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Megakaryocytes (MKs) are important components of the hematopoietic niche. Compared
to the non-hematopoietic niche cells, MKs serving as part of the hematopoietic niche
provides a mechanism for feedback regulation of hematopoietic stem cells (HSCs), in
which HSC progeny (MKs) can modulate HSC adaptation to hematopoietic demands
during both steady-state and stress hematopoiesis. MKs are often located adjacent to
marrow sinusoids. Considering that most HSCs reside close to a marrow vascular
sinusoid, as do MKs, the interactions between MKs and vascular endothelial cells are
positioned to play important roles in modulating HSC function, and by extrapolation, might
be dysregulated in various disease states. In this review, we discuss the interactions
between MKs and the vascular niche in both normal and neoplastic hematopoiesis.
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INTRODUCTION

Hematopoietic stem cells (HSCs) reside in a specified microenvironment, or the “stem cell niche”.
Technical advancements in imaging HSCs in the marrow cavity, coupled with a series of elegant
functional studies in murine models, have identified a number of HSC niche cells (e.g., perivascular
stromal cells, endothelial cells, nerve cells) that provide the secreted factors and cell-surface
molecules essential for HSC maintenance and function (1–5). It has become increasingly evident
that the cellular niche components exist in close proximity to one another, and that the interaction
between these cells contributes to the resilience and function of HSCs. Megakaryocytes (MK) are
rare polyploid marrow cells that give rise to blood platelets. Recent evidence has also implicated
MKs in regulating HSC quiescence and proliferation during both steady-state and stress
hematopoiesis, mediated by the many cytokines and extracellular matrix components produced
by these cells (6–12). In addition, MKs express many inflammatory and immunologic surface
markers and signaling molecules and may participate in pathogen surveillance and immune
response (13–18). MKs are often located adjacent to marrow sinusoids, a “geography” required
for the cells to issue platelets directly into the sinusoidal vascular lumen (19, 20). Vascular
endothelial cells (ECs) are also an essential component of the hematopoietic niche with most
HSCs found adjacent to a marrow sinusoid (the “vascular niche”) (3, 21–24). Considering that MKs,
sinusoids, and HSCs are closely located to each other, the interactions between MKs and ECs are
positioned to play an important role in modulating HSC function. Few studies have examined the
role of MKs in the regulation of stem cell vascular niche function, despite MKs representing a major
source of both proangiogenic and antiangiogenic factors in the marrow. Here, we review the
interactions between MKs and the vascular niche in both normal and neoplastic hematopoiesis.
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MEGAKARYOCYTES ARE AN IMPORTANT
COMPONENT OF THE HEMATOPOIETIC
NICHE

Recent evidence has implicated MKs in regulating HSC
quiescence and proliferation during both steady-state and
stress hematopoiesis (6–12). For example, MKs produce
TGFb1 and CXCL4 to promote HSC quiescence in vivo (8, 9);
during stress hematopoiesis (e.g., after chemotherapy), the
production of TGFb1 and CXCL4 by MKs surrounding
clusters of myeloid progenitor cells may help re-establish HSC
quiescence (25). MKs can also promote HSC niche remodeling
(e.g., osteoblast expansion) following radiation injury (26, 27)
and activate HSC proliferation under stress by synthesizing
FGF1 and IGF-1 (6–8). Spatial positioning of HSCs next to
MKs not only regulates HSC activity, but also affects HSC
developmental potential — HSCs located adjacent to MKs are
more platelet- and myeloid-biased compared to HSCs enriched
in other regions of the marrow (e.g., the arteriolar niche), and
MK depletion can reprogram these myeloid-biased HSCs to a
lineage-balanced HSCs (28). Taken together, these studies
indicate that the functional effects of MKs in the HSC niche
are context-dependent and can be tailored based on demands.
Compared to the non-hematopoietic niche cells (e.g., endothelial
cells, mesenchymal stromal cells), the MK niche provides a
mechanism for a feedback regulation of HSCs by their own
progeny. The adaptation of the MK niche function to various
hematopoietic demands suggests that HSC and its niche can
affect each other, which is critical for the resilience and function
of the hematopoietic system.
THE INTERACTIONS BETWEEN
VASCULAR ENDOTHELIAL CELLS AND
MEGAKARYOCYTES IN THE
HEMATOPOIETIC NICHE

MKs are the largest cells in the marrow with a mean diameter of
~20-50um, with their cell sizes correlating with their degree of
maturation (19, 29). MKs are mostly sessile, exhibiting minimal
migration in a highly crowded environment (19, 29). ~70% of
marrow MKs are intimately associated with the sinusoids, a
Frontiers in Oncology | www.frontiersin.org 2
“geography” required for the cells to issue platelets by the forces
generated by flowing sinusoidal blood (19, 20, 30).
Ultrastructural observations (31) and intravital imaging (19,
29) revealed that these MKs extend both perivascular
pseudopodia to anchor the cells to endothelium, and long
transendothelial cellular processes (or proplatelets) to release
platelets into the flowing sinusoidal blood. Under inflammatory
conditions or acute platelet needs, platelet release can also occur
via MK rupture (32). In both cases (proplatelet formation and
MK rupture), MKs must reside next to the sinusoids to release
platelets into the bloodstream.

The MK-EC interactions are regulated by chemokines [e.g.,
CXCL12 (20, 33–36), FGF4 (20, 37, 38)], adhesion molecules [e.g.,
VE-cadherin (20), VCAM-1 (20, 39), PECAM-1 (40, 41)], and
blood lipids (e.g., sphingosine-1-phosphate or S1P) (42), through
many MK cell surface receptors (e.g., CXCR4, aIIbb3, VLA-4, S1P
receptor) (20, 34, 43). ECs have an important role in the regulation
of MKmaturation and release of platelets (20, 33, 42). A functional
vascular niche is critical for platelet production; disrupting the
marrow vascular niche (e.g., by inhibiting VE-cadherin which
supports EC integrity) impairs MK maturation and
thrombopoiesis, while enhancing MK-EC interaction (e.g., by
administering CXCL12 or FGF4) increases platelet production
(20). (Table 1)

MKs also regulate vascular EC function, mediated by the
numerous cytokines and growth factors produced by these MK
cells. MKs are important sources for both the pro-angiogenic
factors such as vascular endothelial growth factor (VEGF) (44,
45) and fibroblast growth factors (FGFs) (6, 48), and the anti-
angiogenic factors such as thrombospondin (46) and platelet
factor 4 (49). Italiano and colleagues reported that these pro- and
anti-angiogenic factors are stored in different alpha-granules and
can undergo selective release upon different stimulus (50),
providing a mechanism by which MK can differentially
stimulate or inhibit the vascular niche under different
physiologic and pathologic conditions. These MK vascular
regulatory factors may be a key determinant of marrow vascular
niche function. However, despite recent progress in understanding
the unique process of megakaryocyte lineage development (51–53)
and the close interactions between MKs and vascular ECs in the
marrow (19, 29) and lung (18, 54), few studies have examined the
effects of MKs on vascular niche function and their contributions
to normal and neoplastic hematopoiesis.
TABLE 1 | Summary of locally acting factors in marrow microenvironment that modulate megakaryocyte-endothelial cell interactions.

Factor Effects on MK-EC interactions References

CXCL12 Promotes the interactions of MKs with the BMECs and the transendothelial migration of MKs in vivo. (20, 33–36)
FGF4 Promotes MK maturation and the adhesion of MKs to ECs both in vitro and in vivo. (20, 37, 38)
VE-cadherin Supports the integrity and formation of BMECs. Neutralizing antibodies to VE-cadherin block FGF4-mediated MK adhesion to BMECs

and CXCL12-induced MK transendothelial migration in vivo.
(20)

VEGF-A Promotes angiogenesis and regulates vascular permeability/integrity. (44, 45)
VCAM-1 Supports the attachment of MKs to HUVECs in vitro. Antibodies to VCAM-1 inhibit FGF4-mediated MK adhesion to BMECs and

CXCL12-induced MK transendothelial migration in vivo.
(20, 39)

PECAM-1 Regulates MK migration towards the vascular niche through modulating the CXCR4 receptor and adhesion molecules (e.g., aIIbb3) of
MKs.

(40, 41)

Thrombospondin An anti-angiogenic regulator that inhibits marrow vascular regeneration following myelosuppression and inhibits thrombopoiesis. (46, 47)
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ALTERED MK-VASCULAR NICHE
INTERACTIONS IN
MYELOPROLIFERATIVE NEOPLASMS

In addition to normal cell physiologic studies, the mechanisms
by which MKs regulate the vascular niche function can be better
understood by assessing the dysregulated MK-EC interactions
found in neoplastic hematopoiesis. The myeloproliferative
neoplasms (MPNs), which include polycythemia vera (PV),
essential thrombocythemia (ET) and primary myelofibrosis
(PMF), are stem cell disorders characterized by hematopoietic
stem/progenitor cell expansion and overproduction of mature
blood cells. Patients with MPNs are often characterized by
increased marrow angiogenesis (55–57) and MK hyperplasia
(58) when compared to normal marrow. In this section, we
will discuss the dysregulated MK-EC interactions and their
contributions to the neoplastic hematopoiesis in MPNs.

Megakaryocytes Are an Important
Component of the Perivascular Stem Cell
Niche in MPNs
MK hyperplasia is a hallmark feature of MPNs (58) and many
MPN-associated genetic mutations/deregulations are
preferentially enriched in MKs (59–61). The acquired kinase
mutation JAK2V617F plays a central role in MPNs, having been
found in virtually all patients with PV and about half of the
patients with ET or PMF. To study the effects of a JAK2V617F-
bearing MK niche on MPN disease development in vivo, we
crossed mice that bear a Cre-inducible human JAK2V617F
transgene (termed Flip-Flop, or FF1) (62) with the Pf4-cre
mice [which bear a Cre recombinase driven by the MK-specific
platelet factor 4 promoter (63)] to express JAK2V617F
specifically in MKs (Pf4+FF1+). We found that the JAK2V617F
mutant MKs promote the development of an ET phenotype— at
6-mo of age, JAK2V617F transgenic mice manifest modest
thrombocytosis, splenomegaly, 2-3 fold increased numbers of
marrow MKs, and 2-3 fold increased numbers of marrow HSCs
compared to control mice (64). We observed a strong correlation
between marrow MK cell numbers and HSC cell numbers in the
Pf4+FF1+ mice, and marrow HSCs in the JAK2V617F-bearing
mice are more quiescent and display increased engraftment
capacity (65). These results indicate that both HSC number
and function are increased in the JAK2V617F-bearing MK niche.

We found that JAK2V617F-driven MK hyperplasia is
accompanied by changes in the vascular niche: not only are
marrow sinusoids more dilated and MKs are more preferentially
located near the marrow sinusoids, but also there is an increased
sinusoid vascular density in the Pf4+FF1+ mice compared to age-
matched control mice (64). The effect of JAK2V617F MKs on
vascular niche function was studied using tube formation assay
(as a measure of in vitro angiogenesis) and scratch assay (as a
measure of in vitro EC migration) — we found that conditioned
medium from the JAK2V617F mutant MK culture significantly
stimulated EC tube formation and EC migration compared to
conditioned medium from wild-type MKs (64). These findings
Frontiers in Oncology | www.frontiersin.org 3
suggest that JAK2V617F mutant MKs can expand the marrow
sinusoidal vascular niche, which in turn could contribute to the
thrombocytosis and HSC expansion phenotype.

The JAK2V617F Mutation Alters
Megakaryocyte-Endothelial Cell
Interactions in the Vascular Niche
In addition to mutant blood cells (including MKs), the
JAK2V617F mutation is also present in isolated liver, spleen,
and marrow ECs from patients with MPNs (66–68). To study the
effects of the JAK2V617F mutation on vascular niche function,
we employed a murine model in which mice that bear the Cre-
inducible human JAK2V617F transgene (FF1) (62) were crossed
with a Tie2-Cre transgenic mouse (69) to express JAK2V617F in
all hematopoietic cells (including HSCs and MKs) and ECs
(Tie2+FF1+) (70–72). As expected, these mice developed a
robust MPN phenotype characterized by neutrophilia,
thrombocytosis, splenomegaly, and hematopoietic stem/
progenitor cell (HSPC) expansion within 2 months of birth.
Histological examination of marrow hematoxylin/eosin sections
showed that, compared to control mice, there are markedly
increased numbers of MKs in the Tie2+FF1+ mice and many
clusters of MKs are preferentially located near marrow sinusoidal
vessels (70). Ex vivo co-culture assays revealed that not only do
JAK2V617F-bearing ECs directly stimulate JAK2V617F mutant
MK expansion, which in turn contributes to HSPC expansion,
but also that JAK2V617F mutant MK-conditioned medium
significantly stimulates JAK2V617F EC migration compared to
that of wild-type MK-conditioned medium. Immunofluorescence
staining and deep confocal imaging revealed that marrow MK-EC
contact is significantly increased in the Tie2+FF1+ mice compared
to WT control mice (Figure 1). These data indicate that the
JAK2V617F mutation can alter the MK-EC interactions in the
vascular niche to promote the neoplastic hematopoiesis in MPNs.

Megakaryocyte Niche Function Evolves
During Hematopoietic Aging in MPNs, and
This is Associated With Changes in its
Regulation of the Vascular Niche
Aging within the HSC compartment contributes to many age-
related diseases including an increased incidence of
hematological malignancies in the elderly. HSC aging is
characterized by an expansion of phenotypically defined HSCs
with impaired function, such as reduced engraftment and self-
renewal capacity, a perturbed state of quiescence, and a skewed
differentiation towards the myeloid lineage (73, 74). Studies over
the past decade suggest that HSC aging is driven by both cell-
intrinsic alterations in the stem cells (75–79), and cell-extrinsic
mediators from the aged microenvironment in which the stem
cells reside (80–83). The relative contribution of intrinsic and
extrinsic mechanisms to HSC aging remains debated. One key
question is whether microenvironmental alterations initiate HSC
aging or whether aged HSCs cause niche remodeling.

In contrast to the non-hematopoietic niche cells, niche MKs
provide direct feedback to their HSC precursors, many of which
June 2022 | Volume 12 | Article 912060
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are located directly adjacent to MKs in vivo (8, 9). We investigated
the effects of a JAK2V617F-bearingMK niche on HSC aging using
the same Pf4+FF1+ murine model in which the JAK2V617F
mutation is expressed exclusively in the MK lineage (64, 84).
The mice maintain an essential thrombocythemia phenotype
during a 2-yr follow-up, with no evidence of transformation to
leukemia or myelofibrosis. Compared to age-matched control
mice, the Pf4+FF1+ mice demonstrated an acceleration of several
hallmarks of HSC aging, including an increase in the absolute
numbers of HSCs with myeloid-skewed hematopoiesis (and
maintenance of this myeloid skewing during marrow
transplantation), a reduced engraftment and self-renewal
capacity, and a reduced differentiation capacity (84). We showed
that the JAK2V617F mutant MK niche can promote
hematopoietic aging mediated by enhanced HSC proliferation/
cycling. Both flow cytometry analysis and confocal whole-mount
imaging revealed decreased marrow EC numbers (especially
CD45-CD31+Sca1- sinusoidal marrow ECs) and decreased
marrow vascular areas in 2yr old Pf4+FF1+ compared to age-
matched control mice (84). We noticed altered morphology of the
marrow sinusoids in the aged Pf4+FF1+ mice, which are narrower
in diameter compared to marrow sinusoids in aged control mice
(Figure 2) (84). Conditioned medium collected from JAK2V617F
mutant MKs of aged Pf4+FF1+ mice significantly inhibited EC
tube formation in vitro (84), which differs from what we have
observed in the young (6-mo old) Pf4+FF1+ mice (64). While the
Frontiers in Oncology | www.frontiersin.org 4
pro-inflammatory factors [IL-6 (85–87), IL-12 (88), MIP-1a (89)]
and anti-angiogenic factors [Fas ligand, IL-10 (90, 91)] are
upregulated in old JAK2V617F mutant MKs compared to young
mutant MKs, their levels are downregulated in aged control MKs
compared to young control MKs. These data suggest that the
JAK2V617F-bearing MKs inhibit/disrupt the vascular niche
during aging, which in turn can promote HSC aging.

Despite recent technical breakthroughs in both imaging and
functional studies of HSCs in the marrow, we know very little
about how the niche changes with age. Our studies showed that
the effect of JAK2V617F mutant MKs on HSC function changes
during aging in a murine model of MPN: in young mice, mutant
MKs expand the marrow sinusoidal vascular niche, induce HSC
quiescence with increased repopulating capacity (64, 65); in aged
mice, mutant MKs inhibit/disrupt the vascular niche, promote
HSC proliferation with a reduced engraftment and self-renewal
capacity (84). Despite these changes in MK niche function
during aging, how MKs regulate vascular niche function
appears to correlate with how MKs regulate HSC function.
CONCLUDING REMARKS

Further work is needed to functionally test the importance of
MK-EC interaction in niche/HSC function and to understand
the molecular mechanisms that mediate these effects. Murine
A B

FIGURE 2 | Representative whole-mount confocal images of aged wild-type control (A) and Pf4+FF1+ (B) mouse femur marrow, in which the vasculature was
stained intravenously with anti-VE-cadherin antibody before euthanization. Images were acquired with an Olympus IX81 microscope using 20x objective
magnification and Olympus Fluoview FV1000 confocal laser scanning system at 512 x 512 pixel resolution.
A B

FIGURE 1 | Immunofluorescence staining and deep confocal imaging of marrow MK-EC interactions. (A) Representative confocal images of wild-type control (left)
and Tie2+FF1+ (right) mouse femur marrow stained with antibodies against CD41 (red) and laminin (green). (B) Quantitative analysis revealed increased area of
contact between MKs and sinusoid vessels in the marrow of Tie2+FF1+ mice compared to the control mice. Two control mice and two Tie2+FF1+ mice were used
and a total of 10 high-quality non-overlapping areas at 20x magnification were selected for analysis with the ImageJ software (National Institute of Health, Bethesda,
MD, USA). * P < 0.05.
June 2022 | Volume 12 | Article 912060

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhan and Kaushansky MKs as Regulators of the Vascular Niche
models remain an irreplaceable approach to investigating MK-
EC interaction in vivo in both normal and neoplastic
hematopoiesis. Patient-derived induced pluripotent stem cells
(iPS) provide an important alternative to model human disease
in vitro. The capability to differentiate these iPS cell lines towards
a specific cell lineage [e.g., MK (92, 93), EC (94)] is a powerful
tool to model human diseases with acquired genetic alterations
such as the JAK2V617F mutation. It is hoped that such studies
will lead to novel therapeutic strategies to target the HSC niche-
forming MKs and their interactions with the vascular niche, and
to provide better treatments for patients with various aging and
neoplastic conditions.
Frontiers in Oncology | www.frontiersin.org 5
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