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COVID-19 has had a disastrous impact on the world. Apart
from at least 6 million deaths, countless COVID-19 survivors
are suffering long-term physical and psychiatric morbidity.
Hundreds of millions have been plunged into poverty caused
by economic misery, particularly in developing nations. Early
in the pandemic, it became apparent certain groups of
individuals such as the elderly and those with comorbidities
were more likely to suffer severe disease. In addition, patients
with some forms of immunodeficiency, including those with T-
cell and innate immune defects, were at risk of poor outcomes.
Patients with immunodeficiencies are also disadvantaged as
they may not respond optimally to COVID-19 vaccines and
often have pre-existing lung damage. SARS-CoV-2 Omicron
(B.1.529) and its subvariants (BA.1, BA.2, etc) have emerged
recently and are dominating COVID-19 infections globally.
Omicron is associated with a reduced risk of hospitalization
and appears to have a lower case fatality rate compared with
previous SARS-CoV-2 variants. Omicron has offered hope the
pandemic may finally be coming to an end, particularly for
vaccinated, healthy individuals. The situation is less clear for
individuals with vulnerabilities, particularly immunodeficient
patients. This perspective offers insight into potential
implications of the SARS-CoV-2 Omicron variant for
patients with immunodeficiencies. � 2022 American
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SARS-CoV-2, the agent responsible for COVID-19, has
caused havoc around the globe. The true death toll is likely to far
exceed the official number of over 6 million. COVID-19 has
caused a pandemic of physical and psychiatric morbidity, which
will last for generations. Large numbers of children have been
orphaned, and the emotional scars will remain for the rest of
their lives. Hundreds of millions of individuals have been
plunged into abject poverty caused by economic misery in
developing countries.1 The economic gains of the last decade or
longer have been reversed by the pandemic in some nations. The
origin of SARS-CoV-2 is the subject of ongoing scrutiny.2-4

The virus appears to infect individuals in 3 overlapping clin-
ical stages (Figure 1).5 In the initial nasal phase, the virus engages
cell-surface angiotensin-converting enzyme 2 (ACE2) receptors.
Host proteases including transmembrane serine protease 2
(TMPRSS-2) and furin cleave the viral spike (S) glycoprotein.6

The S2 subunit of the S glycoprotein is then able to fuse with
the cell membrane allowing the viral genome to enter and hijack
intracellular organelles, leading to the generation of viral
progeny.

In the second pulmonary phase, the virus infects the lungs,
most likely by aspiration from the nose and stomach.7 Patients
progressing to this stage experience increasing dyspnea, lethargy,
and myalgia. Computerized tomography scans of the thorax may
display ground-glass appearance. Laboratory parameters in the
second stage show an increase in inflammatory markers including
C-reactive protein.

A small number of patients enter the third systemic phase
where they rapidly deteriorate and suffer multiple organ
dysfunction, including acute respiratory distress syndrome
(ARDS). These patients often require intensive care unit
admission, but mortality remains high in spite of invasive
ventilation or extracorporeal membrane oxygenation. Comple-
ment activation and endothelial damage lead to activation of the
coagulation cascade.8 An increase in D-dimers signifies a risk of
arterial and venous thromboembolic disease.

Early in the pandemic, it became apparent that there was a
steep age-related mortality gradient with poor outcomes in pa-
tients over 80 years of age.9 Children are frequently infected but
are often asymptomatic. In addition, patients with comorbidities
2267

mailto:rohana@adhb.govt.nz
https://doi.org/10.1016/j.jaip.2022.06.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaip.2022.06.011&domain=pdf


J ALLERGY CLIN IMMUNOL PRACT
SEPTEMBER 2022

2268 AMERATUNGA ETAL
Abbreviations used

ACE2- A
ngiotensin-converting enzyme 2

ARDS- A
cute respiratory distress syndrome

CVID- C
ommon variable immunodeficiency disorders

RATs- R
apid antigen tests

RBD- R
eceptor binding domain
RT-qPCR- q
uantitative reverse transcriptase polymerase chain
reaction
S- S
pike

TMPRSS-2- T
ransmembrane serine protease 2
XLA- X
-linked agammaglobulinemia
including obesity, diabetes mellitus, coronary artery disease,
hypertension, malignancy, renal, and pulmonary disease are at
increased risk of severe outcomes.9-11 The basis for these host
susceptibilities is incompletely understood.

Current data also indicate racial and ethnic differences in
adverse outcomes from COVID-19.12 Patients of Black, His-
panic, M�aori, Pacifika, and South Asian origin are at risk of
severe outcomes. The reasons for these ethnic susceptibilities are
not fully understood. Inequitable access to health care and an
increased burden of comorbidities may partly underlie these
disparities.13

THE IMMUNE RESPONSE TO COVID-19
The immune response to COVID-19 is now better appre-

ciated. In the initial nasal phase, the innate immune response is
muted.14 SARS-CoV-2 is able to silence cytoplasmic viral
sensors by a variety of mechanisms including coating double-
stranded viral RNA in a membrane. Viral RNA is also cap-
ped impeding the response of molecules such as melanoma
differentiationeassociated protein 5. Retinoic acid-inducible
gene-I-like receptors are ubiquitinated leading to degradation.
Consequently, the incubation period is asymptomatic, and
infected individuals can unwittingly infect others. Recent data
suggest that wearing masks reduces transmission within
households.15

Later in the pulmonary and systemic phases, the innate im-
mune system aggravates the disease.16 There is neutrophilia, and
recruitment of neutrophils and macrophages (via monocytes) to
the lungs can lead to a cytokine storm with the production of
high concentrations of IL-6 and tumor necrosis factor. Activation
of the inflammasome can lead to pyroptosis. Uncontrolled acti-
vation of the innate immune system underlies ARDS and mul-
tiple organ dysfunction. Neutralizing anti-interferon antibodies
play an important role in amplifying disease severity.17 These
antibodies are present in higher titers in many patients who are
severely affected by COVID-19.

The adaptive immune system is also subverted by the virus.
The role of antibodies in the outcome of COVID-19 is uncer-
tain.18 There is evidence for both protection and aggravation of
disease by antibodies.18 In severe cases, there is a risk of antibody
disease enhancement.19

In contrast, there is increasing evidence that cellular immune
responses play a crucial role in both the outcome of COVID-19
and long-term protection after infection or vaccination.20-22 A
low avidity or delayed T-cell response is associated with severe
outcomes in COVID-19.20 An efficient early T-cell response can
protect against SARS-CoV-2 and even abort the infection before
quantitative reverse transcriptase polymerase chain reaction
(RT-qPCR) tests become positive.23

SARS-CoV-2 AND IMMUNODEFICIENCY

DISORDERS
Patients with primary immunodeficiency disorders have pro-

vided valuable insights into the role of various components of the
immune system in the protective response to SARS-CoV-2.24

Current data indicate that patients with innate immune system
or T-cell defects have worse outcomes, attesting to the impor-
tance of these components of the immune response.25 In
contrast, most patients with X-linked agammaglobulinemia
(XLA), without comorbidities, appear to be protected from se-
vere disease.26-29 This is evidence that antibodies in some cir-
cumstances can be harmful. The specific implications of the
SARS-CoV-2 Omicron infection for immunodeficient patients
are discussed in more detail below.

VIRAL EVOLUTION
There has been a poorly coordinated global response to

COVID-19. Although effective vaccines and therapeutics have
been developed, there have been political, financial, and logistical
barriers hindering vaccine uptake, resulting in vaccine inequity.
A substantial proportion of the African population remains un-
vaccinated and vulnerable to COVID-19. Vaccine hesitancy in
developed countries has also left large numbers of patients un-
vaccinated. Consequently, the virus has been able to circulate
widely resulting in the selection, emergence, and dominance of
increasingly infectious variants. These SARS-CoV-2 variants
have presented as successive waves of infection.

THE OMICRON VARIANT OF SARS-CoV-2
Omicron (B.1.529) and its subvariants (BA.1, BA.2 etc) are

the latest highly infectious SARS-CoV-2 strains to emerge in
November 2021.30 Within a few weeks of its first discovery in
Southern Africa, Omicron has displaced the previous incumbent,
Delta (B.1.617.2), and now dominates global COVID-19 in-
fections.31 Omicron reaches very high viral loads during the nasal
incubation period, which may underlie its infectiousness.32,33

Omicron is also able to infect vaccinated individuals as well as
those previously infected with other SARS-CoV-2 variants.34,35

These observations underlie its high reproduction number (R0).
Apart from being highly transmissible, Omicron appears to

fundamentally differ from previous SARS-CoV-2 strains. From a
clinical perspective, the disease seems to be less severe with a
lower rate of ARDS, hospitalization, and death.36 Anosmia,
which was a characteristic feature of previous SARS-CoV-2
variants, appears to be much less common with Omicron. In
contrast, gastrointestinal symptoms including vomiting and
diarrhea are more prominent features of Omicron infection
(Figure 1).

SARS-CoV-2 Omicron infections have implications for the
treatment of COVID-19. Immunosuppressive drugs such as
dexamethasone, tocilizumab, and baricitinib are effective in pa-
tients suffering from ARDS from previous SARS-CoV-2 variants.
Given that Omicron is less prone to cause ARDS, this may alter
the risk ratio for administering dexamethasone, given the
increased risk of mucormycosis in diabetic patients.

Omicron may also be less prone to cause inappropriate
complement activation and endothelial damage, leading to



FIGURE 1. Illustration of the differences between Omicron and
infection with previous SARS-CoV-2 variants. The nasal phase is
shorter in Omicron infection. In the second phase, gastrointestinal
symptoms are more prominent and fewer patients reach the
systemic phase. The mortality rate is also lower for Omicron
compared with other variants.

J ALLERGY CLIN IMMUNOL PRACT
VOLUME 10, NUMBER 9

AMERATUNGA ETAL 2269
activation of the clotting cascade. Arterial and venous throm-
boembolic events may be less likely. Trials of anticoagulants may
need to revisited, as the risk of adverse effects from these med-
icines may exceed the risks of thromboembolic disease caused by
Omicron.

At the time of writing, it is unknown if Omicron will cause
sequelae of COVID-19 including long COVID. Long COVID
is a disabling syndrome where patients experience lethargy, chest
pain, and neurological symptoms including autonomic instability
and loss of clarity of thought (brain fog).37 If long COVID is due
to a dysfunctional immune response, this syndrome might be less
likely to occur with SARS-CoV-2 Omicron infection.
SARS-CoV-2 could also cause long COVID by invading the
brain through the olfactory nerves.38 Given the lower rate of
anosmia with Omicron, this might suggest a lower risk of long
COVID. A third nonmutually exclusive possibility is that long
COVID is the result of microthrombi causing organ ischemia.39

If the thromboembolic risk is lower with Omicron, it might
indicate a lower incidence of long COVID. It also remains to be
determined if Omicron is associated with the same risk of severe
autoimmunity or other rare syndromes such as multisystem in-
flammatory syndrome of children, seen with previous
SARS-CoV-2 variants.40
MOLECULAR DIFFERENCES BETWEEN OMICRON

AND OTHER SARS-CoV-2 VARIANTS

There have been recent insights into the molecular biology of
SARS-CoV-2 Omicron, which may underlie some of these
clinical and epidemiological observations. The S glycoprotein of
Omicron has over 30 mutations, and the nucleocapsid protein
has 2 mutations compared with previous variants. This changes
its conformation and allows the virus to bind with high affinity
to ACE2, but it seems to be less susceptible to the action of
proteases such as TMPRSS-2.41-44 This impedes cellular fusion,
and Omicron appears to infect pulmonary alveoli at a much
lower frequency compared with previous SARS-CoV-2 variants.
This is seen in vitro, where Omicron is less infectious for lung
alveoli than other SARS-CoV-2 variants.45 The lower tropism for
alveolar and other cells is presumably why ARDS and multiple
organ dysfunction are less severe with Omicron.

The disease outcome of COVID-19 is primarily determined
by the dysregulated immune response to SARS-CoV-2.46 Its
milder nature suggests that Omicron is less prone to provoke a
severe cytokine storm leading to ARDS and multiple organ
dysfunction. It also suggests that Omicron is less likely to cause
severe T-cell dysregulation compared with previous SARS-CoV-
2 variants.46 Dysregulated T-cell immunity is one of the key
correlates of severe COVID-19.18
IMPLICATIONS FOR DIAGNOSIS, PREVENTION,

AND TREATMENT OF SARS-CoV-2 OMICRON

INFECTIONS
SARS-CoV-2 Omicron infection has implications for diag-

nostic testing. Because the receptor binding domain (RBD) of
Omicron has multiple mutations, the current testing strategy
may need to be revised. Rapid antigen tests (RATs) may not
detect Omicron with the same accuracy as previous SARS-CoV-2
variants.47,48 The BA.2 variant of Omicron may not be identified
by some current RT-qPCR tests and has been described as a
“stealth virus” in the popular press.49 Retrospective sero-epide-
miological antibody tests may also be negative in unvaccinated,
Omicron infected individuals when measured by older assays.
The antigenic target may have to be altered to the Omicron
RBD. It will be important for such antibody assays to be care-
fully evaluated in external quality assurance programs to deter-
mine their sensitivity and specificity for different SARS-CoV-2
variants.

Of even more concern, current data suggest that Omicron is
able to evade vaccine-induced antibodies.50-53 A booster vaccine
however mitigates some of this loss of vaccine efficacy in healthy
persons.54-57 Fortunately, T-cell responses to Omicron are
mostly preserved in healthy vaccinated individuals.58-61 As noted,
T cells play a crucial role in the outcome of COVID-19 as well as
long-term protection after either infection or vaccination. This
indicates that the apparent loss of vaccine efficacy against Omi-
cron is overestimated by antibody neutralization assays alone.

Because of the antigenic shift caused by multiple RBD mu-
tations, Omicron appears to evade several previously effective
monoclonal antibodies.62 Most monoclonal antibodies have been
derived from COVID-19 survivors of the ancestral Wuhan
variant or mice immunized with early SARS-CoV-2 variants.
The E484A and N501Y mutations of the Omicron RBD un-
derlie much of the monoclonal and vaccine antibody evasion.63-
65 Some monoclonal antibodies, which bind outside the RBD,
such as sotrovimab, have retained efficacy for early subvariants of
Omicron.66

On the positive side, Omicron appears to be at least as sus-
ceptible to remdesivir and molnupiravir, compared with previous
SARS-CoV-2 variants.67 Paxlovid has also retained its efficacy to
Omicron. Given that the nasal phase is much shorter, these drugs
will have to be administered early in the infection. This will
require access to accurate diagnostic testing with a rapid turn-
around time. Alternatively, these drugs could be used as pro-
phylaxis in high-risk situations.
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DISCUSSION: IMPLICATIONS OF SARS-CoV-2

OMICRON INFECTION FOR IMMUNODEFICIENT

PATIENTS
The emergence and global dominance of the Omicron (and its

subvariants) of SARS-CoV-2 has far-reaching implications for
the pandemic in general and immunodeficient patients, in
particular. SARS-CoV-2 Omicron will lead to revision of the
current understanding of the immunopathology of COVID-19.
Omicron may need to be considered a new infection with some
overlapping features of previous SARS-CoV-2 variants.18

SARS-CoV-2 Omicron infection is likely to impact the disease
severity and prognosis of immunodeficient patients.68 Immu-
nodeficient patients often have pre-existing chronic lung disease
including bronchiectasis.69 Older immunodeficient patients with
chronic lung disease and other comorbidities may be less sus-
ceptible to severe outcomes from Omicron infection compared
with previous SARS-CoV-2 variants.70 As with the general
population, the case fatality rate in immunodeficient patients
may be lower with Omicron. Future data will confirm the
accuracy of this prediction. The increased susceptibility of
patients with impaired innate immunity or T-cell defects, noted
with previous variants, will need to be determined for Omicron.
Future case series or registries should specify the SARS-CoV-2
variant infecting each immunodeficient patient, either by viral
genotyping or epidemiological information on the variant(s)
circulating in the community at the time.

Apart from the potential inaccuracy of RATs, RT-qPCR, and
antibody tests, there are specific implications for the diagnosis of
Omicron in immunodeficient patients. Patients with XLA, for
example, are unable to generate antibodies but have preserved
cellular immune responses to COVID-19 vaccines.71 Further-
more, subcutaneous and intravenous immunoglobulin prepara-
tions now have high titers of SARS-CoV-2 antibodies.72 There is
thus an urgent need for diagnostic T-cell assays for SARS-CoV-2,
for immunodeficient patients.73 T-cell assays using the Omicron
RBD and other antigens including the Nucleocapsid protein may
identify breakthrough infections. Commercial T-cell assays to
SARS-CoV-2 are likely to become obsolete given the rapid viral
evolution noted to date. Diagnostic laboratories with the relevant
experience should develop these assays urgently.74,75 The RBD
can be rapidly altered by these laboratories in the event a new
SARS-CoV-2 variant emerges. In the future, these assays may
indicate the efficacy of vaccines in immunodeficient patients and
provide valuable information on the need for other treatments
such as prophylactic drugs or monoclonal antibodies. SARS-
CoV-2 T-cell assays will enable personalized medicine for
COVID-19 in immunodeficient patients.

As noted, remdesivir and molnupiravir may be more effective
for Omicron than previous SARS-CoV-2 variants. This is likely
to disproportionately benefit immunodeficient patients infected
with SARS-CoV-2 Omicron. It is possible that combinations of
such drugs will prove very effective in mitigating severe outcomes
in immunodeficient patients and others with comorbidities.
Currently, there is a global shortage of these newer more effective
drugs.

Early variants of Omicron have fortunately retained sensitivity
to Evusheld (tixagevimab and cilgavimab), sotrovimab and
bebtelovimab.76 These can be used as prophylaxis or in the early
stages of Omicron infection to reduce the risk progression to the
pulmonary and systemic phases. It is likely to be of
disproportionate benefit to immunodeficient patients as well as
others at high risk of adverse outcomes. Currently available
monoclonal antibodies will need to be re-evaluated for efficacy
against Omicron and each of its subvariants.77 It is likely that
new monoclonal antibodies will need to be developed from
Omicron convalescent individuals.

In contrast to many monoclonal antibodies, the NZACE2-
P�atari project may prove to be very effective against SARS-CoV-
2 Omicron as it is based on modified ACE2 receptors.7,78 The
project aims to intercept SARS-CoV-2 in the nose and reduce the
burden of virus infecting the lungs. Viral evolution leading to
reduced ACE2 binding is unlikely to be tolerated and will lead to
loss of pathogenicity. If successful in future trials, this drug could
be used in combination with other antiviral drugs. If proved to be
effective, it could be used as prophylaxis particularly in patients
with suboptimal responses to vaccines.

Immunodeficient patients are at risk of chronic
COVID-19.79,80 In chronic COVID-19, there is a stalemate
between SARS-CoV-2 and a suboptimal immune response.
Patients with chronic COVID-19 shed virus for weeks or
months and are at risk of intrahost viral evolution leading to the
emergence of dangerous vaccine and antibody evasion mutants.
It is a public health emergency and must be prevented at all costs.
It is currently too early to determine the risk of chronic
COVID-19 with Omicron and its newer subvariants. If immu-
nodeficient patients are vaccinated and have early access
to effective antiviral therapeutics, chronic COVID-19 may be
less likely.

Omicron will lead to reassessment of previously ineffective
COVID-19 therapies.81 Treatments such as convalescent plasma
infusions might be more effective for SARS-CoV-2 Omicron
than for previous variants. In immunodeficient patients suffering
from chronic COVID-19 from previous SARS-CoV-2 variants,
convalescent plasma infusions resulted in the emergence of vac-
cine and monoclonal antibody resistant clades.82 Although
chronic COVID-19 may be less likely with Omicron, in the
event of such cases, convalescent plasma infusions from Omicron
survivors may be more efficacious compared with previous
SARS-CoV-2 variants. It would be sensible to recruit younger
Omicron survivors as plasma donors, who are less likely to have
neutralizing anti-interferon antibodies. Given that there may be
less perturbations of cellular immunity, perhaps protection
against Omicron is more dependent on antibodies compared
with previous SARS-CoV-2 variants. Future studies will need to
test this hypothesis. The protective role of subcutaneous
immunoglobulin/intravenous immunoglobulin preparations
containing high titres of anti-Omicron antibodies will also need
to be studied.

Preventing COVID-19 by vaccination is problematic in
immunodeficient patients, as by definition many have subopti-
mal responses to vaccines.83,84 Two recent studies of common
variable immunodeficiency disorders (CVID) however have
shown that at least some of these patients are able to respond to
vaccine challenges.85 The majority of patients had excellent re-
sponses to tetanus toxoid and Haemophilus influenzae type B
vaccine in the NZ hypogammaglobulinemia and CVID
studies.86 Two studies have shown that patients with CVID are
able to respond partially to COVID-19 vaccines.87,88 It is
possible that this partial response to COVID-19 vaccines confers
disproportionate protection for immunodeficient patients. Three
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or 4 primary COVID-19 vaccine doses may provide adequate
protection against severe outcomes in such patients.89,90 Heter-
ologous vaccination with an mRNA vaccine followed by an
adenovirus-based or subunit vaccine provides robust immunity
in healthy persons.91 Such a strategy should be considered in
immunodeficient patients. The risk of SARS-CoV-2 infection far
exceeds the very small risk of COVID-19 vaccines in healthy and
immunodeficient patients.92

Hybrid immunity, in patients who have had COVID-19
followed by vaccination, provides robust long-term protection
in healthy93 and immunodeficient patients.94 If Omicron has a
low case-fatality rate, it could serve as a highly effective “live
attenuated virus vaccine” in both vaccinated healthy persons and
many vaccinated immunodeficient patients. Omicron may boost
those with pre-existing immunity and could “immunize” others
who are unvaccinated. Omicron may therefore protect against
future more virulent strains of SARS-CoV-2 and herald the end
of the current pandemic. If this optimistic prediction proves
accurate, Omicron may be the light at the end of the very long
pandemic tunnel rather than another false dawn for immuno-
deficient patients.
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