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The accurate classification, prognostication, and treatment of gliomas has been hindered
by an existing cellular, genomic, and transcriptomic heterogeneity within individual tumors
and their microenvironments. Traditional clustering is limited in its ability to distinguish
heterogeneity in gliomas because the clusters are required to be exclusive and exhaustive.
In contrast, biclustering can identify groups of co-regulated genes with respect to a subset
of samples and vice versa. In this study, we analyzed 1,798 normal and tumor brain
samples using an unsupervised biclustering approach. We identified co-regulated gene
expression profiles that were linked to proximally located brain regions and detected
upregulated genes in subsets of gliomas, associated with their histologic grade and clinical
outcome. In particular, we present a cilium-associated signature that when upregulated in
tumors is predictive of poor survival. We also introduce a risk score based on expression of
12 cilium-associated genes which is reproducibly informative of survival independent of
other prognostic biomarkers. These results highlight the role of cilia in development and
progression of gliomas and suggest potential therapeutic vulnerabilities for these highly
aggressive tumors.
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INTRODUCTION

Brain cancers are broadly categorized into low- or high-grade tumors. Low-grade gliomas (LGG)
consist of grades II and III and are categorized as astrocytoma or oligodendroglioma because they can
initiate from astrocytes or oligodendrocytes, respectively (Louis et al., 2016). Grade IV tumors are
categorized as glioblastoma (GBM) and are amongst the most common and aggressive malignant
brain cancers, developing either as a primary tumor without a known precursor, or as a secondary
tumor through progression from a low-grade glioma (Davis, 2016). The clinical outcome for all
gliomas is grim. The mean duration of survival after diagnosis for low-grade glioma patients is
around 7 years (Poon et al., 2020); nevertheless, almost all low-grade gliomas eventually progress to a
higher-grade tumor, which have an average survival time of less than 2 years (Poon et al., 2020).

In the past, brain tumors were assessed and classified based on histology. In 2016, the World
Health Organization integrated molecular biomarkers into its classification process, enabling
clinicians to implement an algorithmic approach towards glioma diagnosis and prognosis,
resulting in greater objectivity, consistency, and reliability (Louis et al., 2016). For instance, low-
grade gliomas have been classified according to the 1p and 19q loci co-deletion as well as the
mutations in the IDH1 and IDH2 genes; tumors without these alterations have been shown to be
clinically and molecularly similar to high-grade tumors (Claus et al., 2015). High-grade
glioblastomas have been classified according to gene expression into three subtypes: classical
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(associated with high level EGFR amplification), proneural
(associated with exclusive PDGFRA amplification), and
mesenchymal (associated with high expression of genes linked
to immune response and the tumor necrosis) (Olar and Aldape,
2014).

In addition to molecular characteristics of a tumor that
determine its clonal evolution (Ceccarelli et al., 2016), tumor
progression can also be modulated by cellular heterogeneity
present within its microenvironment. In fact, gene expression
patterns associated with non-tumor cells have been shown to
have prognostic value for gliomas (Coussens and Werb,
2002). For example, the expression of a combination of
immune genes were used to develop a prognostic, localized
risk score. Tumors with high immune risk scores were mostly
of the mesenchymal subtype, suggesting therapeutic benefit
from immunotherapy for them (Cheng et al., 2016). Similarly,
an expression signature of 20 genes involved in extracellular
matrix organization was shown to be effective in predicting
glioma survival and prognosis (Celiku et al., 2017). It has also
been demonstrated that glioma cells foster synaptic
connections with neurons when they invade normal neural
circuitry (Venkatesh et al., 2019), providing a survival benefit
to the brain tumor. However, these properties are not
uniform amongst all gliomas; only certain types of glioma
cells are able to interact with specific types of brain cells (Gao
et al., 2020), suggesting the need for a finer characterization of
brain tumors based on their interaction with the
microenvironment.

In this study, we sought to characterize the heterogeneity
in transcriptomic profiles of both normal and tumor brain
tissues and to identify co-regulated gene expression
signatures associated with prognosis in gliomas. To this
end, we analyzed batch-corrected gene expression data
from normal brain tissues from The Genotype-Tissue
Expression (GTEx) (Consortium, 2013) study and primary
gliomas from The Cancer Genome Atlas (TCGA) GBM and
LGG cohorts (Ceccarelli et al., 2016). We used a biclustering
algorithm called TuBA, which detected co-regulated genes
within subsets of samples (Singh et al., 2019), and identified
gene expression signatures associated with proximally
located brain regions, as well as co-regulated genes
aberrantly regulated in tumor samples. Specifically, we
identified a signature related to cilium motility associated
with particular regions in the brain that, when highly
expressed in gliomas, was indicative of poor prognosis.
Our single-cell analysis of patients with gliomas associated
the cilium expression signature with the tumor cells. Finally,
we devised a risk score predictive of survival and evaluated it
in independent glioma cohorts after correcting for other
clinically relevant biomarkers.

METHODS

Patient Cohorts
The Genotype-Tissue Expression (GTEx) RNA-seq data for

normal brain and The Cancer Genome Atlas (TCGA) RNA-seq

data for GBM and LGG cohorts were analyzed. Combined and
batch-corrected normal brain tissue as well as brain tumor gene
expression data [RSEM (Li and Dewey, 2011)] were obtained
from the UCSC Xena Portal (http://xena.ucsc.edu; accessed April
2, 2021), including 1,136 GTEx samples, 509 TCGA LGG
samples, and 153 TCGA GBM samples. Normal brain GTEx
samples were annotated for their specific regions in the brain. We
additionally obtained the log Transcripts Per Million (TPM)
values for differential pathway analysis (described below).

To compare tumor purity between TCGA samples,
ESTIMATE scores were obtained from Yoshihara et al. (2013),
and immunohistochemistry (IHC) and LUMP (leukocytes
unmethylation for purity) results were obtained from Aran
et al. (2015). The Mann-Whitney U test was used to
determine significant differences in purity between samples.

Normalized gene expression microarray data from the
REMBRANDT study were also obtained from the Gene
Expression Omnibus (GEO) Portal (accession ID: GSE108474)
for 261 GBM and 269 LGG samples (Gusev et al., 2018).
Phenotype and survival information was obtained for these
patients through the Gliovis Portal (Bowman et al., 2017).

Unique molecular identifier (UMI) counts for 6,148 single-cell
transcriptomes collected from 73 regions in 13 patients with
glioma (3 grade II, 1 grade III, 8 grade IV, and 1 gliosarcoma) (Yu
et al., 2020) were obtained from the GEO Portal (accession ID:
GSE117891).

Biclustering Analysis
The Tunable Biclustering Algorithm (TuBA) analyzes gene
expression data to identify sets of co-expressed genes in
subsets of samples (Singh et al., 2019). TuBA uses a proximity
measure that connects gene pairs that have a significant number
of samples shared between their top percentile sample sets (for
high expression analysis) or bottom percentile sample sets (for
low expression analysis). In this work, TuBA’s proximity measure
was redefined using the Jaccard index to determine significance of
samples overlapping in the genes’ percentile sets, which
specifically resulted in faster computation time. TuBA’s
biclustering parameters were chosen such that the total
number of edges in graph was less than 500,000. We
additionally added constraints for the minimum number of
samples and genes in the biclusters. The following parameters
were chosen for individual analyses presented in Results:

1. GTEx + TCGA GBM and LGG high expression analysis: top
percentile cutoff of 3% with Jaccard Index of 0.33 (minimum
number of genes � 31, minimum number of samples � 100)

2. GTEx + TCGA GBM and LGG low expression analysis:
bottom percentile cutoff of 5% with Jaccard Index of 0.4
(minimum number of genes � 32, minimum number of
samples � 100)

3. TCGA-only, GBM and LGG high expression analysis: top
percentile cutoff of 5% with Jaccard Index of 0.4 (minimum
number of genes � 30, minimum number of samples � 38)

4. TCGA-only, LGG high expression analysis: top percentile
cutoff of 5% with Jaccard Index of 0.45 (minimum number
of genes � 32, minimum number of samples � 30)
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5. REMBRANDT high expression analysis: top percentile cutoff
of 5% with Jaccard Index of 0.4 (minimum number of genes �
32, minimum number of samples � 30)

Single-Cell Biclustering Analysis
In order to apply TuBA to single-cell RNA sequencing data, first,
genes that had UMI count of zero in more than 97.5% of the cells
were removed (Minimum population with non-zero counts were
determined based on TuBA’s percentile set size parameter of 2.5%
in this analysis). Following recommendation by Lause et al.
(2021), the UMI counts were transformed to Pearson residuals
defined by,

Zcg � (Xcg − μcg)/√(μcg + μ2cg
θ
)

where,

μcg � (∑iXig∑ijXij
)∑

j

Xcj.

In the equations above, c refers to cell while g refers to gene and
θ � 100. Gene-pairs with Jaccard index values greater than 0.2
were used to generate graphs that were then iteratively examined
by TuBA to discover biclusters. The UMAP plots were generated
using the Pearson residuals matrix corresponding to these 2,152
shortlisted genes, which had variances of their Pearson residuals
> +1 standard deviation away from the mean of the variances of
all the genes.

Enrichment Analysis
Enrichr (version 3.0) was used for gene-set enrichment analysis
(Xie et al., 2021). The Gene Ontology (GO) biological process
subontology (GO-BP) (Gene, 2021) was used to evaluate
functional relationships between the genes in each bicluster.
Hypergeometric test after correction for false discovery rate
(FDR) by the Benjamini-Hochberg method was used to
evaluate the enrichment of clinical features for samples in each
bicluster.

Differential Gene and Pathway Analysis
Supervised differential pathway and gene-set expression
between samples was performed using Gene-Set Variation
Analysis (GSVA) (Hanzelmann et al., 2013), across the entire
Reactome Pathway database (Jassal et al., 2020) based on log
of TPM values. The Mann-Whitney U test with FDR
correction was used to determine significant differences
between GSVA’s pathway-and-sample-specific scores. We
also used GSVA to calculate enrichment scores for gene-
sets identified in TuBA’s biclusters in bulk and single-cell
analyses. Differential gene expression analysis was performed
using DESeq2 (Love et al., 2014).

Cilium Risk Score
Cox models are used to assess the importance of predictor
variables in a regression model for survival (Cox, 1972;
Therneau and Grambsch, 2000). In order to develop risk
scores based on expression of cilium genes and to correct for

previously uncovered clinically covariates, a Cox regression
model based on overall survival was developed (Simon et al.,
2011). Using glmnet specifications in R, an alpha
value–representing the elastic net mixing parameter–of one
was used corresponding to pure LASSO regression (Friedman
et al., 2010). The model was trained on the following factors: the
co-regulated cilium genes identified by TuBA in the GTEx +
TCGA analysis, IDH1/2 mutation and 1p/19q co-deletion status,
tumor grade, and patient age at diagnosis. In order to linearly
combine the expression values of cilium genes into a risk score, a
univariate model for each significant cilium gene was created and
the coefficients from these models was used as coefficients for the
linear combination.

All analyses were performed in R (version 4.1.0), including the
ComplexHeatmap (Gu et al., 2016), survminer, and ggplot2
(Wickham, 2016) packages. All scripts are available at https://
github.com/KhiabanianLab.

RESULTS

Integrated Analysis of TCGA and GTEx
Samples Reveals Distinct Gene Expression
Signatures in Tumor and Normal Brain
Tissue
We applied TuBA to batch-corrected RNA-seq data from
1,798 samples (1,136 normal brain from GTEx, 509 LGG and
153 GBM specimens from TCGA) and generated 102
biclusters for high-expressing (top 3% percentile) co-
regulated genes (Methods). We assessed the associations
with clinical and molecular information available for
samples in the biclusters and performed pathway
enrichment analysis for their sets of genes. In this
combined GTEx + TCGA analysis, TuBA uncovered co-
expression signatures that distinguished between glioma
and normal brain tissues, where 57 biclusters were
enriched in GTEx samples while 42 were enriched in
TCGA samples (Fisher’s exact FDR <0.01).

First, we observed that TuBA detected co-regulated genes that
were expressed at higher levels in distinct regions of the brain
relative to others. Of 57 GTEx-specific biclusters, 27 primarily
contained samples collected from cerebellum and cerebellar
hemisphere (Figure 1). The genes in these biclusters were
associated with the GO-BP terms such as regulation of gene
expression and regulation of cellular macromolecule biosynthetic
process, and included those coding for zinc-finger proteins
(Supplementary Table S1). The other 30 biclusters contained
samples collected from multiple but distinct regions in the brain
located proximally to each other. For example, we identified six
biclusters enriched in caudate basal ganglia (Fisher’s exact FDR
<0.01); three of these biclusters were also enriched in samples
from the putamen, and four were enriched in samples from the
nuclear accumbens. Caudate, putamen, and nuclear accumbens
are all components of the basal ganglia, and therefore, are located
next to each other. We observed a similar pattern for biclusters
enriched in anterior cingulate cortex, frontal cortex, and cortex

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7583913

Rajagopalan et al. Cilium Risk Score for Gliomas

https://github.com/KhiabanianLab
https://github.com/KhiabanianLab
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


regions, as well as biclusters enriched in substantia nigra and
spinal cord (Figure 1). The genes in GTEx-specific biclusters
were associated with chemical synaptic transmission, ion
transmembrane, and other neuropathological pathways
(Supplementary Table S1). Of note, the genes in biclusters
enriched in spinal cord tissue were also associated with
immune-related GO-BP terms, such as neutrophil
degranulation and neutrophil activation, highlighting
transcriptional heterogeneity across the normal brain, which
may be impacted by localized cellular environment.

Next, we observed that TCGA-specific biclusters
contained samples with distinct tumor subtypes: 22 were
enriched in GBM samples, four were enriched in LGG
samples, and 16 contained both GBM and LGG sample.
Pathway analysis of genes in the GBM-specific biclusters
revealed significant associations with Wnt signaling, planar
cell polarity, neutrophil mediated immunity, and protein
N-linked glycosylation. Genes in the LGG-specific
biclusters were associated with GO-BP terms such as
positive regulation of telomere maintenance, axonogenesis,
RNA splicing, and translation (Supplementary Table S1).
Seven of 42 tumor-specific biclusters contained genes
associated with DNA metabolic processes and mitotic cell

cycle phase transition previously implicated in gliomas
(Friedman et al., 2010). Four of these seven biclusters were
exclusively enriched in GBM samples.

Cilium-Associated Genes Are Expressed
Highly in Both Tumor and Normal Brain
Tissue
Among 102 biclusters identified by TuBA, only three were neither
enriched in the GTEx nor TCGA samples (Figure 1; red box).
The GO-BP terms enriched for the genes in two of these biclusters
were chemical synaptic transmission and postsynaptic and
respiratory electron transport chain. The top-five GO-BP
terms for 347 genes in the third bicluster, consisting of 73
GTEx and 40 TCGA samples, were cilium movement, cilium
assembly, axonemal dynein complex assembly, and cilium
organization. (Figure 2, Supplementary Table S1).
Henceforth, we will refer to this bicluster as the “cilium bicluster.”

While the GTEx samples in the cilium bicluster were enriched
in specific regions of the brain from the amygdala, hypothalamus,
and caudate region (Figure 1), the TCGA samples were not
enriched in any particular tumor subtypes: 12 were GBM, 28 were
LGG; and while seven were IDH1/2-mutated and/or 1p/19q co-

FIGURE 1 | Biclusters from TuBA’s high expression analysis, either enriched in the GTEx normal tissue collected from different brain regions or enriched in the
TCGA tumors with LGG or GBM subtypes. The bars show the proportion of GTEx vs. TCGA samples in each bicluster. The red box highlights the three biclusters with
enrichment in neither TCGA nor GTEx samples, including the cilium bicluster (most left) with enrichment in amygdala, hypothalamus, and caudate normal tissue.
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deleted, 32 were wild-type and one did not have subtype
information.

Downregulated Pathways Reflect Tumor
and Normal Gene Expression Signatures
We used TuBA to generate biclusters consisting of co-regulated
genes that had expressions in the bottom 5% of normal and tumor
samples (Methods). Of the 51 biclusters obtained, 34 were
enriched in GTEx normal samples and 17 were enriched in
TCGA glioma samples (FDR <0.01). Corroborating the results
from the high-expression analysis, the majority of the GTEx-
specific biclusters (29 of 34) were enriched in samples from
cerebellum or cerebellar hemisphere. Other five GTEx-specific
biclusters were enriched in frontal cortex and cortex samples
(Figure 3, Supplementary Table S2).

While seven of the TCGA-specific, low expression biclusters
contained both LGG and GBM samples, all 17 were enriched in
GBM tumors. The GO-BP terms associated with the genes in
these biclusters suggested downregulation of axonogenesis,
protein phosphorylation, anterograde trans-synaptic signaling,
and histone modification in these tumors. In particular, one
TCGA-specific bicluster contained genes that suggested
downregulation of synaptic transmission, reflecting TuBA’s
results for co-regulated higher expression of the genes

associated with this pathway in normal brain tissue
(Supplementary Table S2). Of note, samples in this bicluster
significantly overlapped with those in 39 of 42 TCGA-specific
high-expression biclusters (including 68% of tumors in the cilium
bicluster), which highlighted common aberrantly regulated
mechanism in gliomas despite their heterogeneity in
upregulated pathways (Garofano et al., 2021).

Single-Cell Analysis Suggests Cilium
Expression Signature Arises From Tumor
Cells
In order to investigate the cellular origin of cilium expression, we
analyzed 6,148 single-cell transcriptomes collected from 13
patients with glioma, profiling 73 regions within the core of
the tumors as well as those isolated from peritumoral sites (Yu
et al., 2020). Yu et al. reported one patient (labeled GS13) with an
IDH-wild-type GBM characterized by high expression of genes
associated with motile cilium activities. In particular, they found
that the cells exhibiting upregulation of these cilium motility
associated genes belonged to the core tumor sites.

We identified distinct cell groups across the patients by
reducing dimensionality using Uniform Manifold
Approximation and Projection (UMAP) of Pearson residuals
(Methods) (Figure 4A) consistent with the original findings.

FIGURE 2 | Genes in the cilium bicluster associated with top 20 significantly enriched GO-BP pathways. Full list of genes and enrichments are available in
Supplementary Table S1.
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We then applied TuBA to single-cell expression profiles and
obtained 51 biclusters, including Bicluster 1 comprising genes
associated with cilium motility (Supplementary Table S3). Out
of the 370 cells in this bicluster, 312 cells were from GS13.
Moreover, all 312 cells from GS13 were collected from the
core tumor sites –169 cells from site P4, 132 from P5, and 11

from P6. To evaluate and summarize the expression of the gene-
set in Bicluster 1, we calculated the GSVA enrichment scores in all
cells across all patients which showed upregulation (positive
GSVA scores) of the cilium genes dominantly in GS13
(Figure 4B). In particular, cilium gene expression was
significantly higher in cells obtained from GS13’s core tumor

FIGURE 3 | Biclusters from TuBA’s low expression analysis, either enriched in the GTEx normal tissue collected from different brain region or enriched in the TCGA
tumors with LGG or GBM subtypes. The bars show the proportion of GTEx vs. TCGA samples in each bicluster. GTEx-specific biclusters were enriched in cerebellum,
cerebellar hemisphere, cortex, frontal cortex, or anterior cingulate cortex, while all TCGA-specific biclusters were enriched in GBM tumors.

FIGURE 4 | (A) Uniform Manifold Approximation and Projection (UMAP) of Pearson residuals across 13 patients. (B) GSVA enrichment scores in all cells across all
patients identifies cells with upregulation (positive GSVA scores) of the cilium genes, dominantly in cells from GS13.
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sites (P4, P5, P6), thereby highly suggesting tumoral origin of the
cilium motility signature (Figure 5).

High Cilium Expression Is Predictive of Poor
Prognosis in Gliomas
To investigate the clinical relationship between co-regulated
genes and tumors’ clinical features, we applied TuBA to only
the TCGA GBM and LGG samples and obtained 67 biclusters, 40
of which were enriched in GBM and 13 were enriched in LGG
samples. The TCGA-only biclusters were highly concordant with
the GTEx + TCGA biclusters –99% of the former significantly
overlapped with the genes and samples in the latter (Fisher’s exact
FDR <0.05). Specifically, we again identified a bicluster with genes
associated with cilium containing 57 LGG of varying histology
and 40 GBM tumors. Of note, these samples included all 40
tumors found in the GTEx + TCGA cilium bicluster.

To assess whether high-cilium tumors had differential
specimen tumor purity, we used estimates from IHC as
well as computational analyses by ESTIMATE (based on
expression of selected immune and stromal genes
(Yoshihara et al., 2013)) and LUMP (based on methylated
status of immune-specific CpG sites (Aran et al., 2015)). We
did not find significant differences in purity assessments for
GBM samples with vs. without cilium-associated expression.
However, computational estimates for LGG tumors

contrasted with IHC and suggested lower purity for LGG
samples in the cilium bicluster (Figure 6).

Differential pathway analysis of tumors in the cilium bicluster
against all other tumors using GSVA and the Reactome database
corroborated gene-set enrichments in TuBA’s biclusters
including upregulation of cell cycle pathways and
downregulation of genes associated with transmission across
chemical synapses. Of note, we found the Hedgehog signaling
pathway, which has been previously linked to cilium’s role in
regulation and signaling (Corbit et al., 2005) to be upregulated in
tumors with high cilium expression (Figure 7A). In particular,
genes in the hedgehog pathway, including PTCH2, TUBA1C,
EVC2, EVC, GLI1, and SCUBE2 (DESeq2 FDR <0.001, log fold-
change >1) as well asGLI2,GLI3, and SMO (DESeq2 FDR <0.001,
log fold-change > 0.5) were upregulated in cilium bicluster
samples relative to other tumors (Figure 7B).

Finally, to examine the association of the biclusters with
prognosis, we conducted Kaplan-Meier analyses and compared
the overall survival of patients in each bicluster to all the other
patients. The cilium bicluster and 33 others enriched in GBM
tumors were associated with poor overall survival (Figure 8A).
When we applied TuBA to only the TCGA LGG tumors, among
the 93 generated biclusters, once more, we identified a bicluster
associated with cilium, which in addition to eight other biclusters
was associated with poor overall survival (Supplementary Table
S4). Six of these eight biclusters contained genes associated with

FIGURE 5 |Distribution of GSVA enrichment scores for the cilium gene-set identified by TuBA shows a significantly higher expression in cells obtained fromGS13’s
core tumor sites P4, P5, and P6.
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previously reported prognostic proliferative signature (Phillips
et al., 2006).

A Risk Score Based on Cilium Genes
Predicts Patient Survival
Based on our observation that patients with higher
expression of cilium-associated genes had worse prognosis,
we sought to use these genes for a predictive measure of
survival. We built a Cox Proportional-Hazard model based
on expression of genes common to the cilium biclusters and
included known prognostic factors of patient age at
diagnosis, tumor grade, and IDH1/2 mutated, 1p/19q co-
deletion status. Significant features were determined to be
grade and presence of IDH1/2 mutation, 1p/19q co-deletion,
and expression of 12 cilium-associated genes: LRGUK,
NSUN7, LRRC27, SPAG17, EFHB, IFT27, DZIP1L, FOLR1,
RGS22, TEX9, GALNT3, and GLB1L. We then linearly

combined these genes to define a cilium risk score, which
proved to be indicative of survival, after correcting for other
significant factors (Table 1).

We asked whether the cilium risk score predicted glioma
overall survival. First, we divided the TCGA GBM and LGG
samples into two groups: those in the top 25% of the cilium risk
score distribution and those in the bottom 25%. The former
group had statistically significant decreased overall survival when
compared to the latter (Figure 8B). Next, we considered IDH-
wild-type tumors, which are known to be the clinically poorest
performing gliomas. We divided these samples into two groups
with high and low cilium risk score based on the median score for
this population and observed again that the patients with high-
scoring tumors had an overall worse survival when compared to
the low-scoring group (Figure 8C). We further showed that
median cilium risk score can also stratify patients in the other
biclusters associated with poor prognosis, namely those in the cell
cycle (proliferative) bicluster (Figure 8D).

FIGURE 6 | (A)No significant differences in computational and IHC-based purity assessments for GBM samples with vs. without cilium-associated expression. (B)
Significant difference in computational purity estimates by ESTIMATE and LUMP for LGG tumors in the cilium bicluster compared to other LGG tumors, contrasting with
no significance difference in their IHC-based purity estimates.
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Finally, we evaluated the cilium risk score in the
independent REMBRANDT glioma dataset, consisting of
microarray expression data from 261 GBM to 269 LGG
patients (Gusev et al., 2018). Again, patients with higher
than the median risk score had a significantly worse
overall survival (Figure 8E).

DISCUSSION

Clustering approaches that group together both genes and samples
simultaneously in an unsupervised manner (biclustering) can not
only discover genes that are co-expressed aberrantly, but also
uncover associations between gene expression and samples’
clinical and genomic attributes. In this study, we present co-
regulated gene expression profiles associated with brain normal
and tumor tissue. Our unsupervised biclustering analysis using
TuBA revealed transcriptional signatures associated with
proximally located normal tissue sites and identified distinct co-
regulated gene expression profiles associated with tumor grade and
patient prognosis. In particular, we identified a set of genes
associated with cilium motility that were expressed at a higher
level in normal amygdala, hypothalamus, and caudate normal
tissue and were aberrantly upregulated in a subset of gliomas.
Patients with brain tumors that had high expression of cilium-
associated genes had significantly poorer prognosis compared to the
rest of the cohort, independent of grade and other clinical and
genomic covariates. We then devised a cilium risk score that was
reproducibly informative of glioma patient survival after correcting
for previously validated, prognostic biomarkers.

Low tumor purity has been previously associated with tumor
heterogeneity and highly aggressive phenotypes that arise from
the presence of non-tumor and immune cell populations in the
microenvironment (Capper et al., 2018; Garofano et al., 2021). It

has also been used as a predictor of overall survival for patients
with glioma (Zhang et al., 2017). When we compared IHC-based
assessments of purity for tumors with and without cilium
expression, we did not observe significant differences between
the GBM or LGG tumors. However, computational purity
inferences by ESTIMATE and LUMP, which utilize gene
expression and methylation status respectively, indicated
statistically lower purity for the LGG tumors with cilium
expression compared to those without. Differential gene
expression showed upregulation of 13 and downregulation of
three genes included in ESTIMATE scores, suggesting that
computational inference of purity may be confounded by
aberrant expression of genes that are expected to be only
expressed in non-tumor cells.

Cilium expression is not unique to the brain tissue and has
been described previously for lung and testis (Patir et al., 2020). It
has also been previously explored in the context of tumor
development and progression (Han and Alvarez-Buylla, 2010;
Liu et al., 2018; Fabbri et al., 2019) particularly for gliomas
(Alvarez-Satta and Matheu, 2018; Sarkisian and Semple-
Rowland, 2019); however, whether cilium expression aids or
hinders tumor proliferation may depend on the tumor type
and its genomic and phenotypic attributes (Han et al., 2009;
Wong et al., 2009; Zingg et al., 2018). For example, the
Smoothened protein, which is localized on cilia and activates
the Hedgehog signaling pathway (Bangs and Anderson, 2017),
has been shown to trigger transcription of genes related to tumor
growth, survival, and the epithelial-to- mesenchymal transition
(Liu et al., 2018). Consistently, our differential gene expression
and pathway analysis showed upregulation of Hedgehog
signaling in tumors with high cilium expression.

The uncovered cilium signature is a reflection of tumor
heterogeneity in gliomas. It also suggests a mechanism for
their aggressive phenotype, provides a foundation for a

FIGURE 7 | (A) Upregulation of the Hedgehog signaling pathway in TCGA tumors with cilium-associated expression based on the GSVA scores. (B) Differential
expression of Hedgehog signaling genes in the cilium bicluster tumors vs. all other tumors.
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FIGURE 8 |Kaplan-Meier survival analysis of TCGA tumors based on their cilium expression. (A) Patients with TCGA tumors in the cilium bicluster had worse overall
survival (OS) compared to other patients. (B) Patients with tumors in the top 25% cilium risk score had poorer OS compared to patients with tumors in the bottom 25%
cilium risk score. (C) Patients with IDH1/2wild-type gliomas with cilium risk scores below the population’s median had poorer OS compared to those with scores above
the median. (D) Cilium risk score stratified patient OS in biclusters associated with poor prognosis, including a bicluster enriched in cell cycle. (E) Cilium risk score
was reproducibly predictive of OS for patients in the independent REMBRANDT cohort.
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reproducible, predictive risk score, and offers potential
therapeutic approaches for their targeted treatment (Merchant
and Matsui, 2010; Wu et al., 2012; Lu et al., 2021). Although
cilium expression is seen in specific regions of normal brain,
single-cell-resolution spatial annotation and molecular
characterization of gliomas suggest that the origin of cilium
signature in tumors may depend on their location and
proximity to certain brain regions (Moser et al., 2014;
Sarkisian et al., 2014).
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