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The recycling of particulate organic matter (POM) by microbes is a
key part of the global carbon cycle. This process is mediated by the
extracellular hydrolysis of polysaccharides, which can trigger social
behaviors in bacteria resulting from the production of public goods.
Despite the potential importance of public good-mediated interac-
tions, their relevance in the environment remains unclear. In this
study, we developed a computational and experimental model
system to address this challenge and studied how the POM
depolymerization rate and its uptake efficiency (2 main ecosystem
function parameters) depended on social interactions and spatial
self-organization on particle surfaces. We found an emergent trade-
off between rate and efficiency resulting from the competition
between oligosaccharide diffusion and cellular uptake, with low
rate and high efficiency being achieved through cell-to-cell co-
operation between degraders. Bacteria cooperated by aggregating
in cell clusters of ∼10 to 20 μm, in which cells were able to share
public goods. This phenomenon, which was independent of any
explicit group-level regulation, led to the emergence of critical cell
concentrations below which degradation did not occur, despite all
resources being available in excess. In contrast, when particles were
labile and turnover rates were high, aggregation promoted compe-
tition and decreased the efficiency of carbon use. Our study shows
how social interactions and cell aggregation determine the rate and
efficiency of particulate carbon turnover in environmentally relevant
scenarios.
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The microbial breakdown of complex polysaccharides is a key
ecosystem process that enables the recycling of carbon from

plant and animal detritus into global biogeochemical cycles.
Polysaccharide breakdown by heterotrophic microbes is a relevant
process in all ecosystems, from animal guts (1–3) to soils (4, 5) and
oceans (6–8), allowing the deconstruction of complex forms of
organic matter. In aquatic environments, many of these polysac-
charides are packed inside particles ∼10 to 1,000 μm in diameter,
and are accessible only to microbes that interact with the particle
surface and secrete hydrolytic enzymes (9, 10). Particulate organic
matter (POM) provides a scaffold for cells to attach to and grow in
close proximity, increasing the opportunity for microbial interac-
tions to take place (11). A particularly relevant type of interaction
in this context is cell–cell cooperation, in which cells mutually
benefit from being close to each other by increasing the availability
of public goods such as extracellular hydrolysis products (12–14).
Although numerous studies have demonstrated that this type of
interaction can occur both in the laboratory and in nature, we lack a
quantitative understanding of the conditions in which cooperation
takes place in an environment such as the ocean, and how it can
affect bacterially mediated functions such as the turnover of POM.
In this article, we ask how physiological and environmental pa-
rameters create the conditions for cell–cell cooperation to take
place during the hydrolysis of polysaccharide particles, and we
quantify the effect of this social behavior on the turnover of POM.

The extent to which social interactions mediated by public
goods change the functioning of polysaccharide-degrading mi-
crobial populations should be highly dependent on how public
goods diffuse (15, 16). In a 3D aqueous environment such as the
ocean, if cells are too far apart, only a minuscule fraction of the
public goods are recovered by neighbors, while the rest is lost to
the environment. In contrast, if cells are sufficiently proximal to
each other and the resource is limiting, growth kinetics can be
cooperative, meaning that the per capita growth rate is positively
dependent on the density of degrader cells (14, 17). This logic
suggests that cooperation could be accompanied by the emer-
gence of spatial patterns, such as cell patches (13). If the co-
operative effects in these patches are strong, critical population
density thresholds might emerge below which degradation can-
not support population growth (12, 13, 17, 18). Less clear is the
contribution of individual cell behaviors, such as surface attach-
ment, chemotaxis, and biofilm formation, on the ability of cells to
find those critical densities by aggregating into cell patches. To
begin to understand the role of social interactions in natural sys-
tems, we need to take into account the physical constraints of the
microenvironment and how populations interact with these con-
straints through their behaviors.
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To quantify the potential contribution of bacterial social in-
teractions and spatial behavior on relevant ecosystem processes,
we focused on 2 main parameters: the speed at which polymers
are hydrolyzed and converted to soluble oligosaccharides, that is,
the turnover rate (19, 20), and the uptake efficiency, which is the
fraction of the dissolved oligosaccharide that can be taken up by
cells and converted into biomass. To study the conditions that
favor cooperative interactions, as well as their impact on these
two functional parameters, we developed a computational and
experimental model of the colonization of insoluble particulate
polysaccharides by marine heterotrophic bacteria. The individual-
based model (21, 22) simulates the functional traits of cells: che-
motactic movement (23), particle attachment and detachment
(24), the secretion and activity of enzymes (25), oligosaccharide
uptake, and growth (26). The experimental system validates
computational predictions in a chitin-degrading bacterial strain
isolated from the coastal ocean, and clarifies the role of physio-
logical parameters on social interactions. We leveraged the com-
putational model to identify the physical and physiological
parameters that favor the emergence of cooperative growth, and
we tested some of our predictions, using our experimental model
of chitin colonization. Our work demonstrates that cell–cell co-
operation is critical for the degradation of complex biomaterials,
implying that the degradation of recalcitrant polysaccharides can
be bacteria-limited. Moreover, cell-density thresholds that de-
termine the onset of cooperative growth depend strongly on
individual-cell behavior, and in particular those behaviors that
regulate the residence time of bacteria on particles.

Results
We modeled the dynamics of cell colonization, enzyme secretion,
and growth (Fig. 1A), using an individual-based model to describe
cells coupled to a reaction-diffusion framework to describe en-
zymes and oligosaccharides. In the model, bacterial cells that at-
tached to the surface of a polysaccharide particle broadcast
enzymes that reacted with the surface of the particle, releasing
oligosaccharides to which nonattached cells could chemotax.
Cellular uptake of oligosaccharides followed Monod kinetics (26),
and cells were allowed to divide after a certain quota of oligo-
saccharide was consumed (22) (see Methods and SI Appendix for a
detailed description and SI Appendix, Table S1 for the parame-
ters). This individual-based approach allowed us to modulate traits
such as chemotaxis or particle-attachment rate, and to measure
their impact on the carbon uptake rate on a cell-by-cell basis.
A crucial parameter of our model was the particle lability, Kp,

which defined how many grams of oligosaccharide were released
per gram of enzyme acting on the polysaccharide surface per unit
of time. Kp was a compound parameter that resulted from the
product of the catalytic activity of the polysaccharide-degrading
enzyme, kcat, and the recalcitrance of the substrate. This pa-
rameter played a central role because it determined the maxi-
mum degradation rate and controlled the supply rate of carbon,
the sole limiting resource, to the bacteria. A survey of hydrolysis
rate values reported in the literature revealed that the particle
lability, Kp, can exhibit significant variation across natural envi-
ronments and microbial enzymes. Kp varied by more than 6 or-
ders of magnitude within glycosyl hydrolase families, a trend that
held true among different substrate types such as chitin, alginate,
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Fig. 1. POM uptake efficiency is regulated by an emergent rate-yield trade-off. (A) A schematic representation of individual-based modeling of microbial
dispersal and colonization on the particle is shown on the left. A conceptual representation of the relation between the rate (KE) of enzyme secretion by
bacterial cells, the rate (Kp) at which polysaccharide substrates (POM) are broken down to oligosaccharides (DOM) by enzymes, and the uptake of oligo-
saccharides by bacterial cells with half saturation (Ks) is shown at right. (B) The distribution range of particle lability (Kp) from natural polymeric carbohydrates
(chitin, alginate, starch). The data are for various bacterial species with their corresponding abiotic conditions (species name, substrates, and environmental
conditions are represented in SI Appendix, Table S2; data are from the Brenda database: https://www.brenda-enzymes.org/). The solid line indicates the mean
value of Kp. (C) POM uptake efficiency as a function of particle lability and initial population size. Dashed line indicates the no-growth zone. Microbial
population assembly on the particle with 3 initial cell densities of 1,000, 5,000, and 10,000 cells are shown. Green dots show individual cells on the particle.
Simulations are performed for a range of initial cell densities, and 1% detachment is allowed. Half saturation, Ks is assumed 0.1 mg/L.
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and starch (Fig. 1B). This led us to ask how variation in particle
lability, Kp, affected population growth dynamics and the re-
lationship between the rate of POM depolymerization and the
uptake efficiency of released oligosaccharides.
Our results revealed that among particle-associated bacteria,

the rates of depolymerization (represented by particle lability)
were negatively dependent on POM uptake efficiency (Fig. 1C)
(27, 28). This emergent rate/efficiency trade-off was a conse-
quence of the diffusion of oligosaccharide in a 3D environment
where soluble products that were not taken up by cells in the
vicinity of the particle were lost. At high values of Kp, oligosac-
charides were produced in excess of Ks, the half-saturation
constant of the Monod growth function, and therefore cells
approached their maximum growth rate. However, high Kp also
led ∼99% of hydrolyzed oligosaccharide to be lost to diffusion
(∼1% recovery), which reduced the theoretical biomass yield of
the population and the POM uptake efficiency. For comparison,
if the system was closed, as in a laboratory reactor, POM uptake
efficiency could theoretically reach 100% because dissolved oli-
gosaccharides would accumulate (SI Appendix, Fig. S1).
Natural environments are rarely, if ever, closed systems. Using

parameters based on field measurements, our simulation supports
the idea that diffusive losses are likely to limit POM uptake effi-
ciency in the ocean (SI Appendix, Table S3). Even at the highest
particle colonization densities reported from field studies, the
maximum POM uptake efficiency should not exceed ∼7%
according to our simulations (SI Appendix, Table S3). This number
goes down to 2% if we take into account the fact that particles
sink, creating a convective flow that washes away soluble oligo-
saccharides (29–31) (see SI Appendix, Figs. S2–S5 for simulation
results with flow). Although the exact value of POM uptake effi-
ciency depends on biological parameters such as substrate affinity
(1/Ks; SI Appendix, Fig. S6), our data show that in open environ-
ments, uptake efficiency is extremely low, implying that most
POM is turned into dissolved organic matter (DOM), rather than
biomass. Moreover, depolymerization rate and uptake efficiency
are bound to be anticorrelated due to the limited capacity of cells
to take up diffusible oligosaccharides.
Surprisingly, we found that the high POM uptake efficiency

observed at low Kp (recalcitrant particles or low enzymatic ac-
tivity per cell) was mediated by the aggregation of cells into
microscale patches on the particle surface, a phenomenon that

was not hardcoded in the model but emerged from the interplay
among diffusion, cell behavior, and growth (Fig. 1C and SI Ap-
pendix, Fig. S7). Within these patches, cells grew cooperatively by
sharing oligosaccharides that would otherwise be lost to diffu-
sion, which increased the per capita growth rate and POM up-
take efficiency up to a density of 0.3 cells/μm2 (SI Appendix, Figs.
S8 and S9). To characterize the spatial-density dependence, we
performed simulations to quantify particle depolymerization and
mean growth rates as a function of the intercell distance (Fig. 2A).
Our analysis showed that dense spacing (a nearest neighbor dis-
tance of 8 μm among 1-μm cells) promoted cooperation by sharing
of oligosaccharides, but only when particles were recalcitrant and
the oligosaccharide production rate was slow (Kp < 100 h−1; Fig.
2B). More precisely, when the amount of oligosaccharide available
to cells fell near Ks, the half-saturation of the Monod growth curve,
an increase in the local concentration of oligosaccharide because
of cell–cell aggregation, increased the per capita growth rate. In
contrast, at high Kp (∼2,000 h−1), oligosaccharides quickly accu-
mulated, and the uptake rate was decoupled from the spatial or-
ganization of the cells on the particle, as there were enough
resources for cells to grow at their maximal rate ([C]>>Ks; Fig.
2B). Under these conditions, there was no benefit to aggregation,
and even cells spaced more than 20 cell lengths apart reached
their maximum oligosaccharide uptake rate (Fig. 2B).
In our model, cell detachment and reattachment from the

particle surface was a critical behavior that enabled the forma-
tion of patches and the degradation of recalcitrant particles. On
recalcitrant particles (Kp = 10–100 h−1), 1% detachment signif-
icantly increased the particle degradation rate and its uptake
efficiency (Fig. 3A) and also increased the mean carbon uptake
rate by a factor of ∼5 (SI Appendix, Fig. S9A) compared with a
nondetaching population. Detachment allowed populations to
survive on recalcitrant particles that might otherwise not sustain
growth (SI Appendix, Fig. S9B). Without chemotaxis, random
motility alone still allowed detaching populations to grow on
more recalcitrant particles than nondetaching populations, but at
∼1/6 the maximum POM uptake efficiency (Fig. 3A) and ∼1/10
the total biomass accumulation (SI Appendix, Fig. S9B). With
chemotactic motility, most cells had access to the same con-
centration of hydrolysis products emanating from cell patches;
the distribution of carbon uptake rates for individual cells dis-
played a tight peak near the maximum uptake rate (μ∼0.8μmax;
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Fig. 2. Patch formation on particle surface enhances the rates of polysaccharide depolymerization and breakdown product uptake. (A) The cell spatial
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SI Appendix, Fig. S9C). Our model thus suggests that detachment
and chemotaxis enhance POM uptake efficiency under nutrient-
limited conditions ([C]∼ Ks) by enabling the formation of
patches where cells cooperate by sharing public goods.
This analysis implies that the onset of cooperation is de-

pendent on the physiology of individual bacterial strains. Strains
that had either a high affinity for oligosaccharides (low Ks) or a
high hydrolytic activity (high Kp) saturated their growth at low
cell densities (Fig. 3 B and C), circumventing the need to co-
operate through patch formation (Fig. 3D). In contrast, strains
with a low uptake affinity for the public good or strains with a
low per cell rate of hydrolysis (low Kp), such as those that tether
enzymes to their membrane, benefitted more from cooperation
with other cells and formed patches in the simulation (Fig. 3D).
Therefore, cell–cell cooperation emerged during POM break-
down when the polymers were hard to degrade, either because of
low hydrolytic power or poor uptake affinity. Traits such as
motility, surface detachment frequency, oligosaccharide affinity,
and enzyme localization determined the exact cell density thresh-
old required for particle degradation in a given environment.

To experimentally validate our prediction that cell–cell co-
operation drives the degradation of hard-to-degrade polysaccha-
rides, we turned our attention to Psychromonas sp., psych6C06, a
marine isolate that had previously been enriched from coastal
seawater on model chitin particles (10). The strain readily de-
grades chitin hydrogel with a half-life of ∼30 h (20) and encodes at
least 8 predicted chitinases, or glycosyl hydrolase family 18 and
19 homologs, but no other families of glycosyl hydrolases, leading
us to conclude that the strain is representative of a chitin spe-
cialist. We reasoned that if cooperative growth kinetics played a
role in this system, we would observe a strong dependency be-
tween the initial number of cells that colonized the particle and
the growth of the population. In particular, we would expect a
critical cell density below which the population was unable to form
the patches required to degrade particles, revealing that the deg-
radation process was bacteria-limited.
In agreement with this prediction, psych6C06 displayed a strong

density dependence when growing on hydrogel chitin particles in
the form of a critical cell density below which the particles were
not persistently colonized (Fig. 4A). At concentrations just below
the threshold critical cell density, we observed the formation of
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fewer and smaller patches than at higher densities (Fig. 4B), and
by 8 h, the initial population began to die off (Fig. 4A and SI
Appendix, Fig. S10A), meaning that the population was not able to

sustain the cell numbers needed to colonize particles or to degrade
them (Fig. 4 C and D). At the colonization threshold, cells were
able to maintain their initial population size, but not to support
net growth (Fig. 4A). The colonization density of the particles at
the critical threshold matched the population size predicted by
measured rates of psych6C06 surface attachment and detachment
(Fig. 4A and SI Appendix, Fig. S10 B and C), suggesting that a
viable population must be maintained off the particle, in addition
to on its surface. To test whether low particle lability limited the
persistence of the population, we artificially increased Kp by
adding exogenous chitinase to supply 776 μg/h GlcNAc, equivalent
to the amount of chitinase produced by 7 × 104 cells per particle
psych6C06. Consistent with individual-based model results (Fig.
3D), the addition of the exogenous chitinase activity lowered the
cell density-dependent threshold for colonization of the chitin
particles (Fig. 4A), allowing the population to persist and grow on
the particle (Fig. 4C). Taken together, our results show that oli-
gosaccharide limitation leads to the emergence of cooperative
growth behaviors.
Finally, we tested whether the population-density-dependent

threshold for cell–cell cooperation can be quantitatively predicted
from cell physiology. We calculated the particle attachment and
detachment rates by quantifying cell density on particles (Fig. 5A
and SI Appendix, Fig. S10 B and C). Our measurements revealed
rapid attachment and detachment rates (attachment rate, 0.03 h−1;
detachment rate, 0.26 h−1; or equivalently a 3.8-h residence time).
These rates were similar to those previously observed for natural
marine bacterioplankton isolates (24) and were dependent on the
density of cells off and on the particle, suggesting that psych6C06
populations undergo frequent exchange and rearrangement, sim-
ilar to what we observed in our simulations (Fig. 3A).WemeasuredKp

for psych6C06, using the fluorescent substrate 4-methylumbelliferyl-
N-acetyl-β-D-glucosaminide, which detects the release of GlcNAc
from chitin. We noted that very little chitinase activity was de-
tected in the culture supernatant of psych6C06, but robust activity
was associated with the cells themselves (Fig. 5A and SI Appendix,
Fig. S10D), indicating that enzymes were membrane bound. Using
methylumbelliferyl-conjugated substrates with different cleavage
specificities, we determined that most of the psych6C06 chitinase
activity was derived from exochitinase, which releases GlcNAc as a
product (Fig. 5A and SI Appendix, Fig. S10E). Thus, we assessed
the GlcNAc to biomass conversion factor (the biomass yield) of
this strain by direct measurement of sugar consumption and cell
density in exponentially growing cultures (Fig. 5A and SI Appendix,
Fig. S10F). We measured the growth rate of psych6C06 on a range
of GlcNAc concentrations, and used these substrate-limited
growth measurements to derive μmax and Ks from a fit of the
Monod growth equation (26) (Fig. 5A and SI Appendix, Fig.
S10G). We parameterized a simplified version of the model
with these measurements to describe population-level growth
dynamics on a surface where cells can attach, detach, and grow as a
function of the hydrolyzed product concentration (seeMethods for
a full description of the population-level model). This model as-
sumes a rate of diffusive loss of oligosaccharides predicted from
the individual-based simulations, and also that all cells on the
surface experience the same environment (no local gradients).
Using this simplified model, with no free parameters, we studied
how the initial cell density determines the population-average
colonization rate and the growth of bacteria on the particle
surface. We found a remarkable quantitative agreement be-
tween this population-level model and our experiments, with
critical thresholds predicted between initial densities of 2.5 × 104

and 5 × 104 cells/particle (Fig. 5B). Our analysis thus shows that
cell-level physiology and behavior together with diffusion regu-
late the onset of social degradation of POM.
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initial density or grow. Below this threshold (gray shaded zone), populations
are unable to maintain their initial density, and they go extinct. Adding ex-
ogenous chitinase (776 GlcNAc μg per hour, filled circles) allows populations
below the critical density to maintain their size and grow. In comparison, the Kp

of psych6C06 chitinase is 13.5 g GlcNAc/g cells/h, meaning that the exogenous
chitinase supplies the equivalent of 7 × 104 cells/particle. (B) Distribution of
psych6C06 cells in patches after 4 h. Dark purple line indicates an initial pop-
ulation of 4 × 104 and light purple line indicates an initial population of 2 × 104.
(C) Representative images showing density-dependent colonization dynamics
for initial populations of cells below (2 × 104 cells/particle) and above (4 × 104

cells/particle) the colonization threshold at times during colonization. +enz 24 h
indicates the addition of exogenous chitinase, as earlier. (Scale bars, 20 μm.) (D)
Particle colonization dynamics for populations of psych6C06 over the course of
24 h. Arrow indicates 8-h time, where populations below the critical threshold
begin to decrease in density on chitin particles. Data points are combined from
3 experimental replicates. Initial population densities (cells/particle) are noted
by symbols: diamonds, 8 × 104; circles, 4 × 104; squares, 2 × 104; diamonds, 1 ×
104. Error bars are SEM from at least 6 individual measurements of colonization
density on chitin particles from 3 independent experiments (at least 18 mea-
surements). Lines represent the mean trajectory for each cell density.

Ebrahimi et al. PNAS | November 12, 2019 | vol. 116 | no. 46 | 23313

M
IC
RO

BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908512116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908512116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908512116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908512116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908512116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908512116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908512116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908512116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908512116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908512116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908512116/-/DCSupplemental


Discussion
Here we have shown that cell–cell cooperation, an emergent
social behavior of populations, changes the rate and efficiency
with which POM is broken down in aquatic environments. Co-
operation emerged in populations as a result of 3 key physiological
parameters: the affinity of cells for hydrolyzed oligosaccharide, the
rate of polysaccharide hydrolysis, and the attachment and de-
tachment of cells on/off the particle surface. These 3 parameters
defined how public goods were shared among individuals in the
population. Low hydrolysis rates favored cooperation because
cell–cell clustering increased the uptake efficiency of soluble oli-
gosaccharides. In contrast, when hydrolysis rates were high or
when aggregates exceeded a certain size threshold, cell–cell clus-
tering decreased the per capita access to resources, and instead
promoted competition among cells. Remarkably, we observed that
active rearrangement of cells caused the dissolution of cell clusters
and mitigated competition, but decreased the per capita uptake
efficiency. This observation also highlights the fact that in systems
with potential for spatial self-organization, that is, most systems
outside the laboratory, the balance between cooperation and
competition can be delicate and is modulated by the intersection
of physical processes with microbial physiology. Although our
simulations reveal that physiology and diffusion alone are suffi-
cient to explain the onset of cooperation, many bacteria actively
regulate enzyme secretion and other group behaviors at the level
of transcription in a density-dependent manner (32–35), poten-
tially amplifying the effects described here.
Our study highlights 2 important consequences of bacteria–

particle interactions in the ocean: most of the POM is lost to
diffusion after hydrolysis, effectively turning into DOM, and
density dependencies can control the degradation of recalcitrant
polysaccharides. In simulations of an open, 3D environment, a
faster depolymerization rate for labile particles meant that cells
experienced higher local concentrations of oligosaccharide. How-
ever, a larger fraction of this oligosaccharide was lost to diffusion,
thus reducing the final biomass yield of the population. Uptake
efficiency was maximized on hard-to-degrade recalcitrant particles,

where cell–cell cooperation was required to secure access to
enough resources to maintain the population size and grow. As a
consequence, we observed the emergence of cell density thresh-
olds associated with the onset of cooperation, which drastically
changed the hydrolysis rate of particles. This result contrasts with
the assumption that the breakdown of POM in the environment is
primarily controlled by abiotic factors, and that bacteria degrade it
at fixed per capita rates (36–40). Instead, we showed experimen-
tally that degradation in an environment such as the ocean can
be bacteria-limited. Compared with the complexity of POM
breakdown by polysaccharide-degrading microbes in the ocean,
the model developed in this study is vastly simplified. How-
ever, such an approach presents an opportunity to address the
fundamental question of how cellular and population-level mi-
crobial processes affect the turnover of organic matter in the
ocean (41), and in particular, at what spatial and temporal scales
variation impacts the higher-order function of communities or
ecosystems (42).

Methods
Individual-Based Model of Cell Behavior and Physiology. The mathematical
model represents metabolism, surface interaction, and flagellar motility of
individual cells in 3D space in the presence of chemical gradients. We in-
troduce an individual-based model (43, 44) to quantify single-cell interac-
tions with organic particles by abstracting the structural heterogeneities of
natural POM into a mathematically simpler spherical shape, while preserving
some key physical and chemical processes associated with POM degradation.
A spherical organic particle of 200 μm radius is simulated such that it remains
static in the middle of an aqueous volume (∼1 mm3). Although natural or-
ganic matter aggregates may show various shapes and chemical compositions,
we modeled particles as perfect spheres made of a single type of insoluble
linear polysaccharides such as chitin, alginate, or cellulose. This computational
model is inspired by experimental model systems used to study community
assembly on marine POM (10, 20). The particle’s size and its surface chemistry
are assumed to be unchanged during particle degradation: only the particle
density changes over time to satisfy mass conservation. This assumption is
consistent with experimental observations that have shown no significant
change in organic particle size during microbial degradation until the final
stages of collapse (20). We simulated a scenario in which an isogenic pop-
ulation of cells is allowed to colonize and degrade a particle with a defined
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volume. The simulations were started with zero oligosaccharides, and the
particle was considered to be the sole carbon source.

To take into account the fact that cells might regulate their enzymatic
activity, the model limits enzyme secretion to 2 scenarios: when cells adhere
to the particle surface or when the rate of oligosaccharide supply exceeds the
maintenance threshold. Importantly, our simulations ensure mass conser-
vation between total carbon uptake and growth and loss of oligosaccharides.
Individual cells are initialized as a uniform randomdistribution in the aqueous
volume, and are allowed to disperse following gradients of chemoattractant
(in this case, oligosaccharide). The cells can consume the oligosaccharide,
grow, and divide to new daughter cells and experience a range of local
conditions. A full derivation of the mathematical expressions and steps used
for modeling of microbial growth, dispersal, and enzyme secretion can be
found in the SI Appendix.

Experimental Methods. Strain psych6C06 was previously isolated from an
enrichment of nearshore coastal seawater (Nahant, MA) for surface-associated
chitin degrading microbial communities (10, 20). The strain was maintained as
colonies on Marine Broth 2216 (Difco 279110) with 1.5% agar (BD 214010). To
establish exponential growth, we modified a culturing protocol previously
developed for Escherichia coli K12 (45) and grew cells on a defined seawater
medium with the N-acetyl-D-glucosamine (GlcNAc) at the concentrations in-
dicated. Chitin hydrogel particles (NEB) were washed and diluted to 200 to
250 particles per milliliter with size range from 40 to 100 μm in diameter. The
particles were rotated end over end at 21 °C to 25 °C. The density of in-
oculated cells was set to be at an absorbance at 600 nm, (A600) of 0.01, diluted
from 20 mM GlcNAc minimal medium cultures prepared as described earlier.
To visualize particles and their surface-associated bacteria, 200-μL subsamples
were stained with the DNA-intercalating dye SYTO9 (Thermo Fisher, S34854)
at a 1:285 dilution of the stock in 96-well plates with optically clear plastic
bottoms (VWR 10062-900).

Cell density measurements A600 of exponentially growing cells were used
to measure the maximum cellular growth rate, and plating was used to

measure growth under GlcNAc limitation, from which we derived the half-
saturation constant. GlcNAc depletion was measured during growth, using
the dintrosalicylic acid reagent method (46), and the depletion rate was used
to calculate the biomass yield (SI Appendix).

Chitinase activity was quantified using methylumbelliferyl-conjugated
substrates N,N′-diacetyl-β-D-chitobioside, N-acetyl-β-D-glucosaminide, and
β-D-N,N′,N′′-triacetylchitotriose (Sigma CS1030). Microscopy was performed
on microconfocal high-content imaging system (ImageXpress Micro Confo-
cal, Molecular Devices), using the 60-μm pinhole spinning disk mode. Fluo-
rescent signal was visualized with a LED light cube (Lumencore Spectra X
light engine), and bandpass filters (ex 482/35 nm em 538/40 nm dichroic
506 nm), with a 40× objective (Nikon Ph 2 S Plan Fluor ELWD ADM 0.60 NA cc
0 to 2 mm, correction collar set to 1.1), and a sCMOS detector (Andor Zyla).
Image analysis was performed in MATLAB (release 2018a). Briefly, image
stacks were split in half and a maximum intensity projection was obtained
for each half. The low level of fluorescent signal associated with free dye in
the hydrogel particles was used to define an intensity threshold suitable to
create a binary mask for the particle projections. A mask of the cells on the
particles was then defined using their brighter fluorescence intensity. We
used this segmentation to quantify the total surface area occupied by the
cells on the particle and to quantify the total surface area occupied by
patches. We define patches as an area greater than that equivalent to 3 cells
(>10 μm2), where cells contact other cells or were in close proximity (<10 μm
from nearest neighbor). This definition is analogous to the spacing con-
straints defined in the individual-based simulation.
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