafficking networks resulting in the movement of
illegal firearms from less restrictive to more restrictive states. Overall,
there is strong interest in the community toward better understanding
the reasons behind the patterning of firearm acquisition in the U.S.

Firearm acquisition is thought to be driven by a variety of factors,
including the desire for self-protection, affinity for hunting, interests in
recreational shooting, as well as culture, family traditions, and hobbying
(Gallup Corporation, n.d.). A complex relationship also exists between
firearm ownership and social/political life in America: firearm owner-
ship has become, to some degree, an indicator of political affiliation and
social identity (Dowd-Arrow, Hill,& Burdette, 2019; Kalesan, Villarreal,
Keyes,&Galea, 2016; Lacombe, 2019). To improve the understanding of
firearm acquisition patterning in the U.S., it is also critical to consider
both geographic (Azrael, Cook, &Miller, 2004) and macro-level factors,
such as firearm acquisition trends, firearm-related crimes, and relevant
socioeconomic metrics (Kleck & Patterson, 1993; Porfiri, Sattanapalle,
Nakayama, Macinko, & Sipahi, 2019).

U.S. states influence each other in many ways, including competition
to attract businesses (Aguiar-Conraria, Brinca, Guðjónsson, & Soares,
2017), housing markets (Sheng, Marfatia, Gupta, & Ji, 2021), and public
policy diffusion (Grabow, Macinko, Silver, & Porfiri, 2016). Hence, it is
plausible that firearm acquisition patterning in one state affects firearm
acquisition patterning in another state. For example, Porfiri, Bar-
ak-Ventura, and Ruiz Marín (2020) identified that firearm acquisition in
one state can be predicted by the aggregated dynamics of firearm
acquisition from its surrounding neighboring states. Macinko, Silver,
Clark, and Pomeranz (2023) reveal that background checks as a proxy of
demand/support for firearms in one state is a critical parameter in policy
diffusion process. Such policies can, in turn, influence local firearm
ownership (Goldstein& Prater, 2022), as well as state firearm exportation
rate from one state (Everytown Research & Policy, 2018). Kaufman,
Morrison, Branas, and Wiebe (2018) show that states with stronger
firearm regulation contribute to reduced firearm homicide and suicide
rates in neighboring states. This knowledge, combined with links between
regulation, firearm acquisition, and firearm homicides/suicides (Anestis,
Bandel, & Bond, 2021; Kposowa, Hamilton, & Wang, 2016; Siegel, Ross,
& King, 2013), suggests state-to-state influences on firearm acquisition
patterning. Furthermore, since guns as well as crime guns can be trans-
ferred across states (Collins, Parker, Scott, & Wellford, 2017; Webster,
Vernick,& Hepburn, 2001), firearm acquisition in one state can influence
that of another state through its impact on firearm prevalence as well as
firearm safety.

In this manuscript, we understand that dynamics S 1 ‘influences’
dynamics S 2 if knowledge of S 1 at time t improves our prediction of
how S 2 will behave from time t to t + 1. This type of influence can be
detected by statistical inferences. One popular technique, based on the
Wiener-Granger concept of causality, is through the use of transfer en-
tropy (TE) – a model-free approach that can help ‘infer’ the relative
effect of one dynamical system on another, given their time series
(Schreiber, 2000). This approach, especially in research areas where an
underlying mathematical model is missing, has been instrumental in
deciphering complex dynamical systems, such as detecting lead-follow
relationships between animals and estimating the leadership capacity
of specific individuals (Pilkiewicz et al., 2020). We propose to leverage
TE to reveal how states influence each other in their firearm acquisition
patterning. Such an influence may arise by various mechanisms as
reviewed above, for example when two states through policy diffusion
share similar firearm-related laws (Butz, Fix, & Mitchell, 2015). This is
however different from state-to-state interactions due to gun trades and
gun trafficking across state borders, which are left outside the scope of
our presentation.

Access to rich, multi-dimensional data is critical. Except for firearm

sales, all other data are publicly available. We utilize state-level national
instant criminal background check (BC) data as a proxy of firearm sales.
This practice has been extensively pursued in the literature (Boine,
Siegel, Ross, Fleegler, & Alcorn, 2020; Porfiri et al., 2019, 2020,
Schleimer et al., 2021; Timsina et al., 2020) as it provides reliable means
to support the link between BC data and firearm sales. For example,
Boine et al. (2020) conduct a principal component analysis and found
positive relations between the number of BCs for long-gun sales and
state variables related to the usage of firearms for recreational purposes.
The number of BCs for handgun sales were however found to be asso-
ciated more with self-defense. In (Wang, Sipahi, & Porfiri, 2022), the
state-level analysis of BC data reveals the degree of synchronization
among U.S. states and how it varies with respect to the terms of U.S.
Presidents.

Previous studies linked various factors to firearm acquisition. For
example, through the examination of state-level data sets about various
gun-related behaviors, Boine et al. (2020) identify three elements (rec-
reational, self-defense, and symbolic/cultural) underlying gun culture in
different states. Likewise, Liu and Wiebe (2019) demonstrate significant
association between major mass shootings and gun purchases through
time-series analysis. Porfiri et al. (2019) show that fear of stricter
firearm regulation is an important reason for gun purchases. Andrade
et al. (2020) reveal the critical effect of firearm laws, state population
and geographical distance in shaping state network structure for inter-
state firearm trafficking. Furthermore, by analyzing characteristics of
participants in a gun-related survey conducted in 2018, Kelley and
Ellison (2021) find participants with conservative leaning in political
ideology are more likely to be future gun owners by anticipation,
different from those with liberal leaning. Cook, Braga, andMoore (2011)
note a positive association between gun ownership and income level
when depicting the demographics of gun owners. Porfiri et al. (2020)
point out that spatial proximity, or geographical neighborhood among
the states is another factor that can explain their coupling in collective
behaviors of firearm acquisition.

In view of the above discussions, it is of strong interest to investigate
how states influence each other in their firearm acquisition patterning
and what the formative reasons for such influences are. This is however
not a trivial task given the heterogeneity of U.S. states in terms of gun
laws, political and economic landscape, household income, and political
ideology. Here, we address these questions through the lens of dynam-
ical systems, whereby we view U.S. states as nodes of a network, whose
relevant characteristics evolve over time. We take an approach that fuses
information theory, network science, and statistical modeling, with
available data in the public domain. We articulate the approach in two
sequential steps. First, we utilize BC data to detect the influence of a
state on another based on TE. This effort yields a network with directed
‘ties’ that indicate the direction of influence from a state to another.
Second, starting from this network structure, we investigate the
formative factors explaining these ties. Motivated by the literature re-
view, we propose the following state-level attributes as candidate
formative reasons: percent of gun homicide, median household income,
population, firearm law strictness, citizen ideology, and geographic
neighborhood (Clark, Macinko, & Porfiri, 2022; Desmarais, Harden, &
Boehmke, 2015; Shipan & Volden, 2012).These factors are next incor-
porated into the modeling phase of our work, where we build statistical
models that can provide, with statistical significance, whether or not a
tie from one state to another is more likely to arise in the presence of a
particular factor. This is a challenging modeling problem with multiple
factors and numerous possibilities of ties in the network, as well as po-
tential inter-dependencies between the ties. One promising direction is
to leverage exponential-family random graph models (ERGMs), which
have been successfully implemented in various domains (Harris, 2013;
Robins, Pattison, Kalish, & Lusher, 2007; van der Pol, 2019).

Researchers apply ERGMs in neuroscience to study connectivity
networks of different brain regions (Simpson, Hayasaka, & Laurienti,
2011), in biology to detail metabolic networks of interactions between
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enzymes (Saul & Filkov, 2007), in tourism to examine networks of visit
co-occurrence between tourist attractions (Hernández, Santana--
Jiménez, & González-Martel, 2021), in animal behavior to elucidate
social structures (Ilany, Barocas, Koren, Kam, & Geffen, 2013; Silk &
Fisher, 2017), and in social science to explain adolescent friendships
(Goodreau, Kitts,&Morris, 2009). Moreover, ERGM is applied in studies
related to firearms, especially when it comes to studying state-level in-
teractions at the network level. Andrade et al. (2020) make use of
ERGMs to illustrate formation of a network of U.S. states associated with
illegal firearm flows. They reveal that firearm regulation promotes the
formation of networks of illegal firearm flows, from states with weaker
gun laws to states with stricter gun laws. In terms of firearm laws, Clark
et al. (2022) create an ERGM to interpret the driving factors for the
dynamics of law adoption activities in different states, considering a
bipartite network of state-law adoption relations.

ERGMs have the advantage that they do not rely on the important
assumption of statistical independence, which aligns well with many
real world social networks with strong dependence between their ties
(Harris, 2013; Robins et al., 2007). However, by the nature of their
mathematical construct, they can only provide a snapshot of how likely
ties may form between the dyads, hence they are not suitable for
studying dynamical changes over time. Nevertheless, ERGMs provide a
promising foundation to allow for dyadic dependence with proper
model terms, such as transitivity (the tendency of forming triangles) and
mutuality (the tendency of forming reciprocated ties) found in social
networks (Harris, 2013). An ERGM is similar to a binary logistic
regression, but, differently, it conditions on the rest of the network graph
when interpreting the probability of the presence of a tie in the network.
Both the state-level attributes of any two nodes (for example, percent of
gun homicide) and relevant network structural factors (for example,
transitivity) can be used to formulate model statistics in ERGM to predict
the probability that a tie exists between these two nodes. For these
reasons, ERGMs offer an ideal modeling framework to explain what
formative factors are more likely to establish ties between U.S. states.

The manuscript is organized as follows. The data used in this work is
described in Section 2. The main methods and mathematical procedures
are expanded in Section 3. Therein, we first illustrate the process of
network inference through TE computations (Section 3.1) and then we
address the identification of formative reasons of network of influence
through the use of ERGMs (Section 3.2). Results from both mathematical
endeavors are presented in Section 4. Interpretation of our results,
limitations of the study, and main conclusions follow in Section 5.
Supporting information can be found in the Appendix.

2. Data

Public national instant criminal background check (BC) data (Fed-
eral Bureau of Investigation, n.d.) are utilized for analysis. This data is
available at a monthly resolution by state, but it is not available for
Hawaii. Hence, Hawaii is excluded from our study. Although the state of
Connecticut has missing data from 1/2000 to 8/2001, this state is still
included by considering zero values in place of the missing data. The
time range of BC selected in this manuscript is from 1/1999 to 12/2017,
corresponding to 228 months, or data points, in total.

In addition, we consider annual time series for percent of gun ho-
micide, median household income, population, firearm law strictness,
and citizen ideology as defined below.

2.1. Percent of gun homicide (PGH)

The homicide data from CDC Wonder (Centers for Disease Control
and Prevention, n.d.) is a state-level count of death, utilized in this
manuscript with an annual resolution. This data is collected based on
death certificates of U.S. residents from the National Center of Health
and Statistics. The count of all homicides is filtered by the underlying
cause of death ‘Assault’ from all death cases, based on ICD-10 codes from

the death certificate. Counts of gun homicide is further narrowed down
to deaths due to ‘Assault by handgun discharge’, ‘Assault by rifle,
shotgun and larger firearm discharge’, or ‘Assault by other and un-
specified firearm discharge’. State-level homicide ratios are defined as
the ratio of gun homicide to all homicides and is used as a unit-free
indicator of prevalence of firearm-related crimes.

2.2. Median household income (MHI)

MHI is an annual, state level measure derived from collected samples
in Current Population Survey, 1985 to 2023 Annual Social and Eco-
nomic Supplements ([dataset] U.S. Census Bureau, 2023). Based on the
distribution of household income of survey samples in multiple income
intervals, the median household income in the study time range is
estimated using linear interpolation, assuming the population density in
an income interval is constant. Furthermore, MHI is adjusted against
inflation.

2.3. Population (PPL)

PPL an annual estimation of a state from U.S. Census Bureau
([dataset] U.S. Census Bureau, n.d.). The Census Bureau estimates the
time series of state population size using the cohort-component method,
which means the population estimate starts from a population base from
most recent decennial census results and fluctuates according to current
birth rate, death rate, and net migration at a given time.

2.4. Firearm law strictness (FLS)

State-level firearm law strictness is based on State Firearm Law
Database from RAND Corporation ([dataset] Cherney et al., 2022). In
this dataset, historic records of legislative actions (enactment, repeal
and modification of a firearm-related law) for each state are listed.
Firearm laws are classified as ‘permissive’ or ‘restrictive’, which means
respectively the law will widen, or limit certain aspect of firearm access
and usage. For the measure of firearm law strictness for one state in a
year, we use its historic accumulated counts of enactment and modifi-
cation of ‘restrictive’ firearm laws in this state till the end of this year.

2.5. Citizen ideology (CTI)

Citizen ideology ([dataset] Fording, n.d.) for each state can show the
characteristics of public orientation in a state’s political culture, con-
servative or liberal, and ranges from a score of 0 (the most conservative)
to 100 (the most liberal). Citizen ideology in one district at one year is
reflected by combining the election results for Congress and the iden-
tified ideology positions of the incumbent and the challenger in the
election. The state-level measure is merely an unweighted average of the
same measurement in all the districts of the respective state. Citizen
ideology is a validated measure frequently used in political science
studies.

These time series are over the same time span of BC data, except for
ideology that ends in 2016.

3. Methods and analysis

We apply transfer entropy (TE) to infer which state influences which
other state, based on the BC data. This study reveals a network of in-
fluence, which combined with ERGM and ‘candidate formative factors’,
helps reveal the most critical factors explaining why ties form between
states due to influences between them in their BC data. The approach
contains two sequential steps: we first present the implementation of TE
on BC data for constructing a network of influence and, then we present
the application of ERGM on this inferred network. The content of each
step is summarized in Fig. 1.

X. Wang et al.
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3.1. Inference of the network of influence

The network of influence is inferred in two sub-steps: first, we
compute TE between each pair of states using pre-processed BC data,
and, second, we implement a threshold on TE values to infer the network
of influence y* based on relatively high TE values. Details on these two
sub-steps are provided in Appendix 6.1.

3.2. Formative reasons of ties in y*

Our approach to elucidate the formative reasons of ties in y* is based
on statistical modeling, leveraging ERGMs. To this end, we generate
covariates based on a set of ‘candidate’ formative reasons. Through
ERGMs, we estimate statistically which of the covariates indeed inform
the existence/absence of ties in y*. In this manuscript, we use ‘tie’ and
‘edge’ interchangeably, to be consistent with the usage of these terms in
their respective literature (social networks versus network theory).

Let us denote by Z→ the vector whose entries are model statistics (see
Appendix 6.2.1 where we detail how these model statistics are formu-
lated based on covariates). These statistics are to be calculated for a
given network y, where y is a realization of random network Y. In other
words, entries in Z→ are functions of y, namely, model statistics associ-
ated with the nodes and node-to-node relationships. Hence, we can write
Z→(y) ∈ Rp, where p is the number of model statistics being considered.
Furthermore, we account for a vector of scalar parameters θ

→
∈ Rp that

encapsulates the weights associated with each covariate in Z→(y) (see
Appendix 6.3 for interpretations of θ

→). The probability distribution of Y
within the ERGM framework is expressed as

P( Y= y | θ
→

) =
exp( θ

→ T
Z→(y))

c( θ
→
, Y)

, (1)

c( θ
→
, Y) =

∑

y∈Y

exp( θ
→ T

Z→(y)). (2)

Here, Y is the sample space of unweighted directed networks expressed
as Y = {l∈ Rn×n|∀i, j, lii = 0, lij ∈ {0, 1}}, and c( θ

→
, Y) normalizes the

probability to the range [0, 1].
Inferred network y* is next predicted using the above model. Spe-

cifically, a Markov Chain Monte Carlo maximum likelihood estimation
(MCMC MLE) (Hunter & Handcock, 2006) is conducted with statnet
suite package (Goodreau, Handcock, Hunter, Butts, & Morris, 2008) in
R, to fit model (1) to y*. In this fitting process, the goal is to maximize the
log-likelihood of (1), which ultimately renders the estimates of the pa-
rameters in θ

→. Those parameters, if any, that significantly improve
ERGM’s prediction of y* are identified as formative reasons of ties in y*.
With this mathematical procedure established, one can build different
ERGMs with various model statistics and compare these models in terms
of how well they predict y* using the Akaike information criterion (AIC)
(Stoica & Selen, 2004). Details on how the model statistics in Z→(y) are
set up and how the quality of model fitting is assessed can be found in
Appendix 6.2.

4. Results

We first present results on the topology of the network of influence
among U.S. states, highlighting with an example how a state may have a
key role in influencing a large part of the country. Then, we detail
formative reasons underpinning the inferred influences based on the
ERGM. We conclude the section with a goodness-of-fit analysis.

Fig. 1. Overall sketch of the sequential steps of methodology pursued in this manuscript: we process raw BC data, compute TE values, construct a network of in-
fluence, and fit ERGMs to explain the network of influence from state-level attributes and network structural factors.

X. Wang et al.
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4.1. Inferred U.S. state network of influence in firearm acquisition

Based on the two sub-steps in Section 3.1, we infer the network of
influence among U.S. states in terms of firearm acquisition, see Fig. 2.
This is a network with edge density approximately 15% and each state is
represented by a solid circle. A directed edge from state S 1 to state S 2
indicates that S 1influences S 2 in its firearm acquisition, and the size of
each circle indicates the average estimated population of the state over
the time span of the data.

The network of influence presents a complicated structure of re-
lationships, which, at a first sight, is opaque to any interpretation. To
this end, we inspect several states to interpret their role in the network of
influence. Specifically, we examine Alaska (AK), Florida (FL), Georgia
(GA), Illinois (IL), Massachusetts (MA), and Oregon (OR). We plot the
ties of these states in separate panels in Fig. 3. We observe that AK, GA,
MA, and OR all have a relatively small number of edges, showing a
limited set of interactions with the rest of the country. However, AK and
OR have mostly incoming edges indicating that these states are most
often affected by other states. Interestingly, we do not detect any
incoming edges to MA, indicating a degree of shielding from the rest of
the country. Differently, IL has more outgoing than incoming edges, and
it has a large number of connections to the whole country. Although FL
and GA have fewer outgoing edges than IL, they still have a strong ca-
pacity in influencing other states because the number of their outgoing
edges outnumber the number of their incoming edges.

The interaction network provides information about which states are
more likely to influence or be influenced by others, however, it does not
explain why such interactions arise. For example, FL interacts with MD
despite their geographic distance and wide differences in political ide-
ology as measured by Berry, Ringquist, Fording, and Hanson (1998).
With its 353 directed ties, a relationship between the network structure

and state attributes is difficult to obtain by simply inspecting the ties: we
investigate these relationships through statistical modeling via ERGMs.

4.2. Predictors of causal relationships between states

We first build a baseline model (Model 1) using only the edges of the
network. This is practically an Erdős–Rényi model whose ties indepen-
dently occur with a fixed probability. Here, the term edges specifies the
baseline of edge density for the fitted models. Next, following Section
3.2, we develop a set of ERGMs (Model 2–8), with a progressively
increasing number of model statistics, and, ultimately, we build Model 9
with fewer, refined model statistics. Specifically, Model 2 is built upon
Model 1 by incorporating network structural factors (mutuality,
GWDSP, and GWESP; see Appendix 6.2.1 for definitions), which is then
used to create Models 3–8 by introducing percent of gun homicide,
median household income, population, firearm law strictness, citizen
ideology, and geographic neighborhood; results are presented in
Table 4.

For a given model in Table 4, a model statistic listed with its θ
→ value

is statistically significant as indicated by ***, **, and * with p less than
0.001, 0.01, and 0.05, respectively. Significance is established by com-
parison against the standard error in the MCMC MLE process (Hunter &
Handcock, 2006). For example, with respect to Model 6 and in-edges:FLS,
we have θ = − 0.032 < 0, indicating that a tie between two states is less
likely to arise if the state being influenced (‘in-edge’) has higher ‘firearm
law strictness’ (p < 0.01).

We next compare Model 1 vis-à-vis Models 2–8 with the AIC as the
figure of merit; see Table 4 (bottom row). Smaller AIC values indicate
improvement in model fitting. For Model 1, we have AIC = 1991 and
with added covariates in Models 2–8, we find that AIC values drop,

Fig. 2. Inferred network of influence y*. Circles represent U.S. states and arrows represent causal influence. The size of each node represents the state average
population over the studied time range.

X. Wang et al.
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down to 1906 for Model 8. While in general one may expect AIC values
to drop as more covariates are added to the models, inspecting Table 4
we also reveal that there are particular statistics that matter more than
others. Hence, entries with a degree of statistical significance inform the
development of Model 9 with reduced, yet relevant, model statistics. In
this process, we excluded covariates associated with median household
income (MHI) in Model 9 since this statistic does not consistently
demonstrate significance, e.g., comparing Model 6–8 against Models
4–5.

Based onModel 3–4 in Table 4, the positive entry in θ
→ corresponding

to nodal effect of out-edges for percent of gun homicide shows that,
conditioned on the rest of network, a state with relatively higher (lower)
percent of gun homicide is more (less) likely to influence the other states
with respect to patterns of gun acquisition. A complementary result is
the negative entry of nodal effect of in-edges for percent of gun homicide,
which shows that a state with relatively higher (lower) percent of gun
homicide is less (more) likely to be influenced by other states. An
illustration of this case is provided in Fig. 4a, where we observe a

Fig. 3. Six examples of interactions from the network of influence: Alaska (AK), Florida (FL), Georgia (GA), Illinois (IL), Massachusetts (MA), and Oregon (OR).
Circles represent U.S. states and arrows causal influences.

X. Wang et al.
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positive correlation between a state’s percent of gun homicide and the
state’s net out-degree in y* (see also Table E.1 in Appendix 6.5). To
avoid deviations caused by extreme values of nodal attributes from
certain states, rank correlation between percent of gun homicide and net
out-degree is measured using Kendall’s τ coefficient (τ = 0.235, p <

0.05) (Kendall, 1948). Given that net out-degree indicates that a state is
in more of a leader role than in a follower role, the results indicate that
states with higher percent of gun homicide are more likely to be leaders,
consistent with the results obtained through ERGM. In this vein, Illinois
and Georgia, which rank higher in terms of percent of gun homicide,
show clear patterns of influencing other states than being influenced. On
the contrary, states like Alaska and Oregon, which rank low in percent of
gun homicide, are more likely influenced by other states, as also seen in
Fig. 3.

Following Models 6–8, the positive entry in θ
→ corresponding to

nodal effect of out-edges for firearm law strictness indicates that the states
with higher (lower) firearm law strictness have higher (lower) chance to
influence other states. Moreover, the negative entry in θ

→ corresponding
to nodal effect of in-edges for firearm law strictness indicates that the
states with higher (lower) firearm law strictness have lower (higher)
chance to be influenced by the other states. Similar to percent of gun
homicide, a positive rank correlation is measured by Kendall’s τ coef-
ficient (τ = 0.242, p< 0.05) between state firearm law strictness and net
out-degree in y* (see Fig. 4b), indicating that states with stricter firearm
laws take more leadership roles than those with more permissive firearm
laws, which is consistent with the results suggested of ERGM. The edge
covariate of abstract distance for citizen ideology further shows that in-
fluence between two states exists with a higher chance if there is greater
difference in the citizen ideology of those two states. Similarly, no shared
border with a positive corresponding entry indicates that influence have
higher chance to exist between two states without a shared border.
However this statistic is not consistent between Models 8 and 9, and is
not robust against edge density (see Appendix 6.4).

We also point out the possibility of correlation/interplay between
some model statistics. For example, as we progressively add more model
statistics, both out-edges and in-edges percent of gun homicide lose their
significance in Models 6–8. Moreover, the corresponding θ value de-
creases in magnitude and at the same time standard error increases,
indicating their variability is increased in Models 6–8. This is possibly
because the newly added statistics in ERGM correlate with out-edges and
in-edges percent of gun homicide. We therefore still opt to keep these two
statistics in Model 9 with a reduced number of statistics. Another case is
observed when transitioning from Model 5 to Model 6. Nodal effect of
out-edges and nodal effect of in-edges for median household income be-
comes significant predictors in Model 6, possibly because of the corre-
lation between this model statistic and the newly added terms related to
firearm law strictness. Through this systematic study, we also reveal that
covariates associated with geometrically weighted edgewise shared
partners (GWDSP), median household income, and population do not
inform our ERGMs with statistical significance. Likewise, median
household income and population are not robust across different
models, which is possibly due to correlations among model statistics.

Ultimately, based on Model 9, when all the other conditions are
fixed: (i) states with higher (lower) level of firearm-related crime preva-
lence (related to percent of gun homicide) have relatively higher (lower)
chance to influence the other states (p < 0.05); (ii) states with higher
(lower) level of firearm-related crime prevalence (related to percent of gun
homicide) have relatively lower (higher) chance to be influenced by
other states (p < 0.1); (iii) the states with higher (lower) firearm law
strictness have relatively higher (lower) chance to influence the other
states (p < 0.05); (iv) the states with higher (lower) firearm law strict-
ness have relatively lower (higher) chance to be influenced (p < 0.05);
(v) influences have higher (lower) chances to exist between two states
which have larger (smaller) dissimilarity in their citizen ideology (p <

0.05); and (vi) influences have higher (lower) chances to exist between
two states which have no shared geographical border (p < 0.1).

For transitivity (GWESP) and mutuality, the entries of θ
→ are statisti-

cally significant, with positive values across most of the models. That is,
conditioned on the rest of the network, a tie has higher chance to form
between two U.S. states if these two states have a common neighbor
(transitivity as measured by GWESP, p< 0.001) and, to a lesser degree, if
another tie in the opposite direction already exists between the same two
states (mutuality, p < 0.05). One can also interpret the positive
parameter for GWESP as an indication of the existence of edges with
shared partners forming triangular structures in y*. Indeed, one can find
many examples demonstrating the existence of transitivity and mutu-
ality. For example, we detect a transitive triad among North Dakota,
Florida, Alaska, where North Dakota through Florida influences Alaska,
and in addition it influences Alaska directly. With regards to mutuality,
we reveal for example Illinois influences and is influenced by Arkansas,
Colorado, Idaho, South Carolina, and Tennessee, among others.

Fig. 4. Scatter plots of (a) percent of gun homicide (PGH) vs. net out-degree in y* and (b) firearm law strictness (FLS) vs net out-degree in y*. Each black circle
represents one U.S. state. The difference between outgoing edges and incoming edges is the net out-degree.

Table 1
10 randomly picked ties in the network of influence, strongly influenced by
mutuality.

Sender state Receiver state Does a tie exist in y*

Alabama Illinois N
Arizona Florida N
Arkansas Illinois Y
Colorado Illinois Y
Florida North Dakota N
Idaho West Virginia N
Illinois Arkansas Y
Illinois Oklahoma Y
Illinois Tennessee Y
Nevada Washington N
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Furthermore, Model 9 can help evaluate the odds that a tie exists
between two states, following Appendix 6.3. For example, we find the
existence of a tie from Indiana, Mississippi, and Missouri to Illinois
corresponds respectively to a conditional probability of 0.22, 0.28, and
0.24, and from Arizona to New York with a conditional probability of
0.36 – higher than the average edge density of 0.15 in the network of
influence y*. Model 9 can also help reveal the importance of transitivity
in view of Appendix 6.3, where for example we find the odds of a tie to
exist from New York to Rhode Island is predicted to be 40 times higher
when incorporating the transitivity term in the ERGM than not. To
expand on this aspect, we perform a sensitivity test where we retain and
remove fromModel 9 separately mutuality, GWESP, or two PGH-related
terms, and next compute how removal of a covariate affects the likeli-
hood of predicting ties. This calculation for GWESP and PGH-related
terms leads to a ranking of state-to-state influences, from the influence
most affected by a covariate to the one least affected by that covariate.
For mutuality, this calculation statistically yields indistinguishable ef-
fects, so that no ranking is provided, but only a sample of 10 state-to-
state influences, see Table 1, Table 2, and Table 3. It is critical to note
that Model 9 is derived based on random sampling of graphs, and hence,
as expected, not all the ties tested exist in the single sample y*. This
information is provided in the third column of each table.

4.3. Assessment of the optimal model (goodness-of-fit)

Model 9 brings together the most relevant covariates in our modeling
effort. In order to assess whether it provides reliable statistical pre-
dictions, we perform a simulation study. In particular, we generate a
sample of 2,000 random networks, and, guided by the literature
(Hunter, Goodreau, & Handcock, 2008), we obtain the distributions of
covariates out-degree, in-degree, geodesic distance, and dyadwise
shared partner over these simulated networks. We compute the distri-
butions of the same covariates for the inferred network of influence y*,
see Fig. 5. Therein, we report box plots for the distribution of each of the
four covariates as found in the 2,000 random network samples along
with black markers and lines as found in the inferred network y*. The
four covariates corresponding to y* in most cases match with the median
(blue diamonds) in the box plots. As for dyadwise shared partner and
geodesic distance, the match is almost perfect, while for out/in-degree
distributions, simulated networks could only reflect the general trends
in y*, indicating that there exists, in the inferred network data, a certain
degree of complexity, which could not be captured by the selected
covariates in Model 9. Overall, we conclude that Model 9 is a good
mathematical representation, capturing the formative reasons that
explain the network of influence y*.

5. Discussion and conclusions

With firearm-related crimes and self-inflicted harms severely
impacting the quality of life of Americans, it is imperative that we seek to
deeply understand the reasons behind firearm acquisition in the United
States. With this overall goal in mind, here we put forth a mathematical

framework to investigate whether or not U.S. states influence each other
in their firearm acquisition patterns, and, if they do, what the formative
factors are that potentially explain such influences. Our study reveals the
underlying network of influence of U.S. states informing which states are
more influential on others, and develops statistical models that uncover
how crime rates, citizen ideology, income levels, population, and the
legal environment could explain these influences.

There is growing evidence that U.S. states interact with one another
in various ways. With respect to firearms, Andrade et al. (2020) deter-
mine that firearm laws, geographic proximity, and population shape the
way in which firearms are transferred across state borders. Likewise,
Porfiri et al. (2020) offer evidence in favor of an influence between
states that are geographically close with respect to firearm acquisition,
whether they are restrictive or permissive in their firearm-related legal
environment. Insights into the network of influence with respect to
firearm-related policies are established by Grabow et al. (2016), point-
ing at the possibility of policy diffusion across states. Through the
application of transfer entropy, we further detail state-to-state in-
teractions with respect to firearm acquisition. Interactions are in general
non-symmetric, where states may influence other states, while not being
influenced by them. Our results indicate that some states may act as
‘hubs’, such as the state of Illinois, with a large number of outgoing
and/or incoming ties, while others, such as the state of Alaska, may have
a large degree of isolation, with only a few ties with other states.

Through exponential-family random graph models (ERGMs), we
explain next the reasons why states influence each other based on state-
level attributes and network structural factors. We reveal that percent of
gun homicide, firearm law strictness and citizen ideology as state-level attri-
butes help explain this influence.With respect to percent of gun homicide,
a statewithmorefirearmhomicides ismore likely to influence other states
and less likely be influenced by other states. These findings resonate with
previously published work (Wallace, 2015) and survey results (Gallup
Corporation, n.d.), where it is reported that safety plays an important role
among citizens when deciding to acquire a firearm. From safety to col-
lectivebehavior infirearmacquisition, perceptionofpublic safety canplay
an important role. Researchers estimate/predict citizens’ perception of
safety via surveys at the individual level (Austin& Furr, 2002), by analysis
of street view images in cities using deep-learning models (Zhang, Fan,
Kang, Hu, & Ratti, 2021), and through natural language processing and
emotion analysis on Twitter messages at population level (Dyer & Kolic,
2020; Gourévitch & Eggermont, 2007). Proper measures at state level,
such as quantifying public sentiment regarding ”belief in a dangerous
world” through the analysis of geographically-tagged social media mes-
sages has thepotential to provide promising future extensions over current
modeling efforts.

With regards to our finding that states with higher percent of gun
homicide (PGH) are in leadership roles, it is plausible that citizens in
states with higher PGH may have a stronger need of self protection and
can therefore be more reactive in acquiring firearms. Such effects could
diffuse to states with lower PGH, which would exhibit a follower-type
behavior. Furthermore, under the theory that firearm ownership cor-
relates positively with the prevalence of gun crimes (Siegel et al., 2013),

Table 2
Top 10 ties in the network of influence, most influenced by GWESP.

Rank Sender state Receiver state Does a tie exist in y*

1 Colorado Illinois Y
2 New York Rhode Island Y
3 Ohio Rhode Island N
4 Arizona Washington N
5 Maine Rhode Island N
6 Rhode Island Illinois Y
7 North Dakota Delaware Y
8 Georgia Rhode Island Y
9 Mississippi Idaho N
10 Maine Illinois N

Table 3
Top 10 ties in the network of influence, most influenced by PGH.

Rank Sender state Receiver state Does a tie exist in y*

1 Illinois South Dakota N
2 California South Dakota N
3 Louisiana Maine N
4 Alabama New Hampshire N
5 Illinois North Dakota Y
6 Illinois Wyoming N
7 Missouri Vermont N
8 Illinois Vermont N
9 Missouri Montana Y
10 Illinois Montana Y
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Table 4
Estimated parameter entries of θ

→ for fitted models and their corresponding standard errors (in parenthesis) are listed on the table; p values are denoted by *** for < 0.001, ** for< 0.01, and * for < 0.05, respectively; see
Appendix 6.2.1 for definitions of model terms.

Model statistic Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

edges − 1.734(0.058)*** − 2.772(0.249)*** − 2.781(0.593)*** − 3.056(0.777)*** − 3.404(0.809)*** − 3.461(0.785)*** − 3.973(0.861)*** − 4.269(0.842)*** − 3.886(0.487)***
mutuality 0.463(0.212)* 0.495(0.205)* 0.499(0.207)* 0.486(0.207)* 0.562(0.221)* 0.546(0.213)* 0.545(0.211)** 0.495(0.212)*
gwdsp − 0.043(0.029) − 0.019(0.031) − 0.017(0.032) − 0.019(0.032) 0.026(0.034) − 0.015(0.032) 0.018(0.033) –
gwesp 0.663(0.085)*** 0.657(0.087)*** 0.648(0.086)*** 0.643(0.086)*** 0.622(0.090)*** 0.598(0.089)*** 0.592(0.089)*** 0.630(0.086)***
out-edges: PGH 1.301(0.592)* 1.304(0.580)* 1.619(0.663)* 1.208(0.725) 1.346(0.738) 1.294(0.727) 1.398(0.596)*
in-edges: PGH − 1.479(0.626)* − 1.372(0.638)* − 1.035(0.700) − 0.748(0.738) − 0.495(0.751) − 0.571(0.721) − 0.915(0.544)
edge covariate: PGH − 0.202(0.347) − 0.175(0.357) − 0.305(0.378) − 0.297(0.378) − 0.247(0.410) − 0.347(0.403) –
out-edges: MHI − 0.022(0.054) − 0.013(0.054) − 0.193(0.079)* − 0.186(0.076)* − 0.187(0.079)* –
in-edges: MHI 0.071(0.057) 0.080(0.057) 0.221(0.078)** 0.210(0.076)** 0.210(0.076)** –
edge covariate: MHI − 0.369(0.248) − 0.444(0.257) − 0.444(0.258) − 0.438(0.263) − 0.485(0.273) –
out-edges: PPL − 0.017(0.013) − 0.038(0.015)** − 0.028(0.015) − 0.028(0.015) –
in-edges: PPL − 0.019(0.013) − 0.001(0.014) 0.008(0.014) 0.008(0.015) –
edge covariate: PPL 0.677(0.487) 0.641(0.482) 0.456(0.515) 0.432(0.504) –
out-edges: FLS 0.037(0.011)*** 0.034(0.012)** 0.035(0.012)** 0.012(0.006)*
in-edges: FLS − 0.032(0.011)** − 0.036(0.011)** − 0.035(0.011)** − 0.013(0.007)*
edge covariate: FLS 0.009(0.319) 0.212(0.349) 0.214(0.355) –
out-edges: CTI 0.001(0.005) 0.001(0.005) –
in-edges: CTI 0.006(0.004) 0.005(0.004) –
edge covariate: CTI 0.597(0.270)* 0.552(0.262)* 0.575(0.238)*
no shared border 0.471(0.239)* 0.425(0.230)
AIC 1991 1923 1918 1921 1924 1911 1909 1906 1905

As for estimated parameters, covariate edges corresponds to the baseline of edge density for the fitted models;mutuality relates to the tendency of forming reciprocal ties; gwesp and gwdsp separately capture characteristics
of transitivity in the network; out-edges and in-edges measure the association that one nodal attribute has with the node at the origin of a tie and that at the end of a tie; and edge covariate measures how other pairwise
relations (similarity/dissimilarity in one nodal attribute) between two nodes affect tie formation. As for the abbreviations of nodal attributes included, PGH is the gun homicide as a percent of all homicides in a state; MHI
stands for inflation-free median household income; PPL is state population size; FLS is firearm law strictness as the count number of restrictive firearm-related laws in one state; and CTI is citizen ideology.

X.W
ang

etal.



SSM - Population Health 27 (2024) 101680

10

higher firearm prevalence in states with higher PGH and combined with
permissive gun laws become potential sources to affect firearm markets
in other states, e.g., through firearm trafficking (Andrade et al., 2020;
Kleck, 1999), exemplifying a leader-follower relationship between the
states. With respect to firearm law strictness, we reveal that a state with
stricter firearm laws is more likely to influence others and less likely be
influenced by other states. One may suggest that this indicates that such
laws may dampen firearm acquisition, thereby reducing the likelihood
that a state can be influenced by another state’s firearm acquisition
activities. Given that the more common firearm laws contain restrictions
on when, how, and who may purchase new guns, it is plausible that the
presence of such laws creates a legal framework that insulates the state’s
citizens somewhat from outside influences. Results further indicate that
background checks in states with different citizen ideology can influence
each other; however, given the one-month time resolution of the data,
we can claim only that such influences arise with a one month of delay
time. This delay time also helps support the results explaining influences
are more likely between states that do not share a border, that is, some
finite time is needed for such influences to propagate over relatively
larger distances.

In view of the above discussions, our study offers a few insights with
respect to policy making. Results indicate that the percent of homicides
committed with guns is a critical parameter in the formation of ties
between states. This may be due to common factors that drive overall
crime rates (such as poverty and unemployment), affinity among citi-
zens in terms of the way they react to crime in their neighborhoods, or
other factors. Clearly, programs and policies that help to reduce gun
violence (whether homicides, suicides, or injuries) will not only promote
the health of Americans and reduce healthcare costs (Callcut, Robles, &
Mell, 2018; Degli Esposti et al., 2023), but may also have the unintended
effect of reducing state-to-state influences that may otherwise contribute
to the ever-increasing rates of firearm acquisition in the U.S.

From the viewpoint of network structural factors, we reveal that
transitivity and mutuality are also linked to state-to-state influences –
characteristics that may have been overlooked in previous work. These
two factors are associated with the particular ways states are connected
to each other through ties. Transitivity is related to the well-known
concept of ‘a friend of my friend is my friend’, while mutuality refers

to the presence of reciprocated ties between a pair of states. We find that
ties signifying an influence about firearm acquisition are more likely to
form if they promote transitivity and mutuality. To a certain degree, tie
formations are pervasive as new ties will promote newer ties, and hence
strengthen state-to-state influences. Furthermore, ERGMs consistently
suggest a negative relationship in edge density, indicating that the
network tends to be more sparse than not. This therefore indicates a
mechanism that modulates the number of ties in the network. Combined
with transitivity, it potentially suggests a network with clusters of states.

With the implementation of ERGMs, this study reveals a refined
model, Model 9, containing only the most relevant parameters. Model 9
can also be utilized to perform predictions. For example, it predicts in
Section 4.2 higher odds for ties to exist from Indiana, Mississippi, and
Missouri to Illinois, which can perhaps be expected, as the results
resonate with (Andrade et al., 2020) where these ties were revealed as
pathways of illegal firearm trafficking. Another result is the existence of
a tie from Arizona to New York with higher odds, which is possibly
unexpected since these states are geographically distanced and their
political landscapes are different.

The results in this study should be considered under several limita-
tions. While inferences rooted in transfer entropy have proven to shed
light in a broad range of disciplines, we acknowledge the absence of a
ground truth to back our claims. Furthermore, this study is limited to
five candidate formative factors, although other factors associated with,
for example, hunting activities could also be related to firearm acqui-
sition. In the modeling process, this study does not consider temporal
changes in covariates, such as fluctuations in the economy and time
instants at which firearm policies are enacted, and the covariates sup-
porting the ERGMs are time averaged over the study time range. Due to
the time resolution and length of data, it was not possible to capture the
dynamics at a higher temporal resolution, nor was it possible to condi-
tion transfer entropy computations and/or increase the number of bins
in the data (Paninski, 2003). Were more detailed data available, it would
be possible to unveil additional information about the firearm acquisi-
tion landscape in the U.S. For example, it would be possible to study how
citizen ideology plays a role on state-to-state influences at shorter time
scales, i.e., between neighboring states. Since it was not possible to
condition transfer entropy values on the activity of the remaining states,

Fig. 5. Distributions of covariates out-degree, in-degree, dyadwise shared partner, and geodesic distance in inferred network of influence y* (black curves) and in
2,000 randomly simulated networks based on Model 9 (box plots).
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the resulting pairwise state-to-state interactions may also indicate in-
direct influence from cascade effects, or the existence of a common
driver. A cascade effect arises between two nodes due to some influence
transmitting from one to the other through a common neighbor. It is
therefore likely that some of the influences revealed in this study may be
redundant or overestimate the presence of some ties, such as in the way
described by GWESP (transitivity). To deal with the outcome of redun-
dant ties due a common driver, model statistics related to degree dis-
tribution could be added in future modeling attempts. Further, we note
that Andrade et al. (2020) find that states with stricter firearm laws may
be subject to increased illegal firearm trafficking from states with looser
regulations. Because the movement of illegal guns is not tracked through
federal background checks, this possibility is an important limitation of
the results presented here.

Overall, a systems-level approach should be used to better under-
stand the underlying factors for policy adoption among states, the dy-
namic nature of state influences, and the ways in which these factors
affect firearm-related harms. Unfortunately, authors have identified the
lack of high-quality data on legal and illegal firearms, firearm-related
harms including injuries, public opinion on firearms and their appro-
priate use, systems to track the effectiveness of laws intended to remove
guns from those deemed to be a danger, for all states over time as major
limitations to conducting this necessary evidence-based research (Call-
cut et al., 2018; Nagin, Koper, & Lum, 2020).

To conclude, this study provides a data-driven, mathematical and
computational framework by integrating transfer entropy with ERGMs.
The results expand our understanding of which states influence each
other in terms of firearm acquisition and explain the reasons of such
influences with respect to crime rates, citizen ideology, income levels,

population, and the legal environment. The presented mathematical
framework will inform data-driven modeling efforts at the intersection
of complex systems and network dynamics, and the results have the
potential to impact research in public health, criminology, and policy
making.
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Appendix

6.1 Appendix A: Sub-steps for inference of the network of influence

6.1.1 Computation of transfer entropy
The monthly BC time series of each state is decomposed into trend-cycle, seasonal, and irregular components, using TRAMO/SEATS of EViews

(Hood, Ashley, & Findley, 2000). The seasonal and trend-cycle components are removed from the original time series to generate detrended,
seasonally adjusted BC series, see, e.g., (Porfiri et al., 2019). These processed series are denoted as Bi(t), where i ∈ S is the state index; S is the set of n
= 49 states examined in this work and t from 1, …, 228 is the time index. For each Bi(t), the augmented Dickey-Fuller test is performed to ensure
stationarity at a significance level of 0.05.

Time series are next converted to symbols. Symbolization is a common practice to capture the underlying behavior of dynamical systems, espe-
cially in the case of limited data (Staniek & Lehnertz, 2008). Numerical values in Bi(t) are converted to three symbols (‘0’, ‘1’, and ‘2’), which is the
maximum number of symbols admissible in our study, as determined by the bias-variance balance criterion (Paninski, 2003). Each Bi(t) is divided into
three equal percentiles, where a specific value in Bi(t) is symbolized as ‘0’, ‘1’, or ‘2’ if the value falls either in the 1 − 32th, 33 − 65th, or 66 − 100th

percentile, respectively. The symbolized BC series are denoted by BSi (t).
Given the time series BSi (t) and B

S
j (t) for two different states i,j ∈ S , we have that BSi (t) influences B

S
j (t), if knowledge of B

S
i (t) at time t improves the

prediction of BSj (t) from time t to t + 1. This influence can be quantified by computing transfer entropy from BSi (t) and BSj (t). We use the notation

TEB
S
i ↦BSj to denote this calculation. Computation of transfer entropy is very well established in the literature (Bossomaier, Barnett, Harré, & Lizier,

2016).

6.1.2 Identification of the network of influence
TE values are computed between all the pairs of states, except Hawaii, using their symbolized BC time series. TE informs the existence and intensity

of directed ties between the states. In such a setting, we have a network yowith U.S. states as nodes and whose ties between the nodes are weighted by
TE values. We denote with aoi,j the weight of a directed tie from node i to j in yo, that is,

aoi,j =

{
TEB

S
i ↦BSj if i ∕= j,

0 if i = j.
(A.1)

Network yo has n(n − 1) ties, but only the ties with weights that are substantially large are of interest, since small TE values are not reliable in-
dicators of influence. To this end, ties with relatively large weights are kept and all the others are removed from yo. The figure of merit in this process
was to achieve an edge density of 15%, that is, we remove n(n − 1)× 85% of the ties from the network (see Appendix 6.4 for a robustness analysis with
respect to a range of different thresholds). This is done by setting a threshold e at the 85th percentile of the distribution of all n(n − 1) number of TE
values calculated. We generate a new, unweighted directed network y* called the network of influence, defined by the adjacency matrix
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ai,j =

{
1 if aoi,j > e,
0 otherwise.

(A.2)

To put into context, y* describes a network of ties, where each tie signifies a relatively strong causal influence between a pair of U.S. states in terms
of temporal firearm acquisition patterning. While y* is the representation of ties underlying state-to-state influences, this does not shed light on the
formative reasons behind why these ties form.

6.2 Appendix B: Sub-steps for identification of the formative reasons of the network of influence

6.2.1 Model statistics in ERGM
We next describe the model statistics considered. Here, model statistics refer to specific formulae used tomeasure/quantify (i) a particular attribute

for each state based on its incoming/outgoing ties, (ii) how any two states sharing a tie compare in terms of their attributes, and (iii) network structural
factors. The model statistics in this manuscript are based on the state-level attributes in Table B.1 with their measures described in Section 2:

Table B.1
Informed by Andrade et al. (2020), Boine et al. (2020), Cook et al. (2011), Kelley and Ellison (2021), Liu
and Wiebe (2019), and Porfiri et al. (2019), we consider five attributes to explore formation of causal
influences with respect to firearm acquisition.

State-level (nodal) attributes VIFA i

Gun homicide as a percent of all homicides (PGH) 1.42
Inflation-adjusted median household income (MHI) 1.52
State population size (PPL) 1.67
Firearm law strictness as the count number of restrictive firearm-related laws (FLS) 2.61
Citizen ideology (CTI) 1.48

As we treat each state as a node, the above described attributes are also known as ‘nodal’ attributes. Two of them, median house hold income and
population, have wide ranges, so that they are expressed in the units of $10,000 and 1,000,000 people, respectively. Let A i(t) denote the time series of
a nodal attribute A of state i, where A ∈ {PGH, MHI, PPL, FLS, CTI}. Over the available time span, we compute average values A i of A i(t) and
calculate the abstract distance between two states,

D(i, j) =
∑

t |A i(t) − A j(t)|
MD

∈ [0,1], (B.1)

with normalizing factorMD as the maximum value of
∑

t |A i(t) − A j(t)| over all different pairs (i, j). For ERGM, D(i, j) and A i are known respectively as
dyadic covariates and nodal covariates (see Appendix 6.5 for the ranking of states in these nodal measurements). To check their collinearity, variance
inflation factor (VIF) of the considered nodal covariates is computed, see Table B.1 (Belsley, Kuh, &Welsch, 2005). These values are all less than five
indicating that there is no strong collinearity between them. For this reason, we continue with utilizing all the covariates in ERGM.

Using A i and D(i, j), we formulate the following covariates: nodal effect of out-edges, nodal effect of in-edges, and edge covariate of abstract
distance (Harris, 2013; Morris, Handcock, & Hunter, 2008), see Table B.2 (top three rows). The nodal effects of out-edges and in-edges measure the
association that attribute A has with the node at the origin of a tie and that at the end of a tie. In addition to considering node-to-node interactions, we
also investigate two commonly observed structural features in social networks: mutuality and transitivity. As shown in Fig. 6, mutuality captures the
tendency to form more reciprocal ties in a directed network (see also Table B.2 for model statistics) and transitivity the tendency of a tie to form if it
completes a triangular subgraph. To discern whether there exists a certain degree of transitivity in y*, we utilize the geometrically weighted edgewise
shared partners (GWESP). A similar metric is the geometrically weighted dyadwise shared partners (GWDSP), where a dyad refers to a pair of nodes
(connected or not). Both GWESP and GWDSP adjust the weights on counts of subgraphs depending on the number of shared neighbors; see Table B.2
for model statistics and the graphs in Fig. 6 illustrating examples of one, two, and three shared neighbors. Finally, considering influences from
geographical factors, we introduce a model statistic to measure the tendency of tie formation between two states that share a border, see Table B.2
(bottom row). Inspecting Table B.2, it is critical to note that model statistics depend on static measures, such as A i, D(i, j), and the characteristics of the
network. This is consistent with the mathematical construct of ERGM and for this reason, this part of the study does not focus on causal inferences, but
rather on understanding how these statistics can inform the formation of a tie.

Table B.2
Mathematical definitions of specific model statistic for the ERGMs. E denotes the set of edges; for covariates related to nodal attributes,
we set A ∈ {PGH, MHI, PPL, FLS, and CTI} based on Table B.1; ESPq(y) is the number of edges between two nodes that have q
shared neighbors; and DSPq(y) is the number of dyads between two nodes that have q shared neighbors; see (Harris, 2013; Morris et al.,
2008), for details.

Model statistics Formula used in the corresponding entry of Z→(y)

Nodal effect of out-edges for nodal attribute X ∑
(i,j)∈EA jyij

Nodal effect of in-edges for nodal attribute X ∑
(i,j)∈EA iyij

Edge covariate of abstract distance for nodal attribute X
∑

(i,j)D(i, j)yij
Mutuality

∑
(i < j)yijyji

(continued on next page)

X. Wang et al.



SSM - Population Health 27 (2024) 101680

13

Table B.2 (continued )

Model statistics Formula used in the corresponding entry of Z→(y)

GWESP eα∑n− 2
q=1[1 − (1 − e− α)q] ESPq(y), α = 0.5

GWDSP eα∑n− 2
q=1[1 − (1 − e− α)q] DSPq(y), α = 0.5

Geographical factor: (no) shared border
∑

(i,j) ∈ Gyij, G = {(i, j)|state i and state j have (no) shared border}

Fig. 6. Illustration of network structural factors.

To reveal the key formative reasons for the network of influence, multiple models with different combinations of model statistics are fitted in the
framework of ERGM; see Section 4.2 for results obtained from a set of nested ERGMs.

6.2.2 Model assessment: ERGM goodness-of-fit
The maximum likelihood estimation is the basis of model fitting, but this does not guarantee that the random networks generated by ERGM will

perfectly resemble y*. A goodness-of-fit procedure should be performed (Hunter, Goodreau,&Handcock, 2008; Hunter, Handcock, Butts, Goodreau,&
Morris, 2008). Given an ERGM with certain specifications and estimated parameters, this procedure comprises of two steps: (i) simulation by Markov
Chain Monte Carlo sampling scheme (Hunter & Handcock, 2006) to generate a sample of random networks by the given ERGM with estimated pa-
rameters; and (ii) comparison of a set of metrics from y* to the distribution for the same set of metrics obtained from the simulated networks in (i). In
this manuscript, the selected metrics are in-degree distribution, out-degree distribution, dyadwise shared partner distribution, and geodesic distance distri-
bution (Hunter, Goodreau, & Handcock, 2008). The distribution of these metrics for simulated networks and y* are presented in Section 4.3.

6.3 Appendix C: Interpretation of parameters and prediction of ties in ERGMs

The interpretation of θ
→ is as follows. Consider two networks: y1, where one specific tie exists (yij = 1) and y2, where the same tie is removed (yij =

0), without altering the remaining ties yc. We compare the likelihood of the existence or absence of this tie, using

log

⎛

⎝
P( yij = 1 | θ

→
, yc )

P( yij = 0 | θ
→
, yc )

⎞

⎠, (C.1)

which, based on equations (1) and (2), can further be simplified as (Harris, 2013)

θ
→ T

( Z→(y1) − Z→(y2)). (C.2)

Let us consider the example of ‘the number of triangles’ in the network as the sole model statistic. Given that adding the tie yij would increase the
number of triangles, Z→(y1) − Z→(y2) will be positive. If the corresponding entry in θ

→ is positive (negative), then (C.2) will be positive (negative),
implying that the tie yij is more (less) likely to exist than being absent when it comes to promoting an increase in the count of triangles.

Furthermore, with estimated parameters θ
→

9 in Model 9, the conditional probability that a tie exists P( yij = 1 | θ
→

9, yc ) or is absent

P( yij = 0 | θ
→

9, yc ) in the network of influence can be predicted through Eq. (C.1) and (C.2). Here, probability is conditioned on fixing the rest of
the network yc consistent with ERGM. Also, we can perform a sensitivity analysis to study the effects of model parameters on the existence of ties. To

this end, let (C.1) be defined for Model 9 as Tij = log(P( yij = 1 | θ
→

9, yc ) /P( yij = 0 | θ
→

9, yc )) as log-odds of tie existence. Define next θ
→GWESP

9 as

the vector obtained by removing GWESP from θ
→

9. Then, one can calculate the log-odds in the absence of the GWESP parameter as

TGWESP
ij = log(P( yij = 1 | θ

→GWESP
9 , yc ) /P( yij = 0 | θ

→GWESP
9 , yc )). Pair-wise comparison of TGWESP

ij and Tij then provides intuition as to how GWESP
influences the prediction of ties between two states, relative to the other factors in the model. Similar analysis can then be conducted separately by
isolating the mutuality term in the model Tmutualityij , or the two terms associated with percent of gun homicide (PGH), TPGHij . Once again comparison
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between Tmutualityij and Tij, as well as between TPGHij and Tijwill reveal the relative contribution of mutuality and PGH on tie formation. To focus on the
most relevant effects, we retain only the ties whose conditional probability increases at least 0.1 units in this comparison procedure. Next, we rank
these changes in probability from the largest to the smallest, and report the top 50 entries, see Table C.1, Table C.2, and Table C.3. Rank of ties
corresponding to mutuality (Table C.1) is however selected by alphabetical order of states because mutuality term results in indistinguishable
effects. In Table 1 in Section 4.2, ties presented are picked randomly from the 50 ties in Table C.1.

Table C.1
Potential ties of state-to-state influence ranked by Tij − Tmutuality

ij .

Rank Sender state Receiver state Does a tie exist in y*

– Alabama Connecticut N
– Alabama Illinois N
– Alabama Pennsylvania N
– Alabama Rhode Island Y
– Alabama Utah Y
– Arizona Florida N
– Arizona Illinois N
– Arizona Maine N
– Arizona Minnesota N
– Arizona New York N
– Arizona Rhode Island N
– Arizona South Carolina N
– Arizona Vermont N
– Arkansas Illinois Y
– California Idaho N
– California Oklahoma N
– Colorado Delaware N
– Colorado Illinois Y
– Colorado Rhode Island N
– Colorado South Carolina N
– Connecticut Utah N
– Delaware Alabama N
– Delaware North Dakota N
– Florida North Dakota N
– Idaho Rhode Island Y
– Idaho West Virginia N
– Illinois Arkansas Y
– Illinois Colorado Y
– Illinois Idaho Y
– Illinois Kansas N
– Illinois New Jersey N
– Illinois Oklahoma Y
– Illinois Rhode Island Y
– Illinois South Carolina Y
– Illinois Tennessee Y
– Illinois Wyoming N
– Kansas Wisconsin N
– Kentucky North Dakota N
– Kentucky Rhode Island N
– Maine Illinois N
– Mississippi Maryland N
– Mississippi Rhode Island Y
– Montana Missouri N
– Montana Washington N
– Nevada Maine N
– Nevada Rhode Island Y
– Nevada Washington N
– New Jersey Wyoming N
– New York Rhode Island Y
– Ohio Vermont N

Table C.2
Potential ties of state-to-state influence ranked by Tij − TGWESP

ij .

Rank Sender state Receiver state Does a tie exist in y*

1 Colorado Illinois Y
2 New York Rhode Island Y
3 Ohio Rhode Island N
4 Arizona Washington N
5 Maine Rhode Island N
6 Rhode Island Illinois Y
7 North Dakota Delaware Y
8 Georgia Rhode Island Y

(continued on next page)
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Table C.2 (continued )

Rank Sender state Receiver state Does a tie exist in y*

9 Mississippi Idaho N
10 Maine Illinois N
11 Rhode Island Maine N
12 Pennsylvania Rhode Island N
13 Utah Missouri N
14 Rhode Island Connecticut N
15 Illinois Rhode Island Y
16 Ohio Maine N
17 Louisiana Illinois N
18 Georgia Illinois N
19 Ohio Colorado N
20 Rhode Island South Dakota N
21 Delaware Colorado Y
22 Rhode Island Kansas N
23 Delaware Rhode Island N
24 Vermont Oklahoma N
25 Wisconsin Florida N
26 Illinois Wyoming N
27 Illinois Iowa N
28 Utah Illinois N
29 Delaware North Dakota N
30 Wisconsin Illinois N
31 Kentucky Oklahoma N
32 Rhode Island Pennsylvania N
33 Ohio Vermont N
34 Vermont Illinois N
35 Oregon North Dakota N
36 Vermont Missouri N
37 Oklahoma Kentucky N
38 Idaho Mississippi N
39 Arizona South Carolina N
40 Maine Vermont Y
41 Colorado Vermont Y
42 Colorado Delaware N
43 Rhode Island Alabama Y
44 Virginia Colorado N
45 Pennsylvania Minnesota Y
46 Rhode Island Ohio Y
47 Texas Connecticut N
48 Tennessee Illinois Y
49 Florida Mississippi N
50 Rhode Island Colorado Y

Table C.3
Potential ties of state-to-state influence ranked by Tij − TPGH

ij .

Rank Sender state Receiver state Does a tie exist in y*

1 Illinois South Dakota N
2 California South Dakota N
3 Louisiana Maine N
4 Alabama New Hampshire N
5 Illinois North Dakota Y
6 Illinois Wyoming N
7 Missouri Vermont N
8 Illinois Vermont N
9 Missouri Montana Y
10 Illinois Montana Y
11 Louisiana Rhode Island N
12 Delaware North Dakota N
13 Pennsylvania Maine N
14 California Wyoming N
15 Illinois Iowa N
16 Illinois Maine Y
17 Massachusetts South Dakota N
18 California Vermont N
19 Virginia Vermont N
20 Tennessee Maine Y
21 Indiana Vermont N
22 Florida North Dakota N
23 Rhode Island South Dakota N
24 Alabama Utah Y
25 Texas North Dakota N

(continued on next page)
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Table C.3 (continued )

Rank Sender state Receiver state Does a tie exist in y*

26 Alabama Rhode Island Y
27 Kentucky North Dakota N
28 Illinois Idaho Y
29 Mississippi Idaho N
30 Pennsylvania Utah N
31 Pennsylvania Rhode Island N
32 Pennsylvania Minnesota Y
33 Missouri Utah N
34 Missouri Rhode Island Y
35 Illinois Rhode Island Y
36 Ohio Vermont N
37 Illinois Minnesota N
38 Mississippi Rhode Island Y
39 Arizona Vermont N
40 California Idaho N
41 Georgia Rhode Island Y
42 Tennessee Rhode Island N
43 New Jersey Wyoming N
44 Illinois Colorado Y
45 Ohio Maine N
46 Arizona Maine N
47 Virginia Rhode Island Y
48 Delaware Rhode Island N
49 Alabama Connecticut N
50 Virginia Colorado N

6.4 Appendix D: Robustness of model parameters with varied edge-density levels

As pointed out in Appendix 6.1.2 Identification of the network of influence, edge density of the influence network under study is controlled by a
threshold e on the transfer entropy (TE) values. If e is reduced, this will allow smaller TE values between two states to inform the presence of a tie. Since
the formation of the network is an input to our statistical modeling effort, it is of interest to investigate how e could potentially alter the outcomes of
this modeling. To this end, Model 9 obtained in Table 4 is next fitted under different edge densities, recalling that 15% is the baseline edge density used
in the manuscript. The fit results are provided in Table D.1 and D.2, where the edge density is varied from 10% to 20%. This robustness study reveals
that model statistics including transitivity (GWESP), mutuality, nodal effect of out-edges for percent of gun homicide, nodal effect of out-edges for firearm
law strictness, and edge covariate of abstract distance for citizen ideology still maintain their respective statistical significance levels, except in a few
cases that the corresponding p-values get perturbed to be slightly over 0.05. On the other hand, nodal effect of in-edges for firearm law strictness loses its
significance in networks with edge densities less than or equal to 13%; nodal effect of in-edges for percent of gun homicide loses its significance when
edge density of inferred network ranges between 11% and 15%. These two covariates however still remain significant predictors for larger edge
densities. As for the term of no shared border, its parameter is not strictly significant for most of the inferred networks. Overall the results provide
additional confidence in the validity of Model 9 and the key factors, mutuality, transitivity, percent of gun homicide, firearm law strictness, and citizen
ideology that explain state-to-state influences.

Table D.1
Estimated parameter entries of θ

→ and their corresponding standard errors (in parenthesis), for Model 9 fitted to inferred networks of influence with varied edge density
(10%–15%); p values are denoted by *** for< 0.001, ** for < 0.01, and * for< 0.05, respectively; Reference AIC is obtained by fitting a model with only edges term to
the corresponding network; see Appendix 6.2.1 for the definitions of model terms.

Model statistics network 1 (10%) network 2 (11%) network 3 (12%) network 4 (13%) network 5 (14%) network 6 (15%)

edges − 3.812(0.544)*** − 3.815(0.507)*** − 3.682(0.501)*** − 3.719(0.477)*** − 3.768(0.490)*** − 3.886(0.487)***
mutuality 1.013(0.259)** 0.702(0.248)** 0.722(0.234)** 0.744(0.227)** 0.693(0.218)** 0.495(0.212)*
gwesp 0.592(0.085)*** 0.611(0.083)*** 0.614(0.084)*** 0.595(0.613)*** 0.565(0.083)*** 0.630(0.086)***
out-edges: PGH 1.468(0.701)* 1.334(0.684) 1.263(0.642)* 1.216(0.613)* 1.252(0.619)* 1.398(0.596)*
in-edges: PGH − 1.249(0.625)* − 1.082(0.584) − 1.051(0.582) − 0.949(0.553) − 0.816(0.545) − 0.915(0.544)
out-edges: FLS 0.017(0.007)** 0.015(0.006)* 0.016(0.006)* 0.016(0.006)* 0.016(0.006)** 0.012(0.006)*
in-edges: FLS − 0.012(0.007) − 0.012(0.007) − 0.012(0.007) − 0.012(0.007) − 0.014(0.007)* − 0.013(0.007)*
edge covariate: CTI 0.414(0.273) 0.565(0.262)* 0.537(0.251)* 0.616(0.252)* 0.577(0.241)* 0.575(0.238)*
no shared border 0.335(0.255) 0.363(0.256) 0.223(0.224) 0.258(0.234) 0.339(0.241) 0.425(0.230)
AIC 1451 1554 1641 1732 1825 1905
AIC reference 1530 1633 1727 1820 1906 1991
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Table D.2
Estimated parameter entries of θ

→ and their corresponding standard errors (in parenthesis), for Model 9 fitted to inferred networks of influence with varied edge density
(16%–20%); p values are denoted by *** for< 0.001, ** for < 0.01, and * for< 0.05, respectively; Reference AIC is obtained by fitting a model with only edges term to
the corresponding network; see Appendix 6.2.1.

Model statistics network 7 (16%) network 8 (17%) network 9 (18%) network 10 (19%) network 11 (20%)

edges − 3.655(0.451)*** − 3.608(0.472)*** − 3.535(0.458)*** − 3.253(0.477)*** − 3.238(0.504)***
mutuality 0.597(0.201)** 0.554(0.198)** 0.543(0.184)** 0.617(0.186)*** 0.494(0.178)**
gwesp 0.662(0.089)*** 0.624(0.089)*** 0.603(0.095)*** 0.546(0.098)*** 0.544(0.104)***
out-edges: PGH 1.642(0.570)** 1.657(0.574)** 1.605(0.542)** 1.741(0.562)** 1.680(0.557)**
in-edges: PGH − 1.367(0.525)** − 1.360(0.534)* − 1.296(0.526)* − 1.603(0.519)** − 1.531(0.512)**
out-edges: FLS 0.012(0.006)* 0.012(0.006)* 0.012(0.006)* 0.011(0.006) 0.010(0.006)
in-edges: FLS − 0.015(0.006)* − 0.015(0.007)* − 0.018(0.008)** − 0.018(0.006)** − 0.018(0.006)**
edge covariate: CTI 0.517(0.229)* 0.540(0.232)* 0.574(0.231)* 0.598(0.238)* 0.554(0.230)*
no shared border 0.305(0.212) 0.342(0.214) 0.360(0.207) 0.326(0.212) 0.415(0.201)*
AIC 1970 2059 2134 2211 2282
AIC reference 2069 2147 2218 2290 2355

6.5 Appendix E: U.S. state ranking by nodal attributes

We provide U.S. state rankings in terms of states’ nodal attribute values. Here we have five separate rankings, one for each of the nodal attributes
{PGH, MHI, PPL, FLS, and CTI}, see Table E.1, Table E.2, Table E.3, Table E.4, and Table E.5. When a state ranks 1 on a list, this indicates that the state
has the largest nodal attribute value in the country, while rank 49 corresponds to the smallest value of the nodal attribute (Hawaii is excluded from this
study). On these tables we also provide in the third column the net out-degree of each state as measured by the difference of outgoing edges and
incoming edges. States with larger net out-degrees take more of a leader role than a follower role.

Table E.1
U.S. states ranked by PGH.

Rank State Outgoing edges - Incoming edges in y*

1 Louisiana 3
2 Alabama − 4
3 Michigan 0
4 Pennsylvania 1
5 Missouri 7
6 Illinois 16
7 Mississippi 0
8 Georgia 6
9 Maryland 0
10 Tennessee 3
11 California 0
12 North Carolina 2
13 Virginia − 1
14 South Carolina 6
15 Delaware 1
16 Indiana 5
17 Arkansas 3
18 Florida 7
19 Ohio − 6
20 Texas − 5
21 Kansas − 4
22 Arizona − 10
23 Kentucky 2
24 Wisconsin − 4
25 New Jersey − 2
26 Connecticut − 4
27 Oklahoma 7
28 Nevada − 2
29 West Virginia 0
30 Nebraska 4
31 Colorado 1
32 Massachusetts 7
33 New York − 2
34 Washington − 2
35 Alaska − 6
36 Minnesota 5
37 Rhode Island 5
38 Utah 4
39 Oregon − 3
40 Idaho − 8
41 New Mexico − 5
42 Maine 0
43 Iowa − 1
44 Montana − 5

(continued on next page)
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Table E.1 (continued )

Rank State Outgoing edges - Incoming edges in y*

45 Vermont − 5
46 New Hampshire − 13
47 Wyoming − 5
48 North Dakota 2
49 South Dakota 0

Table E.2
U.S. states ranked by MHI.

Rank State Outgoing edges - Incoming edges in y*

1 Maryland 0
2 New Hampshire − 13
3 Connecticut − 4
4 New Jersey − 2
5 Alaska − 6
6 Minnesota 5
7 Massachusetts 7
8 Virginia − 1
9 Colorado 1
10 Utah 4
11 Washington − 2
12 California 0
13 Delaware 1
14 Rhode Island 5
15 Illinois 16
16 Wisconsin − 4
17 Vermont − 5
18 Nebraska 4
19 Nevada − 2
20 Oregon − 3
21 Iowa − 1
22 Wyoming − 5
23 Pennsylvania 1
24 New York − 2
25 Michigan 0
26 Missouri 7
27 North Dakota 2
28 Kansas − 4
29 Texas − 5
30 Arizona − 10
31 Ohio − 6
32 Idaho − 8
33 Georgia 6
34 South Dakota 0
35 Indiana 5
36 Maine 0
37 Florida 7
38 North Carolina 2
39 South Carolina 6
40 Oklahoma 7
41 Montana − 5
42 Tennessee 3
43 New Mexico − 5
44 Alabama − 4
45 Kentucky 2
46 Louisiana 3
47 Arkansas 3
48 West Virginia 0
49 Mississippi 0

Table E.3
U.S. states ranked by PPL.

Rank State Outgoing edges - Incoming edges in y*

1 California 0
2 Texas − 5
3 New York − 2
4 Florida 7
5 Illinois 16

(continued on next page)
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Table E.3 (continued )

Rank State Outgoing edges - Incoming edges in y*

6 Pennsylvania 1
7 Ohio − 6
8 Michigan 0
9 Georgia 6
10 North Carolina 2
11 New Jersey − 2
12 Virginia − 1
13 Washington − 2
14 Massachusetts 7
15 Indiana 5
16 Tennessee 3
17 Arizona − 10
18 Missouri 7
19 Maryland 0
20 Wisconsin − 4
21 Minnesota 5
22 Colorado 1
23 Alabama − 4
24 Louisiana 3
25 South Carolina 6
26 Kentucky 2
27 Oregon − 3
28 Oklahoma 7
29 Connecticut − 4
30 Iowa − 1
31 Mississippi 0
32 Arkansas 3
33 Kansas − 4
34 Utah 4
35 Nevada − 2
36 New Mexico − 5
37 West Virginia 0
38 Nebraska 4
39 Idaho − 8
40 Maine 0
41 New Hampshire − 13
42 Rhode Island 5
43 Montana − 5
44 Delaware 1
45 South Dakota 0
46 Alaska − 6
47 North Dakota 2
48 Vermont − 5
49 Wyoming − 5

Table E.4
U.S. states ranked by FLS.

Rank State Outgoing edges - Incoming edges in y*

1 California 0
2 Massachusetts 7
3 Illinois 16
4 New Jersey − 2
5 Connecticut − 4
6 Rhode Island 5
7 New York − 2
8 Pennsylvania 1
9 Maryland 0
10 North Carolina 2
11 Michigan 0
12 Florida 7
13 Delaware 1
14 Virginia − 1
15 Nebraska 4
16 Tennessee 3
17 Nevada − 2
18 Utah 4
19 Indiana 5
20 Arizona − 10
21 Oklahoma 7
22 Ohio − 6
23 Oregon − 3

(continued on next page)
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Table E.4 (continued )

Rank State Outgoing edges - Incoming edges in y*

24 Iowa − 1
25 Missouri 7
26 Wisconsin − 4
27 Washington − 2
28 Georgia 6
29 Minnesota 5
30 Colorado 1
31 West Virginia 0
32 Arkansas 3
33 Idaho − 8
34 New Hampshire − 13
35 Texas − 5
36 North Dakota 2
37 South Carolina 6
38 Louisiana 3
39 Alaska − 6
40 Mississippi 0
41 Maine 0
42 Kentucky 2
43 New Mexico − 5
44 Montana − 5
45 Alabama − 4
46 Kansas − 4
47 Wyoming − 5
48 South Dakota 0
49 Vermont − 5

Table E.5
U.S. states ranked by CTI.

Rank State Outgoing edges - Incoming edges in y*

1 Vermont − 5
2 Rhode Island 5
3 Massachusetts 7
4 Connecticut − 4
5 Maine 0
6 New York − 2
7 Maryland 0
8 Delaware 1
9 New Jersey − 2
10 Oregon − 3
11 Illinois 16
12 West Virginia 0
13 California 0
14 Michigan 0
15 New Mexico − 5
16 Pennsylvania 1
17 Washington − 2
18 Minnesota 5
19 Wisconsin − 4
20 North Dakota 2
21 Nevada − 2
22 Ohio − 6
23 Montana − 5
24 Colorado 1
25 New Hampshire − 13
26 Virginia − 1
27 North Carolina 2
28 Iowa − 1
29 Florida 7
30 Missouri 7
31 South Dakota 0
32 Alaska − 6
33 Arizona − 10
34 Indiana 5
35 South Carolina 6
36 Texas − 5
37 Arkansas 3
38 Georgia 6
39 Tennessee 3
40 Mississippi 0
41 Louisiana 3

(continued on next page)
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Table E.5 (continued )

Rank State Outgoing edges - Incoming edges in y*

42 Alabama − 4
43 Kentucky 2
44 Kansas − 4
45 Nebraska 4
46 Utah 4
47 Wyoming − 5
48 Oklahoma 7
49 Idaho − 8
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