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Review Article

IntroductIon

Sepsis is a systemic inflammatory response to infection, 
with high morbidity and mortality in a clinical setup.[1] 
Patients with sepsis are hyper‑stressed and often require 
drugs for sedation and analgesia to reduce anxiety and 
stress. Severe sepsis is also frequently associated with 
acute lung injury, which necessitates mechanical ventilation 
support.[2,3] Hence, a sedative agent is required in patients 
with sepsis.

Dexmedetomidine (DEX), a selective agonist of 
α2‑adrenergic receptor, is widely used in intensive care 
units due to its sedative and analgesic effects. Based on 
available literature search, The Canadian Agency for Drugs 
and Technologies in Health stated that DEX was associated 
with a shorter period of mechanical ventilation and lower 
intensive care unit stay when compared with traditional 
sedative agents such as midazolam and propofol.[4] The 
latest meta‑analysis done in 2014 covering 1624 participants 
found that DEX also could reduce breathing support time 
by approximately one‑fifth and consequently the length of 

stay time in intensive care units by one‑seventh in patients 
requiring long‑term sedation (more than 24 h) under 
mechanical ventilation.[5] This can be explained by the 
anti‑inflammatory, organ‑protective, and anti‑sympathetic 
properties of DEX.[5,6]

In septic animals, DEX was effective in suppressing the 
inflammatory response and thus decreasing mortality 
rates.[7‑11] Similarly, in a clinical setup, DEX infusion 
decreased inflammatory cytokine production significantly 
compared with midazolam[12] and propofol[13] in septic 
patients. Considering these anti‑inflammatory effects, DEX 
can improve 28‑day survival rates compared with lorazepam 
in patients with sepsis.[6]

Sepsis can induce severe diaphragm dysfunction[14,15] 
and exacerbate respiratory weakness.[16] A recent study 
indicates that during sepsis, diaphragm is much more 
affected as compared with limb muscle.[17] Sepsis involves 
a network of over‑expressed inflammatory cytokines 
which have been proved to be associated with diaphragm 
dysfunction.[18,19] Due to its significant anti‑inflammatory 
and organ‑protective properties, we think DEX may 
produce extra protective effects on sepsis‑induced 
diaphragm injury when used in septic patients for sedation 
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and analgesia. In this review, we summarize the potential 
molecular mechanisms.

MoleculAr MechAnIsMs of sePsIs‑Induced 
dIAPhrAgM Injury

In animals, sepsis can induce an increase in plasma 
inflammatory cytokines such as interleukin‑6 (IL‑6) and 
tumor necrosis factor‑alpha (TNF‑α).[20,21] Not only in 
plasma, sepsis also can increase inflammatory cytokines 
in muscles,[22,23] and muscle cells apparently constitute an 
important source of cytokines during sepsis.[23] Similarly, 
in human volunteers, skeletal muscle is capable of 
producing essential inflammatory mediators after endotoxin 
stimulation.[24] Hence, sepsis can induce comprehensive 
inflammatory response.

In dogs, TNF‑α infusion is associated with a significant 
decline in isotonic and quasi‑isometric diaphragm 
contraction.[25] In rats, after endotoxin injection, gene 
expression and production of TNF‑α are elevated 
in the diaphragm tissue, and anti‑TNF‑α antibody 
preinjection can prevent the deterioration of the diaphragm 
muscle contractile properties.[18] Hence, TNF‑α is an 
important mediator of sepsis‑related impairment in 
diaphragm contractility. Possible mechanisms include: 
Activating caspase‑8 and ‑3 pathway,[26] increasing 
oxidant activity in muscle fibers,[27,28] and activating 
nuclear factor‑kappaB (NF‑κB) signaling pathways.[29] 
Moreover, plasma from patients with septic shock can 
induce in vitro loss of myosin in skeletal myotubes, which 
is significantly associated with elevated plasma levels 
of IL‑6 in septic shock patients.[19] With elevated serum 
IL‑6 concentration, the muscle of IL‑6 transgenic mice 
suffers from atrophy, which can be completely blocked by 
treatment with the anti‑mouse IL‑6 receptor antibody.[30] 
Lipopolysaccharide (LPS) induced sarcolemmal damage 
in diaphragm myofibers is accompanied by a significant 
increase in IL‑1beta expression in the tissues.[31] IL‑1alpha 
and ‑1beta can reduce myofibrillar protein in differentiated 
myotubes,[32] and IL‑1 receptor antagonist can maintain 
the synthesis of both myofibrillar and sarcoplasmic 
proteins during sepsis.[33] One possible mechanism 
of IL‑6 and ‑1 in inducing diaphragmatic contractile 
dysfunction is to stimulate NF‑κB signaling and increase 
expression of atrogin1/muscle atrophy F‑box and muscle 
RING‑finger protein‑1.[19,32] Hence, sepsis induces increase 
in inflammatory cytokines such as TNF‑α, IL‑6 and ‑1, 
which can lead to diaphragmatic force loss and atrophy.

Besides, sepsis can enhance oxidative stress in the skeletal 
muscle,[34,35] with diaphragm being no exception.[36] 
Sepsis‑induced oxidative stress in the diaphragm can 
induce protein carbonyl formation,[37] impair mitochondrial 
respiratory functioning,[38,39] thus leading to diaphragmatic 
contractile dysfunction. Sepsis also can increase the 
activity of inducible nitric oxide synthase (iNOS),[40,41] 
which increases the amount of NO in diaphragm. NO 

can inhibit antioxidant enzyme activity[42] and increase 
oxidative stress.[43] NO also can produce excessive 
peroxynitrite and stimulate protein nitration formation in 
the mitochondrial matrix,[44,45] resulting into diaphragmatic 
mitochondrial dysfunction and contractile failure. Hence, 
sepsis induces excessive oxidative stress and superfluous 
production of NO which leads to diaphragmatic contractile 
dysfunction.

MoleculAr MechAnIsMs of dexMedetoMIdIne In 
decreAsIng sePsIs‑Induced dIAPhrAgM Injury

Dexmedetomidine can inhibit the increase of serum levels 
of TNF‑α, IL‑6 in endotoxemic rats[10,11] and in cecal 
ligation and puncture (CLP)‑induced septic rats[7] and 
mice.[8] DEX also can attenuate the LPS‑induced increase of 
inflammatory factor IL‑1beta[9] and ‑8.[46] This suppressing 
effect of DEX on inflammatory mediators during sepsis 
is proved to be dose‑dependent,[11] and the clinical using 
dose of DEX is proved to have the suppressing effect of 
LPS‑induced inflammatory mediator production.[46] In vitro, 
DEX takes effects via α2‑adrenergic receptors.[46] In vivo, 
it functions through its sympatholytic effect that leads to 
the activation of the vagus nerve, which then stimulates 
cholinergic anti‑inflammatory pathway.[9] Hence, DEX 
may attenuate diaphragm atrophy and weakness in sepsis 
due to the inhibition of inflammatory cytokines by its 
anti‑inflammatory effects.

In septic rats, DEX can significantly suppress CLP‑induced 
NF‑κB activation in lung tissue.[7] Moreover, after LPS 
stimulation, DEX also has an inhibitory effect on NF‑κB 
activation in human whole blood.[46] Furthermore, in 
LPS‑activated macrophages, DEX inhibits the translocation 
of NF‑κB from the cytoplasm to the nucleus at clinically 
relevant dosages via α2‑adrenergic receptors.[47] As 
inflammatory mediators can induce diaphragm atrophy 
by activating NF‑κB signaling pathways,[19,29,32] DEX 
may produce protective effects in diaphragm muscle by 
inhibiting them.

In primary diaphragm muscle cell cultures, pharmacologic 
blockade of the NF‑κB pathway and dominant‑negative 
molecular inhibition of IκB kinase‑beta strongly suppresses 
LPS‑induced pro‑inflammatory gene expression. [48] 
Moreover, in muscle‑specific IκB‑alpha super‑repressor 
mice subjected to endotoxemia, the increase of 
pro‑inflammatory cytokines in the diaphragm can be 
prevented.[49] These two experiments indicate that NF‑κB 
signaling within skeletal muscle fibers is a key pathway 
leading to diaphragmatic weakness during sepsis, most 
likely via effects on multiple inflammatory mediators.[48,49] 

As inflammatory mediators can activate NF‑κB signaling 
pathways,[19,29,32] inflammatory mediators and NF‑κB can 
stimulate each other reciprocally. DEX may be able to 
break this vicious cycle by both suppressing inflammatory 
mediators and NF‑κB signaling pathways.
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Caspase‑3 can break down actomyosin complexes, yielding 
proteins that are degraded by the ATP‑ubiquitin‑proteasome 
system. So in catabolic conditions, activation of caspase‑3 is 
an initial step triggering accelerated muscle proteolysis.[50] 
Endotoxin administration can elicit significant diaphragm 
caspase‑3 activation and caspase‑mediated diaphragmatic 
weakness.[51] DEX can inhibit caspase‑3 expression, 
attenuating isoflurane‑induced injury in developing 
brain[52] or ischemia/reperfusion injury in the retina.[53] 
Thus, by inhibiting the activation of caspase‑3, DEX may 
produce protective effects in diaphragm muscle during 
sepsis. In addition, both endotoxin and inflammatory 
cytokines can first activate p38[54] and Jun N‑terminal 
kinase (JNK)[55] pathway, then triggering caspase‑8 and ‑3 
pathway[26] to induce diaphragm weakness. Luckily, DEX 
pretreatment can inhibit isoflurane‑induced neuroapoptosis 
by inhibiting p38 and JNK pathways.[56] So by suppressing 
the upstream p38 and JNK pathways, DEX may further 
protect diaphragm muscle against sepsis‑induced 
proteolysis.

It is proved that both antioxidant and NOS inhibitor can 
ameliorate diaphragmatic dysfunction.[57,58] Moreover, 
in acid‑induced acute lung injury, preemptive use of 
DEX produces important protective effects on the liver 
against oxidative stress.[59] In pneumoperitoneum‑related 
ischemia‑reperfusion injury, DEX is proved to be effective 
in decreasing systematic[60] and local[61] oxidative stress. 
DEX can also markedly reduce the oxidative stress in 
skeletal muscle due to ischemia‑reperfusion injury and 
exhibit more potent antioxidant activity than vitamin E.[62] 
Furthermore, short‑term use of DEX can reduce iNOS in 
LPS‑induced acute lung injury compared to thiopental 
sodium.[63] DEX can attenuate LPS‑induced iNOS and 
NO accumulation in primary microglia[64,65] by inhibiting 

extracellular signal‑regulated kinase activation.[65] Hence, 
DEX may preserve muscular force in sepsis by inhibiting 
excessive oxidative stress and the superfluous production 
of NO.

In clinical practice, septic patients treated with DEX 
have shorter time on the ventilator as compared with 
those treated with lorazepam, a benzodiazepine and this 
beneficial effect of DEX is more pronounced in septic 
patients than in nonseptic patients.[6] This outcome 
may be partly the result of DEX‑induced reduction in 
pulmonary inflammatory mediators and lung tissue 
damage.[7] However, based on the molecular mechanisms 
discussed above, this outcome may be also the result of 
DEX‑induced extra protective effects on sepsis‑induced 
diaphragm injury.

In conclusion, when used in patients with sepsis for 
sedation and analgesia, DEX may produce protective 
effects on diaphragm against sepsis‑induced injury. The 
mechanisms include reducing inflammatory cytokines, 
inhibiting NF‑κB signaling pathways, suppressing the 
activation of caspase‑3, decreasing oxidative stress, and 
inhibiting iNOS [Figure 1]. As most of the mechanisms 
come from the studies of the protective effects of DEX 
on other organs in sepsis or other organ injury models, 
further direct evidence is still needed to confirm these 
beneficial effects.
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