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Machine learning (ML) is a sub-field of artificial intelligence that uses computer algorithms to extract patterns from raw data, acquire knowledge
without human input, and apply this knowledge for various tasks. Traditional statistical methods that classify or regress data have limited capacity
to handle large datasets that have a low signal-to-noise ratio. In contrast to traditional models, ML relies on fewer assumptions, can handle larger
and more complex datasets, and does not require predictors or interactions to be pre-specified, allowing for novel relationships to be detected.
In this review, we discuss the rationale for the use and applications of ML in heart failure, including disease classification, early diagnosis, early
detection of decompensation, risk stratification, optimal titration of medical therapy, effective patient selection for devices, and clinical trial re-
cruitment. We discuss howML can be used to expedite implementation and close healthcare gaps in learning healthcare systems. We review the
limitations of ML, including opaque logic and unreliable model performance in the setting of data errors or data shift. Whilst ML has great po-
tential to improve clinical care and research in HF, the applications must be externally validated in prospective studies for broad uptake to occur.
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Introduction
One of the most common causes of hospitalization among older pa-
tients, heart failure (HF) poses challenges in diagnosis, management,
organization of health services, and risk prediction.1,2 HF is one of the
most expensive healthcare conditions to manage in high-income
countries. Patients receive numerous diagnostic tests, invasive proce-
dures, and therapies over the course of their illness, generating large

amounts of data that can be aggregated into registries or other insti-
tutional databases to evaluate healthcare utilization, quality and cost
of care, and disease progression.3 The size, complexity, and dynamic
nature of these ‘big data’ can be challenging for traditional analytical
methods to make sense of.4

Machine learning (ML) encompasses computational techniques
that can extract patterns from data, acquire knowledge, and apply
this knowledge to tasks such as risk prediction.5 ML methods can
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handle temporal, large-volume, and multi-modality data [e.g., sound,
language, tabular electronic health record (EHR), imaging, and meta-
bolomic data].6 In HF, delivering the right care to the right patient is
challenged by diagnostic uncertainty, variation in treatment and
safety response due to suboptimal generalizability of clinical trial re-
sults, complexity in risk stratification, and limited integration of infor-
mation at the point of care. ML can play an important role in bridging
these gaps in HF and has important advantages over traditional
human-derived models.

What is artificial intelligence and
machine learning?
Artificial intelligence (AI), the imitation of human cognition by tech-
nology, can be used to guide clinical care and decision-making with-
out human involvement in the process. One sub-field of AI is ML,
which provides computers with the capacity to evaluate data beyond
programmatic algorithms, identifying patterns within data, mapping
learned patterns to unseen data, and improving the performance
of computational tasks beyond human capaibilities (Box 1).7

ML and traditional statistical approaches have several unique as
well as overlapping capabilities (Table 1). ML methods are well-
equipped to handle high-dimensional datasets with a very large
number of variables that make traditional statistical approaches
such as regression challenging. ML can also handle correlated or

collinear data points and assess complex interactions between
predictors. ML does not typically isolate the ‘effect’ of a single vari-
able and does not require that predictor variables be selected a
priori10 (Table 1). ML can also generate dynamic models, where
the training data are continuously updated to account for tem-
poral changes in data. For example, ‘baseline’ characteristics
such as haemodynamics, laboratory values, and comorbidities
may evolve during a study. The evolution of these characteristics
may be important in predicting outcomes, but traditional statistic-
al approaches are often not equipped to handle them. ML algo-
rithms allow for higher performing, accurate computation of
non-linear relationships, but the higher accuracy comes at the
cost of interpretability13 (Figure 1).
ML can be supervised or unsupervised (see Supplementary

material online, Figure S1). Supervised ML uses human-labelled data
to learn the underlying patterns in a process called ‘model training’.
Data labelling of outcomes—for example, ‘hospitalized’ or ‘not hos-
pitalized’—requires human input. The algorithms then learn the re-
lationships between variables and outcomes. As new input data is
fed into the model, weights are adjusted until the model has been fit-
ted appropriately. Using this method, a model can be trained to pre-
dict events (e.g. hospitalization) in new datasets.
In contrast to supervised learning, unsupervised ML algorithms are

exploratory and discover patterns without human-labelled data.10 By
recognizing clinically relevant patterns or phenotypes that may not
be evident to the clinician, ML can unearth disease mechanisms
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Table 1 Differences between traditional statistical models and machine learning algorithms

Method Traditional regression models Machine learning

Assumptions

Independence Predictors are assumed to be independent of each other. Predictors do not need to be independent.

Multicollinearity No multicollinearity—predictors should not correlate

with each other.

Multicollinearity allowed.

Predictors

Selection of

predictors

Prespecified. Does not have to be prespecified.

Data structure

Reasoning Inductive—derives a rule for the relationship between the

input and the outcome.11
Transductive—can predict outcomes using inputs from the training set

without deriving a general rule.11

Dimensionality Performs well with low signal-to-noise ratio, but poorly

with high-dimensional data.

Performs well with high-dimensional data with high signal-to-noise

ratio.12

Sample size Smaller sample size, fewer events required per predictor. Larger sample size, more events required per predictor.

Performance

Interactions Can test for a limited number of prespecified

interactions.12
Can handle large number of non-prespecified interactions.12

Effect size The effect of individual predictors is of interest. The effect of individual predictors is not of interest, prediction is

prioritized.

Performance Lower accuracy. Higher accuracy, particularly for non-linear, non-smooth relationships.

Interpretability Models are easier to interpret and explain. Models are more challenging to interpret, can be a ‘black box’.

Dichotomization Calibration poor with dichotomized predictor and

outcome variables.

Better calibration with dichotomous predictor and outcome variables.
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and improve the accuracy of diagnosis, management, and risk predic-
tion in cardiovascular medicine.10

Deep learning (DL) is a subset of ML that uses multiple layers of
artificial neural networks to identify patterns or make predictions
of patterns (see Supplementary material online, Table S1).9 There
is a hierarchy in the arrangement of layers, from learning simple re-
presentations of data to more complex relationships as the data is
passed through deeper layers. DL is particularly useful with big
data, as it does not require variable selection or rely as much on fea-
ture engineering to learn from big data sources such as EHRs.15 For
example, DL models can predict incident HF by examining temporal
relations amongst a large number of evolving variables (i.e., co-
morbidities, physiologic measures, laboratory indices, medication
prescriptions, invasive procedures).16

Machine learning applications in
HF

Prediction of incident HF
ML algorithms can identify risk factors for incident HF. In a prospect-
ive cohort of over 500 000 individuals in the United Kingdom, a

supervisedMLmodel confirmed leg bioimpedance as a major risk fac-
tor in addition to known risk factors for HF; lower leg bioimpedance
values were associated with HF incidence during the 9.8-year follow-
up.17 The resulting ML model, comprising leg bioimpedance, age, sex,
and self-reported myocardial infarction provided a highly accurate
prediction of incident HF without the variables being prespecified.
This demonstrates that ML can identify novel HF risk factors for
HF that may not otherwise be considered. A further application of
ML algorithms may be the prediction of disease in populations that
are not represented in registries or trials in which traditional clinical
prediction models were derived or validated; utilizing a large set of
unspecified variables to predict disease instead of limiting variables
to those generated from homogenous research populations may
mitigate historical structural biases and research inequities.18,19

In a prospective study of patients enrolled in the Action to Control
Cardiovascular Risk in Diabetes trial, a risk score for 5-year HF
incidence was created using ML techniques.20 The supervised
ML model demonstrated better discrimination than a traditional
Cox-proportional hazards model in a predicting incident HF within
the cohort in the 4.9 years of study follow-up.20 Models that predict
HF tend to treat race or ethnicity as a covariate, rather than devel-
oping race-specific models, which may be more appropriate due to

Figure 1 Comparison of the accuracy and interpretability of statistical vs. machine learning models. Traditional regression models demonstrate
poor accuracy but are easier to interpret. Machine learning models with non-linear relationships offer superior accuracy but are harder to interpret.
Adapted from Stewart 2020.14
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variations in risk factors across racial or ethnic groups.21 In a retro-
spective pooled analysis of cohort studies, ML was used to develop
a race-specific model to predict HF incidence,21 and it outperformed
a traditional, non-race specific model.21

Diagnosis of HF
ML algorithms could assist physicians in early diagnosis of HF in at-
risk patients. An electrocardiogram (ECG) is a non-invasive, widely
available tool that can be used for early diagnosis of HF.22 A DL algo-
rithm for ECG-based HF identification (DEHF) was developed and
validated for this purpose,22 using data including demographic infor-
mation and ECG features from EHRs.22 The DEHF algorithm was su-
perior in detecting HF with reduced ejection fraction (HFrEF)
(C-statistic 0.843, 95% CI 0.840–0.845) compared to logistic regres-
sion (C-statistic 0.800, 95% CI 0.797–0.803) and random forest ML
algorithms (C-statistic 0.807, 95% CI 0.804–0.810).22

AI when combined with expert knowledge may be superior than
AI alone. An AI-Clinical Decision Support System that was developed
using expert knowledge combined with a ML approach for the diag-
nosis of HF with reduced, mildly reduced, and preserved ejection
fraction improved diagnostic accuracy over an expert-driven or ML
approach alone.23 The variables in the ML model included left ven-
tricular ejection fraction, left atrial volume index, left ventricular
mass index, ECG features, clinical features and physical exam
features.

Earlier recognition and improved diagnostic accuracy of HF may
allow for more timely investigations for the underlying aetiology
and earlier initiation of guideline-indicated therapy to delay disease
progression. The use of ML as a diagnostic aide in HF is a nascent
field, however. In the absence of external validation and prospective
testing of interventions based on ML outputs, the clinical impact re-
mains to be realized.

Classification of HF phenotypes
ML may improve the current classification of HF. Compared to
HFrEF, the underlying phenotypic heterogeneity is more complex
in HF with preserved ejection fraction (HFpEF).24–26 A prospective
study of 397 ambulatory patients with HFpEF performed phenotype
mapping using ML algorithms with data from EHRs.25 This technique
resulted in a novel classification method for HFpEF, which clusters
study participants into phenotypes according to clinical characteris-
tics, ECG and echocardiographic parameters, invasive haemodynam-
ics, and outcomes (Table 2).25 These findings are important, as the
improved classification of HFpEF may facilitate recruitment of pa-
tients most likely to benefit from a given intervention in randomized
trials.25

Another unsupervised ML analysis of 1693 patients hospitalized
with HF across the left vebtricular ejection fraction (LVEF) spectrum
revealed 6 discrete phenogroups based on common comorbidities:
coronary artery disease, valvular heart disease, atrial fibrillation,
chronic obstructive pulmonary disease (COPD), obstructive sleep
apnoea (OSA), or few comorbidities (Table 2).27 Phenogroups
were LVEF-independent, with each group encompassing a wide
range of LVEF. The groups stratified risk of composite all-cause death
or hospitalization as well as a composite cardiovascular (CV) death

or HF hospitalization at 6 and 12months post-discharge more effect-
ively than LVEF.27

Similarly, unsupervised ML can be used to establish clinical phe-
nogroups with predictive values based on transcriptomic or metabo-
lomic profiles.31 Such phenogroups or subgroups may have
differential response to therapies,32 but this needs to be proven in
prospective studies.

Prediction of outcomes following HF
diagnosis
Existing HF prediction models are underused among cardiologists
due to their complexity, lack of integration with work flow, and lim-
ited knowledge on how risk prediction can be used to improve out-
comes.33 Risk prediction models aim to identify patients who are at
risk of adverse events1 or whomay benefit from closer follow-up and
post-discharge services. From a systems level, risk stratification is im-
portant in light of the readmission penalties imposed by the Medicare
Hospital Readmissions Reduction Programme.34 However, accurate
risk prediction remains an unmet need which may be met through
ML. The DL algorithm for predicting mortality of patients with
Acute HF (DAHF), is a risk stratification model for predicting in-
hospital and long-termmortality. Evidence from a large retrospective
cohort study in Korea demonstrated the ability of DAHF to outper-
form mortality risk prediction models for HF such as Get with the
Guidelines-Heart Failure Score (GWTG) and Meta-Analysis Global
Group for Heart Failure (MAGGIC).35 The DAHF predicted in-
hospital through to 36-month mortality with greater discrimination
than the GWTG risk score for in-hospital mortality (C-statistic
0.880; 95% CI 0.876–0.884 vs. 0.728; 95% CI 0.720–0.737) and the
MAGGIC risk score for 36-month mortality (C-statistic 0.813; 95%
CI 0.810–0.816 vs. 0.729; 95% CI 0.726–0.733).35 This may be be-
cause DL algorithms do not limit the number of input predictive fac-
tors, preventing the unintended loss of data that comes from
restricting analyses to known associations.35

Data from cardiac monitoring, either external or implantable, can
be used in real time to develop algorithms for risk prediction. The
Multisensor Non-invasive Remote Monitoring for Prediction of
Heart Failure Exacerbation (LINK-HF) study examined the `accuracy
of a remote monitoring system using a ML algorithm to predict hos-
pitalization (unplanned non-trauma hospitalization).36 The platform
was able to predict precursors to hospitalization with a median alert
time of 6.5 days in advance of the readmission.36 Implantable haemo-
dynamic monitoring systems of pulmonary artery pressures (PAP)
have demonstrated conflicting effects on clinical endpoints in the
CardioMEMS Heart Sensor Allows Monitoring of Pressures to
Improve Outcomes in New York Heart Association (NYHA)
Functional Class III Heart Failure Patients (CHAMPION) and the
Haemodynamic-guided Management of Heart Failure (GUIDE-HF)
trials.37,38 Unlike the CHAMPION trial in which implantable
haemodynamic-guided HF therapy decreased the rate of HF hospita-
lizations, PAPmonitoring did not reduce the primary composite end-
point or component endpoints of all-cause mortality or HF
hospitalization in the GUIDE-HF trial.38 In a sensitivity analysis of
GUIDE-HF, a significant treatment effect was observed with
PAP-guided HF therapy prior to, but not during, the COVID-19 pan-
demic.38 Event rates decreased during the COVID-19 pandemic and

Applications of machine learning in heart failure 315
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there was no longer a difference in guideline-directed medical ther-
apy (GDMT) changes in the treatment relative to control groups
during the pandemic; this, along with changes in patient behaviour
(e.g. improved medication adherence, better nutrition, and hospital
avoidance) may have attenuated the estimated treatment effect of
PAP-guided care during the pandemic in GUIDE-HF.38 While the
breadth of evidence does not favour the use of PAPmonitoring over-
all, ML algorithms with haemodynamic and EHR data from
PAP-monitored patients may help determine which patients benefit
the most from this intervention.
The HeartLogic Index™, a proprietary algorithm derived from

Boston Scientific Cardiac resynchronization-defibrillator (CRT-D) de-
vice data, is an example of applied ML.39 The algorithm—using heart
sounds, thoracic impedance, respiratory rate, tidal volume, heart
rate and patient activity—delivers an alert when a certain threshold
is reached. This index was demonstrated to predict HF events (hospi-
talization or need for IV diuretics)39 and can potentially also be used to
detect subclinical decompensation.40 At a cut-point of 16, the
HeartLogic Index provides clinicians with an alert signaling an in-
creased risk of HF hospitalization (modest performance with sensitiv-
ity 70% and positive predictive value 11.3%). As in the case of non-ML
models, there is a paucity of randomized clinical trial evidence on the
effect of care pathways guided by these alerts. Thus, the impact of the
HeartLogic Index on clinical outcomes has yet to be established.

Optimization of medical
and device therapy

Medical therapy
A majority of patients do not receive target doses of evidence-based
medical therapies in HF, possibly due to under-prescribing by clini-
cians, barriers to access, or intolerance to medications.41 ML algo-
rithms have been used to improve HF medical management by
assessing for heterogeneity in response to HF therapies. For ex-
ample, ML methods were applied to EHRs of 44 886 patients in
the Swedish HF Registry assess for heterogeneity in response to
HF pharmacotherapy across propensity-matched clusters.30 Four
clusters—based on demographic, NYHA class, LVEF, comorbidities
and lab indices—were identified with marked differences in 1-year
survival and response to therapies (Table 2).30 Thus, ML may be
used to better classify HF patients into high- and low-risk subgroups
and identify those most likely to derive benefit with the least side ef-
fects in GDMT.

ML can potentially be used to optimize GDMT prescription in HF
and identify patients at risk for adverse drug reactions. By extracting
data from EHRs, ML algorithms could be used to provide recommen-
dations to clinicians regarding optimal sequencing and dosing of
evidence-based therapies.42 This approach could help reach a wider
range of patients who may not otherwise have access to multidiscip-
linary HF clinics that are often concentrated in urban centres.

Device therapy—patient selection
and care
ML may also be used to optimize patient selection for device ther-
apy in HF. Depending on the definition used, up to 40% of HF
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patients are non-responders to cardiac resynchronization therapy
(CRT)43–45 A post-hoc analysis of the Multicentre Automatic
Defibrillator Implantation Trial with CRT trial assessed whether
an ML algorithm could accurately identify patients who respond
to CRT.29 Input for the unsupervised ML algorithm included 50
variables selected at baseline such as demographic and laboratory
data, ECG and echocardiography measurements, and data on medi-
cation use and recruitment centre.29 The ML algorithm identified
four phenogroups of HF patients, including patients most likely to
respond to CRT-D vs. implantable-cardioverter defibrillators
(ICDs) (Table 2).29 Another ML model using device data from
the Comparison of Medical Therapy, Pacing, and Defibrillation in
Heart Failure trial46 improved the ability to discriminate outcomes
after CRT relative to the referral criteria of bundle branch block
(BBB) morphology and QRS duration46 The ML model produced
more precise results, indicating an eight-fold difference in survival
between those with the highest and lowest predicted probability
for death.46 These examples highlight that ML models may improve
patient selection for CRT by highlighting patients who are most
likely to derive benefit.46

ICDs reduce the risk of sudden cardiac death (SCD) in patients
with left ventricular dysfunction, and 3–5% of HF patients with pri-
mary prophylactic ICDs receive shocks with ensuing psychological
distress.47 In a post-hoc analysis of the SCD-Heart Failure Trial, an
MLmodel used heart rate variability data to predict ventricular tachy-
cardia (VT) with good discrimination, creating a 10-second and 5-mi-
nute warning system.48 Such a warning system could potentially avert
injury by giving patients the opportunity to pull over to park if driving
or to find a place to sit or recline if walking. With more advance no-
tice, it could potentially also allow for medical optimization to avert
VT or change anti-tachycardia pacing settings to minimize ICD
shocks.

The possible applications of ML in selecting patients for med-
ical and device therapies and optimizing care require prospective
testing in a randomized controlled trial (RCT) prior to clinical
uptake.

ML and clinical trial design
Clinical trials that test cardiovascular interventions are limited by
sub-optimal patient selection, under-enrolment of certain demo-
graphic groups, non-adherence49 to the intervention, and study
withdrawals, but ML can address some of these. A significant barrier
to trial success is identifying a study population that has high enough
event rates to potentially demonstrate treatment effect. Risk en-
richment strategies are commonly used to include higher risk pa-
tients,50 but this is limited by the human selection of inclusion
criteria. ML can be used to identify patient phenotypes most likely
to respond to a given treatment based on prior clinical trials as well
as to identify predictors of clinical endpoints of interest. Once the
optimal profile has been described for inclusion, the next challenge
is in identifying suitable patients. This is difficult for both patients
and clinicians who may not be aware of available clinical trials, or
if the inclusion and exclusion criteria, which may be numerous,
have been met. DL, a form of ML, can be used to connect eligible
patients to ongoing trials through the use of natural language

processing (NLP). NLP is a powerful tool for automated text inter-
pretation that could be used to analyze clinical trial databases and
EMRs to identify eligible patients based on phenotypes and to con-
nect them to the right trials.51

The average proportion of patients who drop out of clinical trials
is up to 30%.52 Identifying which patients are at risk of non-adherence
or dropping out of a trial is another potential application of ML, es-
pecially in an era of wearable and mobile devices. In one study, a
smartphone-based platform was used to record patients consuming
their medication while DL for image recognition flagged non-
adherencen.53 The ML algorithm was then able to predict future
non-adherence, which could be used to screen participants in a trial
run-in phase. Similar approaches can be used to predict and mitigate
trial drop-outs and losses to follow-up.
Additionally, ML may be useful in clinical trial design, particular-

ly in adaptive trials where trial procedures such as treatment al-
location can be modified after trial initiation, allowing for trials to
be conducted with fewer patients and resources.54 Another
common application of adaptive design is in dose-finding, such
that the dose can be modified over the trial duration as informa-
tion becomes available on the toxicity of each dose.55 The trade-
off between the changes required to find the optimal dose and
treating as many patients with the optimal dose55 in a single trial
can be managed by ML methods such as the multi-armed bandit
model.55

Limitations of ML and areas for
improvement
Despite the great potential of AI applications in medicine, there are
several barriers to their uptake in HF management (Figure 2). Recent
guidelines such as Consolidated Standards of Reporting Trials -
Artificial Intelligence (CONSORT-AI), Standard Protocol Items:
Recommendations for Interventional Trials - Artificial
Intelligence (SPIRIT-AI), and Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis - Machine
Learning (TRIPOD-ML) offer recommendations for AI model devel-
opers with a view to enhancing adaptability, scalability, and interpret-
ability.56 Robustness and generalization error plague all insights or
predictions of computational models but, when deployed in safety-
critical settings, the lack of confidence intervals on a model’s output
can be particularly problematic; research into generating accurate
confidence intervals for prediction is ongoing.49

The opaque logic and lack of explainability behind why a MLmodel
outputs a particular prediction is a persistent limitation in the uptake
of ML algorithms at the point of care; if clinicians do not understand
the process that resulted in a recommendation, then they are more
likely to ignore it. Owing to the large number of variables in the da-
tasets in which ML is employed, algorithms may incorporate variables
and interaction terms that are statistically significant but not clinically
relevant. A recent example of these limitations arose during the
COVID-19 pandemic; most ML models to predict pneumonia or
COVID-19 in chest x-rays (CXR) relied on meaningless features
within the CXR, suggesting that these models would fail when
used in contexts different than that of training (e.g. in a different hos-
pital or location).50

318 T. Averbuch et al.



The performance of an ML algorithm is only as reliable as the
data used to derive it, and errorneous or missing training data
can degrade model performance over time.57 This propagation of
errors is particularly problematic when ML algorithms are dynamic
and rely on continuous data inputs such as EHRs. Data used to de-
velop ML algorithms must be cleaned and validated for reliable pre-
dictions, with detection of out-of-range values and identification of
skew.57 This process is computationally demanding and challenging
to automate, but essential for ML to provide clinicians high-quality,
accurate predictions or classifications. Missing data can also ad-
versely affect model performance; however, ML algorithms and
techniques can be used to impute missing data, and preserve algo-
rithm performance.58

Clinical AI applications must adequately address dataset shift,
a phenomenon of degrading performance when the training
data for a model differs from the data used to provide clinical
advice.59 This can occur through covariate shift, where the
distribution of covariates differs between training and test
datasets; prior probability shift, where the distribution of out-
comes differs between datasets; and concept drift, where the

relationship between the covariates and the outcome differs
over time. While the degradation of generalizability due to
dataset shift can be mitigated through appropriate sample
selection, feature selection, and re-weighting, it remains an im-
portant limitation to the performance of ML models in valid-
ation cohorts.
One of the largest barriers to uptake of ML algorithms is the

lack of assessment of their clinical impact in prospective studies
such that the benefits of ML approaches remain theoretical.
Although there are validated models for the early diagnosis of
HF,22 current studies focus on the performance of each model
and there are no studies of the economic or health systems ben-
efits of population-level screening for HF using ML algorithms.
Similarly, the effect of predictive models in guiding pharmacother-
apy and device interventions has not been evaluated in rando-
mized controlled trials.32,60 As a result, it is not known whether
ML-driven risk stratification and patient selection for interventions
leads to improved clinical and patient-reported outcomes, al-
though this is a limitation of both traditional statistical and ML
approaches.

Figure 2 Limitations of machine learning models. Machine learning models face several limitations including lack of external validation, limited
generalizability, opaque decision-making, logistical challenges in implementation due to reliance on digital infrastructure, error propagation between
iterations, and dataset shift. The effectiveness of machine learning models in improving outcomes at the point of care needs to be tested prospect-
ively in randomized controlled trials.
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Logistic difficulties are important barriers to the use of ML in HF,

as most healthcare data are not readily available in a form suitable for
ML applications.61 Programmes are needed to organize and aggre-
gate the data from EHRs to allow for application of ML algorithms
at the point of care.61

Conclusion
The applications of ML in HF are expanding. ML algorithms can be
applied in HF diagnosis, classification, and prognosis (Box 2). The po-
tential of ML to select patients for medical and device therapies
needs to be harnessed through prospective testing and validation
in clinical studies. As ML tools become more widely available, vali-
dated, and implemented in clinical practice, these novel algorithms
will positively influence HF care and outcomes.
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