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Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven
carcinogens. Lately, there has been in-depth research investigating carcinogenic
capabilities of some bacteria. Reports indicate that chronic inflammation and harmful
bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced
gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of
oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species
(ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-
dependent mechanisms and virulence factors have also been suspected of playing a vital
role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore
and establish the possible relationship between the two. With the growing concerns on
anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial
infections, it must be deemed critical to understand and identify carcinogenic bacteria, to
establish their role in causing cancer.

Keywords: oncogenesis, chronic inflammation, Helicobacter pylori, bacteria, carcinogen
INTRODUCTION

Cancer, one of the leading causes of morbidity and mortality in the world, is characterized by the
uncontrolled growth of cells with potential to metastasize. Problems arise when these cancerous cells,
carrying mutagenic DNA, turn into tumors (1). TheWorld Health Organization (WHO) estimates that
~10 million deaths occurred due to cancer in 2020 alone (2), twice the number of global COVID-19
related deaths in the same year. Numerous causes of cancer have been identified, with enormous
interlink between environmental and genetic factors (3). The alterations occurring in the genetic
makeup are known to be influenced by various external factors mostly related to lifestyle, such as
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alcohol, tobacco abuse, and exposure to sunlight (3). In 2018,
roughly 19% and 2% of cancers worldwide had been attributed to
tobacco and alcohol intake respectively (4). Interestingly, microbial
infections have also been recognized to potentially cause cancer(s)
(5–7). According to a 2021 report of the International Agency for
Research on Cancer (IARC), there were 2.2 million cancer cases
globally related to microbial infection(s), caused by Helicobacter
pylori, Human papillomavirus (HPV), Hepatitis B virus (HBV),
Hepatitis C virus (HCV), and Schistosoma haematobium (8).

Traditionally, bacteria have not been considered as a significant
etiologic factor for cancer. Though an infectious cause was
suspected in the 16th century, the relationship between bacteria
and cancer was not very clear due to many reasons. One such
example is the varied duration between the onset of infection and
the diagnosis of cancer, making it difficult to single out (9). Cancer
causing bacteria modulate a variety of immune responses which
are believed to play a role in tumor progression. However, the very
mechanism of carcinogenesis by bacteria is yet to be elucidated.
Notwithstanding, the bacteria-associated factors that may
influence neoplasm are not well understood. Carcinogenesis is
also influenced by the duration of infection (acute or chronic
infections). While epidemiological evidence suggests a reduced
risk of cancer in case of acute infections, persistent infections may
increase the risk (10). The neoplastic potential of bacterial
infections is reported to be influenced by various factors, such as
the host immune response, presence of the bacterial toxin, etc.
(11). A few bacterial infections are known to promote
inflammatory responses amounting to mutagenesis (12),
whereas the others are observed to impede the host cell
signaling pathways (13). In addition, bacteria interact with host
cell(s) and modulate their cell adhesion and cytoskeletal functions
(13). This complex network in which a bacteria can possibly
promote oncogenesis includes modified cell proliferation and
death, alteration of the immune response, and change in the
host metabolic processes (14). Recent findings have confirmed the
vitality of inflammation in tumor growth promotion, with a direct
causal relationship between the two (15, 16). Infection, persistent
irritation, and inflammation, in combination, contribute to the
development of cancer. In 2011, amongst other cancer hallmarks,
tumor-promoting inflammation was highlighted as an enabling
trait (17). Furthermore, non-steroidal anti-inflammatory drug use
was linked to a lower chance of acquiring various tumors and a
lower mortality rate, emphasizing the importance of inflammation
in neoplastic transformations (18). Carcinogenesis and
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inflammation are both highly complicated processes relying
independently on multiple signaling mechanisms. Advances in
inflammation research have revealed a link between the
inflammatory processes and neoplastic transformations, tumor
growth, as well as the development of metastases and recurrences
(16). The tumor microenvironment, predominantly regulated by
inflammatory cells, has now been recognized as an essential
participant in the neoplastic process, supporting the
proliferation, survival, and migration events. Additionally, innate
immune signaling molecules, such as selectins, chemokines, and
their receptors, have been co-opted by tumor cells for the purposes
of invasion, migration, and metastasis (15).

Surprisingly, the principal global research focus has been
limited to establishing the nonspecific mechanisms of
carcinogenesis by different microorganisms, including
inflammation and toxic bacterial metabolites, rather than
understanding the cancer-causing potential of any specific
microbe. Helicobacter pylori, alongside other bacteria such as
Chlamydia trachomatis, Propionibacterium acnes , and
Fusobacterium nucleatum have been studied for their
associations with cancer (Table 1.1). Though many hypotheses
have been proposed based on findings from in vivo research, the
function of persistent inflammation in bacterial oncogenesis has
been most widely researched. In addition, specific bacterial
virulence factors aiding infection establishment have been
examined for their role in oncogenesis. The current review
focuses on the various pathways examined in bacterial
oncogenesis, taking into account the most widely researched
bacterial infection models.
HELICOBACTER PYLORI (PREVIOUSLY
CAMPYLOBACTER PYLORI)

In Gastric Adenocarcinoma
Helicobacter pylori (H. pylori) is the first bacterium to be termed
carcinogenic by the IARC in 1994 (19). Its infection and
relevance with respect to gastric adenocarcinoma are the best
studied amongst all cancer causing bacteria. It is an excellent
example of cancer caused by bacteria via the inflammatory
mechanism. It was estimated that nearly one-fifth of all cancers
worldwide are due to infections, and H. pylori could be
implicated in more than 50% of the gastric cancer cases
reported (38). The gram-negative bacterium H. pylori colonize
April 2022 | Volume 12 | Article 836004
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TABLE 1.1 | Bacteria implicated in oncogenesis; factors and mechanisms facilitating oncogenesis.

Bacteria Associated cancer(s) Reference(s

Helicobacter pylori Gastric adenocarcinoma
MALT Carcinoma

(19)
(20, 21)

Chlamydia trachomatis Cervical cancer (22, 23)
Neisseria gonorrhoeae Prostate cancer (24, 25)
Propionibacterium acnes Prostate cancer (26–29)
Fusobacterium nucleatum colorectal cancer (30, 31)
Bacteroides fragilis colorectal cancer (32, 33)
Mycoplasma hominis
Mycoplasma genitalium

Prostate cancer
Prostate cancer

(34–37)
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the stomach and, despite being present on normal stomach
epithelial cells, can result in an infection accompanied with
inflammation, which, once established, can last for decades
(39, 40). This substantiates the role of H. pylori as a potent risk
factor that can increase the probability of cancer incidence.

An extensive study conducted by the EUROGAST study
group found a statistically significant relationship between the
incidence of gastric cancer, death rate, and the presence of anti-
H. pylori antibodies in the serum in 13 countries which is also
supported by studies from other researchers (41, 42). In several
supporting studies, elevated serum IgG levels were found against
H. pylori suggesting an infection even without isolation of the
causative organism (43, 44). In up to 5% of patients per year,
persistent inflammation of the superficial portion of the gastric
mucosa is documented to evolve into chronic atrophic gastritis
characterized by an advanced cancerous lesion (45, 46). The
cancer risk rises 9-fold with substantial atrophy (47). Despite the
absence of H. pylori in areas with atrophic gastritis, it has often
been identified in non-atrophic regions of the same
stomach (48).

The probability of malignancy is relatively high with exposure
to H. pylori infection, as persistent inflammation induces
superficial gastritis (19).Oncogenesis promoted by the gram-
negative, microaerophilic, spiral bacterium includes several
factors comprising cytotoxin-associated gene A (CagA),
vacuolating cytotoxin A (VacA), and ROS interactions.
Promoters, such as the CagA, VacA, and CagY genes, lead to a
higher proliferation of cells or affect gene expression and cell
differentiation (49). H. pylori is believed to reside in the host for
prolonged periods worsening inflammation translating into an
increased chance of errors during DNA replication in proportion
to cell proliferation, resulting in a cycle of damage, repair,
proliferation, and eventually cancer.

Oxidative stress: Greater damage due to oxidative stress is
linked to H. pylori infection in gastric cells (50). The
consequences of oxidative stress upon gastric cells are
documented via changes observed in the lipid and protein
expressions and biomolecular damage (51, 52). Upon infection
with H. pylori, the epithelial cells of the stomach release ROS,
nitric oxide, and chemokines that triggered the production of
proinflammatory cytokines, such as interleukin-8 (IL-8), which
have been identified as effectors of the inflammatory role in the
induction and promotion of the oncogenic process(es) (53, 54).
There is also release of interleukin-6 (IL-6), an anti-apoptotic
factor, which plays a crucial role in triggering critical signaling
pathways, including the activation of JAK, STAT3, PI3K, MAPK,
and AMPK ultimately leading to inflammation (55). H. pylori
induce the Signal Transducer and Activator of Transcription 3
(STAT3) protein activation via ROS generation leading to
increased expression of the interleukins -6 (IL-6) and -11
(IL-11) (56, 57). The induction of Type 1 T helper (Th-1)
cellular response results in the activation of cytokines including
gamma interferons (IFN-g), and interleukin-1 (IL-1) among
others, thus resulting in inflammation, loss of healthy host
cells, and compensatory cell proliferation (58, 59). With a
rising rate of proliferation, errors during replication and
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accumulation of mutations result from oxygen-free radical
accumulation. 8-hydroxy-2’-deoxyguanine (8HdG), an end
product of oxidative damage by ROS, leads to transversion of
guanine to thiamine in the DNA (59–61). Some reports suggest
that the mucosal surface of patients with infection had a higher
percentage of 8HdG than those lacking the infection. The levels
of this marker are found to be proportional to the infection, as
the infection subsides, the 8HdG levels also return to nil,
speculating the mutagenic nature of both the bacterium and its
metabolite (62). Thence, the inflammation theory of H. pylori-
induced-oncogenesis may be assumed true. Nonetheless, the
other theories, including the activation of the mitogenic
transduction pathway, have not been ruled out (63).

CAG PAI: Pathogenicity Island(s) (PAI), a part of the genome
carrying virulence genes in pathogenic bacteria, are often absent
in non-pathogenic isolates of the same bacteria. The PAI, first
described in 1996, was reportedly obtained by the bacteria via
horizontal transfer, and based on its presence, strains have been
categorized into either the very virulent type 1 or the mildly
virulent type 2 strains (64). The function of cytotoxin-associated
gene pathogenicity island (CAG PAI) of H. pylori has been
identified as one of the virulence factors in gastric cancer (65).
The PAI is responsible for a type 4 secretion system that enables
the insertion of CagA protein into the host cells (59, 66). CagA is
made of 5 different amino acids, Glu-Pro-Ile-Tyr-Ala, together
named EPIYA, occurring either as the EPIYA-D motifs or the
multiple EPIYA-C phosphorylation sites, which are associated
risk factors for gastric cancer or peptic ulcer disease (PUD) (67).

Once the CagA protein is transferred to the epithelial cells,
interaction with host cell proteins, in both phosphorylation-
dependent and independent manner, leads to the activation of
various signaling pathways involved in cell elongation and
scattering, eventually causing responses of the carcinogenic
nature (68). Once internalized, CagA can also produce an
inflammatory response leading to the release of cytokines such
as the IL-8 and -6 via activation of the nuclear factor kappa B
(NF-kB) (69, 70). Inside the cell, phosphorylation occurs by
means of Src and Abl kinases (71), and the phosphorylated CagA
activates Src homology-2 domain containing protein tyrosine
phosphatase-2 (SHP2), further activating the extracellular signal-
regulated kinase (ERK) pathway increasing its activation time
with phosphatidylinositol 3-kinase (PI3K), leading to the
reorganization of actin, and cellular elongation (72). The
phosphorylated CagA interacts with the Src homology 2 (SH2)
domains of SHP2, C-terminal Src kinase (CSK), growth factor
receptor-bound protein 2 (Grb2), and CT10 regulator of kinase
(CRK) proteins (73) containing protein tyrosine phosphatases
(PTPs). Thereby causing activation of many tumorigenic
signaling cascades by CagA, such as the Ras/Raf/Mitogen-
activated protein kinase/ERK kinase (MEK)/extracellular-
signal-regulated kinase (RAS/ERK), canonical Wnt pathway
(WNT/b-catenin), Janus kinases/signal transducer, and
activator of transcription (JAK/STAT), phosphatidylinositol 3-
kinase/RAC-alpha serine/threonine-protein kinase (PI3K/AKT),
and others along with the inhibition of tumor suppressors such
as the tumor protein p53 and ultimately lead to a mitogenic
April 2022 | Volume 12 | Article 836004
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response which is achieved by activation of the PI3K/AKT and
ERK/mouse double minute 2 homolog (MDM2) pathways
(74–76).

The CagA+ strain infection has been known to cause strong
inflammation and damage to the gastric tissues (77, 78). It is
noteworthy that these oncogenes were activated only by the
positive strains of H. pylori (79). The proto-oncogene tyrosine-
protein kinase activity is also inhibited by CagA, resulting in the
dephosphorylation of tyrosine (80). Similar results were observed
due to a defeat in the induction of cell retraction
notwithstanding, the signaling molecules responsible have not
been identified yet (81). The kinases are phosphorylated in the
nucleus, thus triggering the transcription of E-26-like protein-1
(Elk-1) (82), which binds to the serum response factor and
subsequently to the serum response elements and stimulates
the oncogenic c-Fos and c-Jun upregulation (83, 84). Together,
these genes express the activator protein-1 (AP-1) transcription
factor, thereby promoting the expression of other late genes
responsible for cell proliferation (85). The AP-1 transcription
factor activates the transcription of cyclin D (86). In turn,
augmented cyclin D activity results in the ultimate release of
E2F transcription factors, which via cyclin E upregulation
prompts the entry into the S-phase (87, 88).

CagA was found to trigger anti-apoptotic responses due to
interaction with the p53 protein and thereby causing
mutagenesis (89). A significant number of factors and
pathways, including the kinases Akt and ERK, anti-apoptotic
factors of the B-cell lymphoma family, including MCL-1, BCL-2,
and BCL-Xl, were reportedly modulated by CagA (90–93).
Furthermore, other proapoptotic factors are majorly involved
in the downregulation of autophagy and increase of
inflammation, such as Bcl-2-like protein 11 (BIM), BCL2
associated agonist of cell death (BAD), and the apoptosis
regulatory SIVA1 are suppressed (91). Recently, the Siva1
protein was identified as a possible factor downregulated by
CagA via the PI3K/Akt pathway to cause apoptosis inhibition
alongside DNA damage (94). the apoptosis-stimulating protein
of p53 2 (ASPP2), a critical CagA target and another tumor
suppressor found in humans, aids in the survival of the CagA-
positive H. pylori in the lumen. Notwithstanding, the molecular
basis mediating disruption of gastric epithelial cell-polarity
observed in the above event and subsequent oncogenesis is yet
to be fully understood (95). Various mechanisms of CagA
mediated gastric carcinogenesis have been summarized
in Table 1.2.

In addition, a few other studies have observed the effects of non-
phosphorylated CagA in host cells contributing to pathogenesis.
Frontiers in Oncology | www.frontiersin.org 4
Once inside the gastric cells, non-phosphorylated CagA interacts
with E-cadherin leading to the disassociation of E-cadherin and b-
catenin complex, amounting to the latter accumulation cytoplasm
and nucleus (99). Zonula occludens-1 (ZO-1) and Junctional
adhesion molecules (JAMs) interact with CagA and E-cadherin,
resulting in junctional instability as well as b-catenin activation
(100). Disruption of apical-junction complex (AJC) clubbed with a
loss of cell polarity is achieved via translocation and activation of
beta-catenin (100). It is known to target E-cadherin, tyrosine-
protein kinase Met (c-Met), and kinase partitioning defective 1b
(PAR1b) or microtubule affinity-regulating kinase 2 (MARK2),
resulting in inflammation and mitogenesis (100, 101). The b-
catenin and T-cell factor complexes formed trigger the
expression of genes that encode cyclin D1 and cellular
myelocytomatosis oncogene (c-Myc), leading to abnormal cell
proliferation (102). Non-phosphorylated CagA also brings about
alternations in cell motility and proliferation by binding to GRB/
SOS/RAS and activation of Raf/MEK/Erk pathway, joining with
ZO-1 and JAM-A tight junction proteins. The effects of
phosphorylated as well as non-phosphorylated CagA in gastric
neoplasm has been illustrated in Figure 1.

The number of CagA-positive H. pylori strains varies greatly
among geographic regions. While almost all variants can be
found in the East Asia, there are less than half prevalent in the
west (103). The CagA-positive strains of H. pylori have been
classified as the East Asian and the Western types based on the 3’
end region made of repeating sequences containing EPIYA
phosphorylation site. Where, the former constituted EPIYA-A
and EPIYA-B segments, and the latter contained EPIYA-C and
EPIYA-D, respectively (104). EPIYA-D type segments were
found to have more remarkable in vitro SHP-2 binding ability
(104). In the transgenic mice model, the carcinogenic potential of
CagA has been questioned concerning the positive and negative
species ofH. pylori, highlighting CagA as a potential oncoprotein
(105). It is widely accepted that CagA-positive H. pylori are
related to a greater risk of gastric cancer, however, the same
outcome has not been seen in CagA-negative H. pylori (106).
Notwithstanding, irrespective of the strain used, researchers
failed to induce gastric cancer in the Mongolian gerbil model
(107, 108).

VacA: Vacuolating cytotoxin (VacA) and those proteins
linked with the outer membrane of H. pylori are involved in
the process of vacuolation and ulcer formation (109). VacA,
secreted by the type 5 secretion system in all isolates of H. pylori,
is present in the mitochondria and affects its functions
(110, 111). Initially formed as a 140kDa precursor, it matures
to become an 88 kDa protein comprising p33 and p55 (112).
April 2022 | Volume 12 | Article 836004
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TABLE 1.2 | Mechanisms of CagA-mediated gastric carcinogenesis.

Factors influenced by CagA Mechanism Outcomes References(s

Apoptosis-stimulating protein p53 2 Damage to mucosal barrier Survival of bacteria (95)
Heat shock protein 1 (HSP1) Downregulation of HSP1 Persistent infection (96)
Reg3 Alters the cell cycle Gastric carcinogenesis (97)
Caudal type homeobox 1 (CDX1) Expression of CDX1, promotes the cell proliferation Gastric carcinogenesis (98)
Siva1 protein Activation of the PI3K/Akt pathway Inhibition of apoptosis,

Survival of damaged cells
(94)
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The p55 domain is mainly responsible for the building of cell
surface receptor proteins such as the tyrosine phosphatase
(RPTP), epidermal growth factor (EGF), sphingomyelin, and
fibronectin (113), while the p33 domain forms a channel of 6
subunits of VacA to facilitate chloride transport. This protein can
separate the tight junction of gastric epithelial cells, thereby
crossing the barrier (114). Once bound to the cell, VacA enters
it by a mechanism independent of clathrin (115, 116). Many cell-
surface components such as the RPTP-a (117), RPTP-b (118),
various lipids (117), heparin sulphate (119), sphingomyelin
(120), as well as Integrin beta chain-2 (integrin b2; CD18) on
T cells (120) are targeted by VacA. Notwithstanding, the roles
played by these factors in VacA uptake remain unidentified.
Vacuolation of cells, disruption of apoptosis and lysosomal
functions are some of the most important alterations caused by
VacA cytotoxicity (121). Vacuole formation is achieved by
means of in vitro endosomal compartment(s) disruption (122).

VacA activates akt via phosphatidylinositol 3-kinase
dependent phosphorylation of glycogen synthase kinase – 3
beta (GSK3b) (123). Akt phosphorylation and activation are
achieved via two protein kinases 3-Phosphoinositide-dependent
kinase - 1 (PDK-1) and mammalian target of rapamycin complex
2 (mTORC2) (124). In VacA affected cells, inhibition of
Rapamycin complex 1 (mTORC1) signaling positively
regulates autophagy as well as affects the host cell metabolism
and stress signaling (125). Cell death occurs via the Unc-51like
autophagy activating kinase – 1 (ULK1) complex, using the low-
density lipoprotein (LDL) receptors (125). Hence, Akt
Frontiers in Oncology | www.frontiersin.org 5
phosphorylation inhibits GSK3b and subsequent proliferation
and survival (126, 127). GSK3b phosphorylates b-catenin in a
cytoplasmic complex constituting auxin, adenomatous polyposis
coli (APC) protein, and b-catenin in the absence of the ligand
(128). The phosphorylated b-catenin is then ubiquitinated and
destroyed by the proteasome (129). GSK3b remains inactivated
in the presence of VacA, causing b-catenin accumulation in the
cytoplasm (130). The b-catenin protein serves as a transcription
factor coactivator, T cell factor, and lymphoid enhancer factor
upon entering the nucleus to activate transcription of the b-
catenin-dependent genes such as the cyclin D1 gene, CCND1,
whose overexpression is linked to cancer (102). b-catenin
signaling pathway is affected by VacA, presumably having an
oncogenic role (131). The association of VacA and CagA in anti-
apoptotic signaling may be one of the highly effective strategies of
the bacterium to protect itself from the gastric niche and the
human immune defense (112). In vivo studies involving
Mongolian gerbil, models have observed apoptotic loss of pit
cells by H. pylori and decreased apoptosis leading to hyperplasia
and colonization mediated by CagA via MAP kinase protein
(132). H. pylori can cause genomic instability in the gastric cells
through epigenetic pathways (133). Previous in vitro studies have
documented the induction of breakage in DNA strands by
irrespective of CagA Presence in strains (134). Other studies
have found that CAG PAI resultant products may have a crucial
role in the accumulation of DNA strand breaks in the infected
gastric cells (135). It was also hypothesized that host-bacterium
interaction was responsible for DNA double-strand breaks,
FIGURE 1 | Roles of phosphorylated and non-phosphorylated cagA in neoplastic transformation.
April 2022 | Volume 12 | Article 836004
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postulating that treatment and elimination ofH. pylorimay show
reduced gastric cancer risk (136). The overall effect of virulence
factors and inflammation on gastric epithelial cells is
summarized in Figure 2.

In Gastric Mucosa-Associated Lymphoid
Tissue (MALT) Carcinoma
The only human malignancies in which the etiological function of
a specific bacterial infection has been broadly established are
gastric adenocarcinoma and MALT lymphoma. As many as half
of all MALT lymphoma cases are reportedly occurring in the
stomach, and H. pylori were found to be prevalent in 90% of
gastric MALT lymphoma tissues (20, 21). Given the
morphological similarities between the follicles amongst gastric
MALT lymphoma tissue(s) and those affected by H. pylori, a high
incidence and direct relation were suspected betweenH. pylori and
MALT lymphoma (21). A connection can thus be established
between H. pylori and gastric MALT lymphoma (137).

As a result of repeated stimulation with H. pylori antigens,
chronic infections lead to the formation of MALT in the stomach
mucosa as they stimulate specific T-cells, marking the early
stages of oncogenesis (138, 139). The assistance of tumor-
infiltrating T-cells is essential for the development of MALT
lymphoma in vitro (90). Tumor-infiltrating T-cells promote the
proliferation of B cells when stimulated by H. pylori (90).
Cytokine and CD-40 mediated cell signaling have been
observed mandatory for lymphoma formation (90). In MALT
lymphoma cells, the B-cell attracting chemokine 1 (BCA-1) and
Frontiers in Oncology | www.frontiersin.org 6
its receptor C-X-C motif chemokine receptor 5 (CXCR5) are
augmented, which regulate B-cells and promote the production
of the inflammation-causing interleukin-8 (IL-8) (140).

Translocated by the type 4 secretion system, CagA along with
the SHP-2 stimulates B-cells via p38 kinase (105), bringing about
B-cell proliferation via the control of endoplasmic reticulum
kinases 1 and 2 (ERK 1 and 2) (105, 141). Due to
phosphorylation and lowering of SHP-2, CagA promotes H.
pylori-associated gastric neoplasm formation (142) in murine
models. In addition, apoptosis of B-cells can be blocked due to
the accumulation of p43 in the presence of CagA (141, 143).
Alternations in the p53 suppressor gene influence the grade of
lymphoma formed (144). Interference with antigen presentation
of B-cells is brought about by VacA, affecting cell proliferation
(145, 146). Molecular studies have shown changes in methylation
of DNA at cysteine and guanine nucleotides which can subdue
the tumor suppressor genes. Another contributing factor is the
CpG island methylator phenotype found in 60% of MALT
lymphomas due to H. pylori infection (147). Notwithstanding,
growing chromosomal aberrations may enable MALT
lymphomas to exist without an H. pylori infection (148).

Epidemiological studies reveal that the host factors such as
the amount of salt intake also surged the degree of infection and
frequency of cancer (149, 150). Experimental studies suggest
synergistic effects of salt on lesions (151), wherein increased salt
consumption leads to an augmented expression of CagA (152).
These findings shed light on how H. pylori avoid inducing
excessive cellular damage while maintaining long-term
FIGURE 2 | Etiopathogenesis of gastric adenocarcinoma with H. pylori infection.
April 2022 | Volume 12 | Article 836004
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colonization. As observed, activation of cell proliferating
signaling pathways was initiated by CagA and VacA.
Nonetheless, further studies may be required to study and
understand the effects of the inactivation of the above
pathways in designing new therapeutic targets.

Treatment or Elimination of H. pylori
Antibiotics and proton pump inhibitors (PPIs) are commonly
used in the event of H. pylori infection. Clarithromycin triple
therapy with clarithromycin and amoxicillin, bismuth quadruple
therapy with bismuth and tetracycline, and concomitant therapy
with clarithromycin and amoxicillin in combination with a PPI
and metronidazole constitute the recommended antibiotic
regimens (153).

Meta-analyses of trials have resulted in reduced incidences of
gastric cancer with the eradication of the bacteria (154, 155). In
another similar trial, follow-up led to the reduced incidence of
cancerous lesions after the eradication (156). Yet another trial
comprising follow-up after eight years observed a 50% reversal of
atrophic gastritis in the bacteria-eradicated patients (157).
notwithstanding, the examination of available data indicates
that no trials or studies have demonstrated a significant rise or
decline in the incidence of cancer post-eradication after the
infection is past the atrophic gastritis stage. However,
eradication could undoubtedly prevent the development of
precancerous lesions (158). This may be indicative of one
clinical benefit that eradication at earlier stages of infection
could be helpful. The prevailing notion is that eradicating
infection before the dysplasia stage could be of benefit (159).
Most meta-analyses have noted neither enough evidence nor
data to claim any association between H. pylori and MALT
carcinoma (155, 160). Similar observations have been made in
individual studies, where MALT lymphomas were unresponsive
to H. pylori eradication therapy (161). Once H. pylori infection
was removed, 83% of the lymphomas were seen to be regressed
(137). However, other studies have reported that the eradication
therapy could be effective in long-term outcomes for H. pylori-
induced-MALT lymphomas regardless of the infection stage
(162, 163). Indicating the need for a more solid substantiation
to link the bacteria’s eradication and cancer regression (164).
CHLAMYDIA TRACHOMATIS

Chlamydia trachomatis, an intracellular, obligate, Gram-negative
bacterium, is known to cause Chlamydia. While many
discovered serovars of this species are known to infect different
organ systems, the Serovars A-C instigate infection in the eyes,
and serovars D through H colonize the genital tract. As of 2018,
Cervical cancer is responsible for nearly 8% of cancer-related
mortality, ranking 4th for both incidence and mortality (165).
Many in vitro and in vivo studies reported an association
between cervical neoplasm and chlamydial infection (22, 23).
Implicated in a heightened risk of uncontrolled cervical cell
growth, the presence of the chlamydial infection has also been
associated with increased cancer incidence (166–169).
Frontiers in Oncology | www.frontiersin.org 7
Notwithstanding, the association remains controversial as
various other reports indicated no alliance between the
infection and the development of cancer (170, 171).

While the process of oncogenesis is yet unclear, it is
hypothesized to arise from persistent inflammation and
metaplasia (172), particularly through the squamous cell
metaplasia. C. trachomatis has been known to cause cancer
which may develop over years or decades (172, 173). As an
intracellular pathogen, these bacteria can only multiply inside a
host cell by dodging the immune system via prevention of
phagolysosome formation (174), thereby affecting major
histocompatibility complex (MHC) induced antigen expression
(175) and its anti-apoptotic properties (176). C. trachomatis
infection has been documented to modify the transcription of
genes responsible for cell differentiation, cell death, and
transcription factor(s) expression (177). Chronic inflammatory
response(s), modified metabolite production, the amplified
activity of cytokines, and decreased cell-mediated immunity
contribute to mutagenesis by facilitating uncontrolled,
multipolar mitosis and injury to DNA repair systems
amounting to accumulation of aberrant DNA and thereby
cancer (178, 179). In vitro studies evaluating the effects of C.
trachomatis on apoptosis, inhibition observed unaffected DNA
synthesis in the infected cells, which could undergo regular
mitosis at any point of infection, linking it to a heightened risk
of malignancy (180).

The apoptosis inhibition caused by C. trachomatis infection
reasons the occurrence of neoplasm (181). Another mechanism
through which apoptosis inhibition occurs is via mitochondrial
cytochrome C inhibition (182). However, three different
pathways of achieving this have been theorized. Firstly, by the
inhibition of upstream activities controlling mitochondrial
function via production of anti-apoptotic factors (183, 184).
Secondly, Bcl-2 or Bcl-2-like molecule expression may prevent
the activation of caspase and cytochrome c production (181)
although, the expression of Bcl-2 does not guarantee blockage of
apoptosis (185). Lastly, pertaining speculations indicate the
involvement of other anti-apoptotic factors which are yet to be
identified or understood (181).

Tyrosine phosphorylation of host cell proteins involved in
signal transduction pathways is upregulated during C.
trachomatis infection (177, 186–188). In addition, carcinogenic
components of the Ras-Raf-MEK-ERK pathway are observed to
be activated by the bacterium along with the ROS production for
survival (189–191). The p62 knockdown was found not to affect
host cells or autophagy during early infection, notwithstanding,
in the later stages of infection, autophagy was affected by p61
silencing as seen in vitro (192). Thereby, it may be deduced that
p62 has a significant role in bacterium-induced autophagy,
providing the necessary supportive data and theoretical basis
for further study into bacterial pathogenesis. The plasmid-
encoded protein Pgp3 inhibits apoptosis with PI3K/AKT
signaling pathway activation, MDM2 (murine double minute
2) phosphorylation, and nuclear entry, as well as p53 degradation
(193). In HeLa cells, Pgp3-induced inhibition of apoptosis was
hindered, suggesting that the PI3K/AKT pathway had a critical
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role MDM2-p53 axis in Pgp3 anti-apoptotic activity.
Nonetheless, the precise molecular targets and pathways are
due to be further identified (193).

The pORF5 plasmid protein plays a crucial role in
mitochondrial autophagy and apoptosis by upregulation of
knockdown high mobility group box 1 (HMGB1) which may
be necessary to C. trachomatis in modulating mitophagy whose
specific upstream and downstream signaling pathways remain
unknown, hence establishing growth (194). Further, 3-
phosphoinositide-dependent protein kinase one signaling is
evoked by the infection leading to the stabilization and
phosphorylation of MYC (195). MYC- PDPK1 signaling
activates the hexokinase of host II (HKII), which is moved into
the mitochondria. It was found that the prevention of HKII
interaction with mitochondria with the use of exogenous
peptides triggered the apoptosis of infected cells in a manner
similar to inhibition of either PDPK1 or MYC, resulting in
disruption of intracellular development of the bacteria (195).
The target of the MYC-PDPK1-HKII-axis could be considered a
novel scheme in overcoming therapeutic resistance to the
infection (195).

Centrosomes and centrosome segregation defects were
produced in excess during C. trachomatis infection as a result
of multipolar cell division, promoting genetic instability (178).
Various in vitro studies have documented that chlamydial
infection led to incremented multinucleation of host cells,
directly linked to neoplastic transformation (196). Defects in
the mitotic spindle pole were due to heightened supernumerary
centrosomes, amounting to apoptosis activation resistance in the
cell division cycle and subsequently leading to oncogenesis (178,
180, 181, 197). Furthermore, centrosome amplification and
segregation defects in the chromosomes were suggested to
promote instability (178). Trigger of supernumerary
centrosome production and chromosome segregation defects,
multipolar mitosis, chromosome instability promotion, and
multinucleation lead to the malignant transformation and
subsequent tumor development (178, 180, 198).

Chlamydial Heat Shock Protein
Heat shock protein-60 (HSP60), a protein-folding protein, is
found in the cytoplasm of cells (199). The HSP-60, similar to
GroEL of Escherichia coli, can induce inflammation. It was
proposed that the C. trachomatis HSP60 may serve as a risk
factor for oncogenesis by the mediation of apoptosis (199). The
host cells affected by the chlamydial HSP60 are highly susceptible
to oncogene expression for survival, continued proliferation, and
eventually malignancy (199). Contradicting this theory, Capello,
1990 (200) proposed the presence of anti-chlamydial HSP60
antibodies providing immunity against cancer. Reports indicate
that copious amounts of HSP60 are produced by C. trachomatis
during infectious stages (201). Some tumors were found to
present HSP60 on their surface, bringing about antibodies
towards their epitopes in an attempt to induce an anti-tumor
response (202). This surplus of chlamydial HSP60 seen in the
cytoplasm and the host cell membrane during a long-standing
infection promotes activation of immune cells against the
protein, followed by endocytosis (203). These endocytosed
Frontiers in Oncology | www.frontiersin.org 8
proteins bind to toll-like receptors (TLRs), resulting in the
activation of signaling networks responsible for the
proliferation of host cells (204, 205). Protein-mediated anti-
apoptotic activity via the formation of a complex with Bax and
Bak proteins to cut the outer membrane of mitochondria has
been documented (206).

A higher incidence of cervical cancer was directly linked to
the increased anti-chlamydial heat shock protein antibodies
(202). Some studies concluded that the HSP, with anti-
apoptotic properties, was blamed for chronic inflammation
(207–209). Airenne 2002 and Carratelli 2000 (23, 210)
observed that the heat-labile component C. pneumoniae is
released during infection validates HSP60 as a risk for cancer.
The risk of infection increases with time, right from the moment
of serum sampling to cancer diagnosis, similar to the serological
studies of H. pylori in gastric cancer (209). It has also been noted
that the different serotypes of C. trachomatis show variable risks,
and the serotypes B, D, E, G, I, and J have been linked to an
increased risk of squamous cell cancer (211).

Emphasizing the need to consider and identify possible
cofactors responsible for enhancing cervical carcinogenesis
(212). While HPV infections are prominently linked to cervical
cancer, reports suggest that only a fraction of these infections are
responsible for oncogenesis (213). Much evidence also stipulates
that the risk of HPV acquisition and persistence is raised with C.
trachomatis infection (214). C. trachomatis infection history and
HPV have been linked in two recent studies, thus confirming the
hypothesis of C. trachomatis being a cofactor (214).
Furthermore, C. trachomatis may have a suggested role in
aiding HPV in the carcinogenesis via MMP-9/RECK
imbalance during cervical inflammation as a part of the
infection (215).

Recent meta-analyses have evaluated the use of azithromycin
vs. doxycycline and found doxycycline to be more effective in
treating C. trachomatis infection (216). Notwithstanding, the
Centre for Disease Control (CDC) recommended treatment
regimen for chlamydial infection includes doxycycline,
azithromycin, or levofloxacin (217). Therefore, finding more
screening techniques and treatment options is deemed
necessary for those affected with C. trachomatis. The effects of
C. trachomatis on cervical cells are summarized in Figure 3.

Fusobacterium nucleatum
Fusobacterium nucleatum is a gram-negative, non-sporing
bacterium capable of forming biofilms, commonly known for
causing teeth infection (218). Speculations prevail that it brings
about inflammation and invasive infections via hematogenous
dissemination from the oral cavity to the colon (219–221). Many
researchers have hypothesized an association between F.
nucleatum and colorectal carcinogenesis (CRC) (30, 31) and
considered the bacterium a risk factor for cancer progression.
Recent meta-analyses and independent studies have found
significantly raised levels of F. nucleatum during CRC
incidents (222–231). Several other studies have also speculated
that F. nucleatum may synergistically promote CRC with other
bacteria such as the Streptococcus spp. and Campylobacter spp
(232, 233). In an International ColoCare Study, it was observed
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in non-treated patients that varying levels of the bacterium were
found at the tumor sites, indicating its use as a possible
prognostic and diagnostic marker in the management of
CRC (234).

The bacterium also aids neoplastic transformation via
obstruction of anti-tumorigenic immunity by recruiting
lymphocytes that infiltrate the tumor as well as activating
immune checkpoints such as the T-cell immunoreceptor with
immunoglobul in and ITIM domains (TIGIT) and
Carcinoembryonic antigen-related cell adhesion molecule 1
(CEACAM1), which aid in the inhibition of apoptosis (235–
238). Generation of optimum microenvironment and activation
of b-catenin signaling are some mechanisms by which F.
nucleatum is involved in cancer progression (239–241).
Recruitment of pro-inflammatory immune cells occurs due to
the ROS-rich microenvironment (242, 243). Inflammation is
worsened by the NKp46 receptor of natural killer cells in the
presence of F. nucleatum, which prompts the release of TNF-a
(244). Generation of the proinflammatory neoplastic
microenvironment, higher rate of cell proliferation via Wnt/b-
catenin signal activation, and signaling of NF-kB by TLR4 (31,
227, 240, 245) are some of the alternate mechanisms proposed for
oncogenesis caused by F. nucleatum. Several in vitro studies have
associated a higher prevalence of the bacteria with activation of
oncogenic molecular cascades, including the instability of
microsatellites, genetic mutations of BRAF, CHD7, CHD8,
and TP53 CpG island methylator phenotype (246, 247).
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The lipopolysaccharides, FadA, and Fap23 molecules present
on the bacterium’s surface have been found to instigate
oncogenesis (231, 248). Stimulation of malignant cell growth
was found occurring due to b-catenin signal induction and
tumorigenic gene expression via the virulence factor FadA (31,
239). The RadD adhesin, an arginine-instable adhesin, was
reported to aid in the bacterial attachment and invasion into
host cells, apart from aiding biofilm formation (31, 249). FadA, a
virulence protein, monitors the bacterial entrance into host cells
by activating the inflammatory and carcinogenic signals to
induce growth in cells (250, 251). 2 forms of FadA, the pre-
FadA and mFadA have been identified, which as the pre-FadA-
mFadA complex are essential for the function as mentioned
above (250, 252). FadA affects E-cadherin and b-cadherin,
stimulating the T-cell factors and ultimately resulting in the
expression of oncogenes, inflammation, and proliferation
(31, 253).

Loss of E-cadherin alteration of the Wnt signaling pathway is
an essential process in mesenchymal transition (254). In the Wnt
pathway, b-catenin is responsible for the downregulation of E-
cadherin, leading to the mesenchymal transition (255). Usually
existing as a complex at the epithelial surface, b-catenin and E-
cadherin are separated and migrated to the nucleus (227), which
results in the alternation and deregulation of the Wnt signaling
pathway, leading to tumor formation. Furthermore, the levels of
the FadA gene in colorectal tissues of infected patients have been
observed to be elevated and associated with inflammatory genes
FIGURE 3 | C. trachomatis affecting host cervical cells.
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(256), hence substantiating the claims that virulence factors of
F. nucleatum have a possible carcinogenic effect. In an in vivo
study, the surface galactose-binding lectin, Fap2, was found
to mediate F. nucleatum recruitment to the CRC cells (251).
Furthermore, a polysaccharide D-galactose- b-N-acetyl-D-
galactosamine (Gal-GalNAc) has been found in CRC tissues,
which bind to FAP2, leading to the enrichment of the bacterium
(249). A new miRNA-mediated pathway has been hypothesized
by which F. nucleatum can affect the host cells and cancer (257).
Researchers observed the enlarged tumor rate and decreased
survival rates when APC/- mice were fed with F. nucleatum. In
addition, the co-culture of F. nucleatum in the CRC cell lines led
to increased cell proliferation in vitro and in vivo (257). With the
theory of miRNA deregulation in colorectal cancer, many
researchers studied miRNA expression in the exposed cell lines
(245, 258). The engagement of fusobacterial lipopolysaccharide
by toll-like receptors led to the induction of miR21, leading to the
activation of RAS-MAPK signaling through the miR21 target
RasGTPase enzyme (245, 258).

The putative mechanism of F. nucleatum and its effects are
summarized in Figure 4. Markers of inflammation such as IL-8
and IL-6 TNF-a have been elevated in case of infection (259).
The adhesion of cells, autophagic flux, and anti-tumor activities
of immune cells are affected by F. nucleatum, apart from
decreasing the activity of T cells in adaptive immunity by
affecting the G1 phase (260). While F. nucleatum is noted to
promote cell proliferation by modulating E-cadherin and b-
catenin pathways, increasing miRNA-21 expression. On the
Frontiers in Oncology | www.frontiersin.org 10
contrary, in the human gingival fibroblasts, F. nucleatum
prevents cell proliferation and induces cell death by activating
the AKT and NF-kB signaling pathways (260). This bacterium
has also been found to reduce chemotherapeutic effects in CRC
due to activation of TLR4/NF-kB pathways (261, 262). All these
findings together suggest an important role of F. nucleatum in
cancer initiation. The presence of b-lactamase in a few strains
may make these organisms resistant to penicillin, indicating that
the anaerobic antibiotics such as metronidazole or clindamycin
may be the drug of choice in the treatment of this infection
(263, 264).

Bacteroides fragilis
Bacteroides fragilis are non-spore-forming, Gram-negative,
anaerobic bacteria constituting two different classes, i.e., non-
toxigenic B. fragilis (NTBF) and enterotoxigenic B.
fragilis (ETBF), based on their ability to produce biofilm and
the presence of the gene for zinc-dependent metalloprotease, B.
fragilis toxin (BFT) (32, 265, 266). The infliction of tight
junctions and increase in intestinal permeability caused by BFT
may be necessary for inflammation of the intestine and, further,
in neoplastic transformation (32, 33). In vitro tests on HT29/C1
cells with BFT treatment revealed a decline in membrane-
associated E-cadherin initiated the nuclear localization of ß-
catenin, which further induced translation of c-myc and
continuous cell proliferation (267). This ability of BFT to affect
the epithelial cells has led to many researchers concluding that
the ETBF may contribute towards CRC (266–268). Long-term
FIGURE 4 | Fusobacterium nucleatum and cancer associations.
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colonization by ETBF in the intestine results in chronic
inflammation stimulation due to activation of STAT3, which
leads to increased IL-17 production responsible for prolonged
inflammation in the intestine (269). BFT modulates signaling
pathways and is responsible for ROS production, leading to
mutagenesis and cleavage of E-cadherin (266, 270). It can
activate b-catenin signaling and induce IL-8 production in
epithelial cells (268). Additionally, being biofilm producers,
ETBF degrades E-cadherin in cells, causes the production of
IL-6, and activates STAT3 pathways, enhancing cell
proliferation. Indicating that biofilms are associated with
neoplastic development in the colon (271). While the ETBF
through biofilm can induce cancer, the NTBF cannot harm the
intestinal tract (272). The ETBF promoting colorectal
carcinogenesis , upregulat ion of JMJD2B, a histone
demethylase, via TLR4-NFAT5-dependent pathway is caused
by the ETBF promoting colorectal carcinogenesis (273).

Further, BFT has been documented to trigger the production
of COX-2, which releases prostaglandin E2 (PGE2), which causes
inflammation and controls cell proliferation via control of
signaling pathways. Hence, COX-2 plays a vital role in colon
carcinogenesis via angiogenesis promotion, stem cell formation,
inhibition of apoptosis, increasing metastatic potential, and
promotion of cell proliferation (266, 274–278). The serum
COX-2 levels have also been used as a biomarker in CRC
patients, indicating aggressive growth and higher mortality
ra tes compared to normal indiv idua ls (279–281) .
Downregulation of miR-149-3p by ETBF was found to
promote PHF5A-mediated RNA alternative splicing of KAT2A
in CRC cells (282).

Via secretion of chemokine IL-17 along with other cell surface
receptors, activated through induction of NF-kB pathways, BFT
establishes a pro-carcinogenic signaling relay in ETBF-associated
carcinogenesis (283). Chemokine motif ligand 3 is a macrophage
inflammatory protein with CCR5 as the receptor. CCR5 plays a
vital role in invasion and metastasis via inflammatory factors and
tumor-associated genes to regulate NF-kB (284). Some studies
have found that BFT promotes and may be necessary for the
proliferation of colorectal cancer due to the acceleration of CCl-3
molecular pathways (285).

Significant associations have been established between the
presence of ETBF and colorectal cancer, however, additional
research is required to determine other factors affecting their
relationship. Due to the presence of b-lactamase, the ETBF is
resistant to penicillin. Antibiotics such as cefoxitin and
clindamycin have little susceptibility towards the bacterium,
while piperacillin/tazobactam, meropenem, and metronidazole
are known to be more effective (286).

Neisseria gonorrhoeae
Neisseria gonorrhoeae (N. gonorrhoeae), the causative organism
of gonorrhea, is a gram-negative, facultative intracellular
pathogen. A history of infection with N. gonorrhoeae has been
suggested to be associated with a higher incidence of prostate
cancer risk, as reported by a few meta-analyses (24, 25). In 2018,
prostate cancer was the second most frequent form of cancer in
Frontiers in Oncology | www.frontiersin.org 11
men worldwide (287, 288). Gonorrheal infection is one of the
most common causes of prostate cancer (289).

Although the exact molecular mechanisms in oncogenesis are
unclear, chronic and repeated infections of this bacterium have
been associated with prostate cancer (290). The duration of
infection has been observed to be directly proportionate to a
higher risk of cancer (291). Following the infection, a persistent
inflammatory phase is induced in the prostate. The bacteria
attach to the epithelial cell surface made possible by the type IV
pili, the unique appendages on the bacterial surface (292, 293).
Once attached, the host cell signaling events occur, eliciting
induction of the anti-apoptotic activities (294, 295). A large
number of cytokines and chemokines (interleukins 6 and 8)
are secreted following the damage due to inflammatory cells that
promote oncogenesis (296). Pathological examinations have
revealed proliferative atrophy with inflammation which may be
a precursor lesion to cancer (296, 297).

N. gonorrhoeae can evade the autophagy pathways of host
cells during later stages of invasion, which allows a small
population of the bacteria to thrive for a prolonged duration
and show exocytosis. This may be due to the modulation of
autophagy pathway repressor mTORC1 and inhibition of
autophagosome maturation and lysosomal fusion (298).
Amphiregulin, a protein capable of inhibiting the growth of
cancerous cells, is downregulated by N. gonorrhoeae during the
G1 phase of the cell cycle alongside cyclin degradation (299). It
may be noted here that the levels of cyclins were previously
measured to identify mechanistic pathways (299). Several other
factors such as the ribonuclease L, hereditary prostate cancer 1,
and toll-like receptor have also been studied for their role in the
development of cancer (300). The double-stranded DNA breaks
have also been observed due to the N. gonorrhoeae infection,
along with the downregulation of p53 (301). In addition, the
bacteria produce increased levels of restriction endonucleases
during an active infection, ultimately resulting in mutagenesis,
which is evidently observed in the form of longer and impaired
M-phase of spindle assembly, formation of micronuclei, and
lagging of chromosomes (302).

On the contrary, the evidence as mentioned above has been
disputed by several studies that could not find a correlation
between infection and cancer (303, 304). One of the main
challenges associated with the treatment of N. gonorrhoeae
infection is the development of antimicrobial resistance to
standard drugs, including cephalosporins, macrolides, and
tetracyclines (305) suggesting the requirement of intensive
screening, prevention, or cure for men with gonorrhoea (306).

Cutibacterium acnes (Formerly
Propionibacterium acnes)
Cutibacterium acnes (C. acnes) is a gram-positive anaerobic
bacillus commonly found in the follicles of the skin. In men, a
higher prevalence of pro-inflammatory C. acnes has been
associated with prostate cancer (26–29). In studies conducted
using in situ hybridization, clusters of C. acnes in 50% of patients
with prostate cancer were documented (307). Nonetheless, as a
common skin commensal, the presence of C. acnes has been
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regarded as contamination (308). On the contrary, sequence
typing of the bacteria indicated them to be urogenital pathogens
and not skin commensals (309). Reports suggest that some
species of the bacterium have cytotoxic and hemolytic
properties (310) and are also noted for the extensive
immunomodulatory character (311), revealing factors that
interfere with virulence and host tissue (312). The bacterium
showcased a wide range of virulence factors, including enzymes
such as lipases, proteases, and chemotactic factors for immune
cells (313). Reports also indicate the promotion of innate
immune cells, including macrophages which release cytokines
such as tumor necrosis factor, Il-1, 6, 8, and 12 (27, 314, 315). By
upregulating the vascular endothelial growth factor (VEGF), IL-
17 release contributes to the activation of malignant cell
proliferation and the production of new blood cells (316).
Further, the disbalance in IL-17 and regulatory T-cells (Treg)
cells in tumors could aggravate oncogenesis by inducing
immunosuppression (315, 317).

High antibody titers against C. acnes were observed in men
with benign prostatic hyperplasia, indicating the existence of
infection and inflammation (318). While the infection affects cell
proliferation leading to transformation (319), inflammation
elicits oncogenesis by enhanced mutagenesis, cell replication,
and angiogenesis (320). An increased Th1-type immune
response is observed in the site of infection as a result of
inflammation (320, 321) which harms the neoplastic process.
However, in prostate cancer, proliferation-promoting Th2-type
of response was seen (322). Increased nuclear factor-kappa B
(NF-kB) activity in tumors, due to increased IkappaB kinase (IB
kinase) activity (323), lead to increased expression of several
genes known to be crucial for cancer development and
progression (324). The levels of serum inflammatory cytokines
1,6, and 8 were found to rise alongside intensified IL-6 secretion
(314, 325). IL-6 triggered the JAK signaling pathway, which in
turn activates STAT3, whose repeated stimulation was seen to
enhance cell proliferation and eventually cancer (326). A
prolonged C. acnes infection triggered the production of
reactive oxygen species (ROS) in cells as well as the influx of
immune cells such as macrophages to the infection site along
with inhibition of apoptosis (327). Oncogenesis was suggested to
be favored by this combination (319).

FOXM1 (Forkhead box M1), a transcription factor linked
with cell proliferation and involved in tumorigenesis achieved
via promoting cell progression into S and M phases, was
downregulated during the C. acnes infection (328). FOXM1
also facilitated the recombination and repair of double-
stranded DNA during breaks, maintenance of stability by
control of Aurora B kinase, Cyclin B1, and Centromere protein
F. It is speculated that FOXM1 downregulation could lead to
mutagenesis, notwithstanding more information is yet to be
obtained in this regard (328). Other researchers have proposed
the role of androgen levels in cancer development (329), but the
signaling pathways remain unclear as of now (330). In murine
models, the in vivo inoculation of C. acnes showed an
inflammatory response eliciting cell damage (331, 332). In vivo
evidence in the mice model found the prostate cancer generation
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and following chronic infection of up to 2 months, accompanied
by a rise in proliferation and decreased androgen receptor levels
(309, 333) and validating the inflammatory theory (332). C acnes
infection may be treated with antibiotics including (b-lactams,
quinolones, clindamycin, or rifampicin, despite increasing
evidence of resistance towards these classes. Further, treatment
could require surgical intervention to completely eradicate the
bacteria (334).

“Mycoplasma” Species
Since the initial hints of an association between Mycoplasmas
and oncogenesis, many studies have attempted to understand its
oncogenic properties and its direct or indirect role in the onset of
cancer or its progression (335–337). There is not much evidence
to support current proposed mechanisms for Mycoplasma-
induced oncogenesis. Improving diagnosis and tracking of
Mycoplasma infections in patients is necessary to improve
available data linking infection with pathological and clinical
outcomes. Mycoplasma infections can be identified in a timely
manner in patients by identifying antibodies induced in the host
following infection (338–340).

Yet to be proven, Mycoplasma pneumoniae has been
suspected as a probable cause of leukaemia since the mid-20th

century. The meta-analyses of various cancer studies revealed the
possible involvement of Mycoplasma species in oncogenic
processes (341). Gliomas, Hodgkin’s, along with non-
Hodgkin’s lymphoma, head and neck cancer, as well as cervical
cancer have all been linked to Mycoplasma spp (338, 342–344).
During the first examination of the etiology and role of venereal
diseases in prostate oncogenesis in the 1950s, persistent
inflammation and atrophy were suggested as probable
processes resulting in the development of prostate cancer
(345–348). Mycoplasmas are commonly present in the male
urogenital tract, with the most prevalent species being
Mycoplasma hominis and Mycoplasma genitalium (349–351).
Current research has looked at the function of mycoplasmas in
prostate cancer development. Due to the chronic infections with
mycoplasma species in oncogenic cases, their involvement in
oncogenesis has been strongly suggested (34–37).

Although altered inflammatory pathways, along with
disruption of cell division and DNA repair, have been viewed
as possible causes for cancer initiation, the exact mechanisms for
cancer formation by mycoplasmas remain unclear (352, 353).
Mycoplasmas cause long-term infection and develop immune
escape mechanisms by modifying the inflammatory response
(353). Infections with mycoplasmas lead to chronicity by a range
of strategies that undermine the immune response, including
degradation of immune effector molecules, cell invasion,
molecular mimicry, ant igen variat ion, and biofi lm
development, besides inflammatory regulation (354). As a
means of immune evasion, the invasion of the host cell may
result in the production of proteins that modulate critical cellular
processes such as apoptosis and DNA repair. sAs a result of these
modifications, the likelihood of aberrant cell development and
oncogenicity increases (355). Some Mycoplasmas (notably M.
fermentans, M. penetrans, and M. hyorhinis) have been reported
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to have oncogenic potential due to their ability to cause
phenotypic changes in the cells in addition to inducing DNA
aberrations (356). Long-term infections with Mycoplasmas are
also connected to the instability of chromosomes and neoplastic
modifications such as decreased cell adherence, spindle shape,
and multilayer growth in cell cultures (357). Although a direct
link between Mycoplasma infection and cancer formation
remains still explored, the epidemiologic and observational
data strongly imply the greater risk of cancer development
with Mycoplasma spp. infections (355).

The NLRP3 inflammasome, a protein complex that controls
the production of pro-inflammatory cytokines, including IL-1
and IL-18, is also involved in cancer development and spread
(358). Many in vitro carcinogenic models to demonstrate the
cancer-causing abilities of mycoplasmas, have been developed.
Mutagenesis, disruption of the cell cycle checkpoints, apoptosis,
and altered cell growth signals have been observed to be caused
by mycoplasmas (357, 359). As a result, researchers have
hypothesized that chronic mycoplasma infections can cause
genetic instability and DNA aberrations as a result of
mitogenic and apoptotic effects, eventually leading to tumor
formation (357, 359, 360). M. fermentans and M. penetrans
demonstrated their capability of oncogenesis promotion in
murine CH3 cells showing mutagenic properties via the c-Ras
and c-myc genes (352, 361). Such cells have been observed to
accumulate mutagens and eventually mutate their DNAs due to
altered methylation of DNA (362). Mycoplasma DnaK, a
chaperone protein from the HSP-70 family, binds to and
inhibits the catalytic activity of poly adenosine diphosphate-
ribose polymerase (PARP)-1, a protein involved in the detection
and repair of DNA damage. It also binds to USP10, an important
p53 regulator, compromising p53 stability and anti-cancer
potential. Mycoplasma-associated carcinogenic activity,
mediated via the suppression of DNA repair and p53, may
initiate some cancers, albeit not always in later stages (363).
The same has been demonstrated in vivo in mouse models via
lymphomagenesis (364). NF-kB activation for the inhibition of
p53 is a proposed mechanism of oncogenesis, as demonstrated in
the murine model (357). In the tissues of mammals, a lipoprotein
present on the surface membrane, P37, is known to play a role in
adhesion (351) via association with epidermal growth factor
receptor 2 (365, 366). M. hyorhinis produces the p37 protein,
which can promote cancer cell invasion in a dose-dependent
manner and blocked by monoclonal antibodies specific for p37.
Because p37 makes prostate cancer more aggressive, the
molecular events it causes could be a therapeutic target (365).
Mycoplasma infection functions as a p53-suppressing oncogene
that collaborates with Ras in cell transformation, implying that
mycoplasma’s carcinogenic and mutagenic effects are due to its
inhibition of p53 tumor suppressor activity (367), which has
been demonstrated in several Mycoplasma strains, ultimately
resulting in downregulation of apoptosis of the damaged cells.
Similar in vitro studies performed on human cell lines showed
malignancy in prostrate cells, cervical cells, and bronchial cells
(365, 368, 369), while other in vivo studies have also concluded
the species of Mycoplasma to promote oncogenesis (367).
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Investigation of small cell lung cancer and mycoplasma
association revealed a considerably high mycoplasma presence
in the patients compared to healthy groups, which led the
researchers to speculate a multistage oncogenesis pathway
directed by the bacteria (370), however, more research in this
line is required for elucidating its exact role. It was hypothesized
that the association between mycoplasmas and renal cell
carcinoma mechanism was a persistent infection in the kidneys
which stimulated oxidative stress (371).

Although in vitro and in vivo studies have suggested the
involvement of Mycoplasmas in oncogenesis, more studies are
needed to decipher its specific role in oncogenesis, diving into
cellular and molecular mechanisms involved in the neoplastic
transformation. Any role of mycoplasmas in causing tumors
needs to be strengthened with more laboratory studies.

Prevention of Infection-
Associated Cancers
Many integrated approaches may be needfully employed to
prevent and control the disease based on different mechanisms
linked to the origin of cancers via bacterial infections. The
primary approach is to prevent the infection and eliminate the
root causes of infection in healthy individuals, which may be
achieved via effective vaccination strategies, preventative
antibacterial therapy in endemic regions, and/or prevention of
persistent infection (372). Secondary prevention may address
patients in the pre-clinical or early stages of cancer and prevent
tumor progression (373). For example, certain Asian countries
have adapted country-wide screening programs to detect
stomach cancer (374, 375). Finally, post-therapy monitoring of
the patients for relapses is also an efficient method to ensure the
quality of life (376, 377).
CONCLUSION

Bacterial etiology for cancer has been suspected for many years,
yet not much proof has been obtained. Many organisms have
been studied concerning their role in oncogenesis. This review
lists the possible cancer-causing bacteria and the associated
molecular processes through which oncogenesis may be
achieved. While chronic inflammation and toxic bacterial
neoplastic metabolites have remained the major concerns,
further research into the molecular mechanisms of these
infectious agents in the process of the cancer formation is of
importance. Additionally, several factors pose a challenge for
confirming the role of these bacteria in oncogenesis, including
multiple etiology, variable periods between the onset of infection,
and diagnosis of cancer.
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