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Abstract Various estimators of the autoregressive model exist. We compare their per-

formance in estimating the autocorrelation in short time series. In Study 1, under correct

model specification, we compare the frequentist r1 estimator, C-statistic, ordinary least

squares estimator (OLS) and maximum likelihood estimator (MLE), and a Bayesian

method, considering flat (Bf) and symmetrized reference (Bsr) priors. In a completely

crossed experimental design we vary lengths of time series (i.e., T = 10, 25, 40, 50 and 100)

and autocorrelation (from -0.90 to 0.90 with steps of 0.10). The results show a lowest bias

for the Bsr, and a lowest variability for r1. The power in different conditions is highest for

Bsr and OLS. For T = 10, the absolute performance of all measurements is poor, as

expected. In Study 2, we study robustness of the methods through misspecification by

generating the data according to an ARMA(1,1) model, but still analysing the data with an

AR(1) model. We use the two methods with the lowest bias for this study, i.e., Bsr and

MLE. The bias gets larger when the non-modelled moving average parameter becomes

larger. Both the variability and power show dependency on the non-modelled parameter.

The differences between the two estimation methods are negligible for all measurements.

Keywords Time series analysis � Autocorrelation � AR(1) � Bayesian MCMC �
Misspecification

1 Introduction

Time series analysis has been valuable for achieving insight into the nature of longitudinal

processes. Especially the autoregressive moving average (ARMA) model (Box and Jenkins

1976) has gained enormous popularity in various research areas. The autoregressive part
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models the serial dependence between consecutive measurements. The moving average

part models the serial dependence between consecutive error terms. The ARMA(p, q)

model is given by:

yt ¼ lþ
Xp

i¼1

/iyt�i þ
Xq

j¼1

hjet�j þ et; et �Nð0; r2eÞ; ð1Þ

with yt the score at time t ðt ¼ 1; 2; . . .; TÞ, l the population mean, /i the autocorrelation

for lag i ði ¼ 1; 2; . . .; pÞ, hj the moving average parameter at lag j ðj ¼ 1; 2; . . .; qÞ and et
the residual.

One of the simplest versions of the ARMA(p, q) is the AR(1) model:

yt ¼ lþ /ðyt�1 � lÞ þ et; et �Nð0; r2eÞ; ð2Þ

where, for simplicity, the subscript 1 is omitted from /. Several estimation methods have

been proposed to estimate the AR(1) model. These estimation methods include closed form

estimation methods, such as the r1 estimator (Yule 1927; Walker 1931; Box and Jenkins

1976), C-statistic (Young 1941) and Ordinary Least Squares (OLS) estimator, and iterative

estimation methods, such as frequentist Maximum Likelihood Estimation (MLE) and

Bayesian Markov Chain Monte Carlo (MCMC) estimation. The performance of the closed

form estimation methods in terms of efficiency have been examined and compared in some

simulation studies (Huitema and McKean 1991; DeCarlo and Tryon 1993; Arnau and Bono

2001; Solanas et al. 2010). Generally, in particular for shorter time series (e.g., length

T � 50), the closed form estimation methods have been shown to have biased autocorre-

lation estimates and/or high variability. Because the closed form and iterative estimation

methods have not been mutually compared so far, it is unclear which estimation methods

perform better in terms of having a low bias and variability under relevant conditions for

empirical practice. Further, little is known about the robustness of the specific estimation

methods towards misspecification of the model. This knowledge is important to optimize a

time series research design, and to select a low-variability, low-bias, and robust method for

estimating an AR(1) model in empirical practice.

In this paper, we discuss two studies to assess the relative performance of several

estimators of the AR(1) model. We focus on short time series, with a length T between 10

and 100. Even though these lengths are relevant, for example in psychological research,

they are not thoroughly studied yet for all estimators we compare. For the autocorrelation

we use values between -1 and 1, and hence consider stationary time series. Our first study

provides the information needed to make an informed choice between the estimation

methods for the AR(1) model. To this end, we selected five popular and/or promising

estimation methods. In a simulation study, we compare these methods with regard to bias,

standard error, the bias of the standard error, the rejection rate for / ¼ 0, the power for

/ 6¼ 0, and the point and 95 % interval estimates.

Our second study focuses on the issue of robustness. Robustness, as used in this paper,

is the resilience to misspecification with regard to the number of parameters. The effects of

misspecification of the ARMA(1,1), AR(1) and AR(2) model have been studied for the

least squares estimator. For an underspecified model, the parameters become more biased

when the unspecified parameters are further from zero (Tanaka and Maekawa 1984).

Overspecification of the model gives a larger prediction mean squared error for the esti-

mation of the score at yt (Kunitomo and Yamamoto 1985). To study the robustness with

regard to misspecification, we use the two estimation methods that showed the lowest bias

in the first study. In the misspecification study we generate the data using an ARMA(1,1)
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model, but estimate the parameters as if the data was generated using the same AR(1) =

ARMA(1,0) model as used in Study 1.

In the next section, we describe the selection process of the estimation methods used in

this paper, followed by a short introduction to the estimators. Then, we present the design,

performance criteria and the results of the first simulation study, which aims at comparing

various estimators when applied to short time series following an AR(1) model. We

continue with the design and results of the second simulation study, which aims at

exploring the effect of underspecifying a short time series following an ARMA(1,1) model

as data following an AR(1) model. We conclude our paper with a discussion of the

simulation studies and the implications of the results.

2 Selection of estimation methods

To start, we performed a literature search towards estimation methods for AR(1) models.

Our selection criteria for the papers were as follows: (1) it must discuss one or more

simulation studies that compare different estimators of the AR(1) model; (2) it must

include conditions with less than 50 time points and a range of values between r1 and 1 for

the autocorrelation /. This literature search revealed the five papers shown in Table 1.

The earliest discussed estimator is the r1 estimator (Walker 1931), as implemented in

the Yule–Walker model (Yule 1927; Box and Jenkins 1976). However, since several

studies have found that the bias of r1 for small samples is large, especially for data with a

positive autocorrelation, various alternatives were proposed (Huitema and McKean 1991,

1994; DeCarlo and Tryon 1993; Arnau and Bono 2001; Solanas et al. 2010). A selection of

these is given by name in Table 1. Note that most alternatives are based on the original r1,

as can be deduced from the names using ‘r’ or ‘r1’ and a sub- or superscript. In general, the

modifications of r1 showed a smaller bias than r1 itself, but a larger variability of the

estimated autocorrelation (Huitema and McKean 1991, 1994; Arnau and Bono 2001;

Solanas et al. 2010), except for the estimators rþ1 and the C-statistic. In direct comparisons

between rþ1 and the C-statistic, it was shown that the C-statistic had a smaller average bias

and a smaller average mean square error, thus a smaller variability, over different values of

/ than the rþ1 estimation method.

Table 1 List of papers with considered estimators, the lengths of the time series, and the outcome mea-
sures, where / autocorrelation, th theoretical, emp empirical, av averaged over all /, and av? averaged over
all positive /. All papers used a range of simulated autocorrelations of [-0.9 (0.1) 0.9], the estimators with
‘r’ in their name are derived from r1 estimator

Paper Estimators Length Outcome measures

Huitema and
McKean (1991)

r1, r
þ
1 , r1�, rc1, re1, OLS 6, 10, 20, 50, 100,

500
Bas (th & emp), MSE (av?), a,
power, r2e (th & emp)

DeCarlo and
Tryon (1993)

r1, r
þ
1 , C 6, 10, 20, 30, 50 Bias (emp), MSE (av?), a, power

Huitema and
McKean (1994)

rq1, rq2, rq3 6, 10,20, 50, 100,
500

Bias (emp, av & /=0.9), MSE (av),

a, power, r2e (emp)

Arnau and Bono
(2001)

r1, r
þ
1 , r

0
1 6, 10, 20, 30, 50 Bias (th & emp), MSE (av), a,

power

Solanas et al.
(2010)

r1,r
þ
1 , r1�, rc1, re1, C, r

f
1,

OLS, r
fb
1 ,r

d
1

5, 6, 7, 8, 9, 10, 15,
20, 50, 100

Bias (emp), MSE, a, power
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Apart from the modifications of r1, another closed form solution may be used. The

ordinary least squares (OLS) estimator is used in many different applications, most notably

in regression analysis. Since the autocorrelation may be interpreted as a special kind of

regression parameter, OLS can be used to find the autocorrelation. In comparisons, the

OLS estimator showed a smaller bias than most derivations from the r1 estimators (Hui-

tema and McKean 1991; Solanas et al. 2010). However, the OLS estimator also showed a

slightly larger mean squared error than most r1 derivations. These comparisons between

estimators reveal a bias-variance tradeoff in the autocorrelation estimator.

Two important methods that are not found in the comparisons listed in Table 1, are the

frequentist MLE and Bayesian MCMC estimation. Though simulation studies using MLE

have been done, those studies did not include the conditions of our primary interest. For

example, the studies that considered different ARMA(p, q)-models (Stoica et al. 1986;

Pantula and Fuller 1985; Garcia-Hiernaux et al. 2009 ), had no condition with less than 100

time points (Cox and Llatas 1991) or were aimed at examining other parts of the estimation

process, such as deciding on which ARMA(p, q)-model to use (Watson and Nicholls

1992). This was the same for papers using Bayesian MCMC estimation. Examples of this

are studies that have no systematic comparison using different estimators (Price 2012), use

AR(2) models (West and Wilcox 1996) or use lagged cross-correlation (Zhang and Nes-

selroade 2007). The MLE and Bayesian MCMC have become often-used methods of

analysis in different fields and applications.

3 Estimation methods

In the next paragraphs we will describe the five different estimation methods used in this

paper.

3.1 The r1 estimator in the Yule–Walker method

The Yule–Walker method for ARMA models (Yule 1927; Walker 1931; Box and Jenkins

1976) may be the best known estimation method in time series analysis. It uses the r1
estimator to estimate the lag 1 autocorrelation:

/̂r1 ¼
PT�1

t¼1 yt � �yð Þ ytþ1 � �yð Þ
PT

t¼1 yt � �yð Þ2
;

where yt is the observed score at time t, ðt ¼ 1; 2; . . .; TÞ and �y is the mean score over the

T observations. Asymptotically, the autocorrelation function for this series is biased by

�ð1þ 4/Þ=T (Kendall and Ord 1990). This bias has empirically been shown to be as large

as -0.73 for T = 6 and / ¼ 0:90 (DeCarlo and Tryon 1993). This empirical bias is

surprisingly close to the asymptotic bias of -0.77. To keep the bias within reasonable

limits, Box and Jenkins (1976, pp. 32–33) advise a minimum length of 50 time points for a

time series.

The standard error of the /̂r1
is calculated as:

SEr1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̂2e
ðT � 1Þr̂2y

s
; ð3Þ

where r̂2y is the estimated variance of yt and r̂2e is the estimated variance of e.
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In comparison studies, several other proposals were done to replace the r1 estimator

(Huitema and McKean 1991, 1994; Young 1941). One of these, which outperformed the r1
estimator and some of the other estimators in several studies, was the C-statistic (Young

1941; DeCarlo and Tryon 1993; Solanas et al. 2010).

3.2 C-statistic

The C-statistic (Young 1941) compensates the bias of the r1 estimator by adding a factor to

/̂r1 as:

/̂C ¼ /̂r1 þ
yT � �yð Þ2 y1 � �yð Þ2

2
PT

t¼1 yt � �yð Þ2
:

The /̂C is asymptotically unbiased. The /̂C has been shown to be a better estimator than

/̂r1 for / for short time series and a positive / (DeCarlo and Tryon 1993; Solanas et al.

2010)). However, the bias still remains quite large (e.g., -0.38 for / ¼ 0:60 and r = 5) and

the power remains quite low (e.g., � 0:09 for / ¼ 0:60 and r = 5) for short time series

(Solanas et al. 2010).

The standard error associated with /̂C is:

SEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � 2

ðT � 1ÞðT þ 1Þ

s

; ð4Þ

which is obviously only dependent on the number of observations.

3.3 Ordinary least squares

The ordinary least squares (OLS) for an AR(1) model is:

/̂ols ¼
PT�1

t¼1 yt � �yð Þ ytþ1 � �yð Þ
PT�1

t¼1 yt � �yð Þ2
:

The asymptotic standard error for /̂ols is:

SEols ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � ðT � 1Þ/2 � 1

T2 � T � Ty2T

s

: ð5Þ

The OLS estimation is capable of handling non-stationary data under certain restrictions.

This means that it is possible to obtain a non-stationary estimate (i.e., j/̂olsj[ 1). To

identify possible different behaviours, we distinguish two types of OLS analysis results:

OLS-A will refer to the complete results, where OLS-S will refer to the results where the

non-stationary results are left out.

3.4 Maximum likelihood estimation

The iterative Maximum Likelihood Estimation (MLE) used to estimate the autocorrelation,

shares asymptotic properties with the OLS estimation (Lütkepohl 1991, p. 368–370). The

MLE method uses a collection of algorithms to find the maximum likelihood for a

parameter or model (Durbin and Koopman 2012). In this study, we will compute the MLE
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with the ‘Broyden–Fletcher–Goldfarb–Shanno’ algorithm (Byrd et al. 1995). An asymp-

totic standard error for /̂mle may be estimated in the same way as for /̂r1
, using Eq. 3. The

asymptotic bias for an AR(1) model with population mean assumed to be zero, is �2/=T .
For an AR(1) model with the mean estimated, the asymptotic bias is ð�3/þ 1Þ=T (Tanaka

1984).

3.5 Bayesian Markov Chain Monte Carlo

The Bayesian MCMC is the only non-frequentist estimation method considered in this

paper. Bayesian analysis uses a prior probability distribution for the parameters, set up

before the analysis. This is combined with the observed likelihood, as computed from the

observed data, to form the posterior probability of the parameters. This posterior proba-

bility can be expressed through Bayes’ theorem: pð/jYÞ / ðY j/Þpð/Þ. For the Bayesian

analyses we will use MCMC sampling to find the combination of parameter values which

gives the highest likelihood.

In these simulation studies we will consider two weak informative Bayesian priors.

Since we assume stationarity we restrict ourselves to prior distributions with non-zero

probabilities for j/j � 1. That is, we consider a flat prior, giving all values of / between -1

and 1 an equal probability:

pf ð/Þ ¼ 1
2
; for� 1�/� 1:

Further, we consider the symmetrized reference prior defined by (Berger and Yang 1994),

which is specifically tailored to autoregressive processes. The symmetrized reference prior

is given as:

psrð/Þ ¼ 1=½2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� /2

q
�; for� 1�/� 1:

This symmetrized reference prior gives a higher probability to higher values of j/j and has

a narrower posterior distribution and a smaller mean square error than the flat prior or

Jeffrey’s prior in the case of AR(1) models (Berger and Yang 1994). We will denote these

methods as Bf and Bsr, respectively.

4 Research design study 1: comparison of estimators

To compare the various estimators for the autocorrelation (/), we simulate according to an

AR(1) model (see Eq. 2). In the generation of the data we vary the length of the time series

T and the autocorrelation /. For T we use five different sizes, namely 10, 25, 40, 50 and

100. For /, we use an autocorrelation of -0.90 to 0.90 inclusive, taking steps of 0.10.

Earlier studies show that there is a difference between the bias for the negative and positive

/ for several estimators, including r1 and the C-statistic (DeCarlo and Tryon 1993; Solanas

et al. 2010). This indicates that a thorough test is required to include both positive and

negative autocorrelations. Finally, the number of replications must be set. All of the studies

in Table 1 have a minimum of 10,000 replications per condition. However, a pilot study

showed that the maximum standard deviation of the mean /̂ over 5000–10,000 replications

was 0.0007, when T = 10 and / ¼ 0:7, for all estimators. Therefore we use N = 2000

replications per condition. Considering a fully crossed experimental design, this yields 19

9 5 9 5000 = 475,000 simulated data sets.

6 T. Krone et al.

123



Across all conditions, l is set to zero and r2e to one, which can be done without loss of

generality. This results in a standard normal distribution for yt given /.
Priors We performed a small simulation study to decide on the values for the hyper-

parameters of the priors in our Bayesian analyses. In the model we use, only the prior

distributions for l and re have such hyperparameters. We used 3 conditions, with / ¼
�0:50; 0 and 0.50, using 1000 replications per condition and 2000 iterations per analysis.

We set T = 10, since shorter series provide less data, and will therefore be more strongly

influenced by the choice of the prior. For l we used a normal prior with mean and standard

deviation as given, and for re we used a c prior with shape and rate as given in the top part

of Table 2.

As can be seen in Table 2, the differences in the estimated parameters are small,

especially when taking into account the uncertainty added by the small T. As a result, we

based our choice of priors on theoretical grounds. To reduce the influence of the priors, we

choose our priors close to the distributions used for the data generation: l�Nð0; 2Þ and
re �Cð2; 2Þ:

Outcome measures For each data set we obtain different estimators: r1, C-statistic, OLS,

MLE, Bf and Bsr. To compare the estimators, we consider the bias of the various estimators

of /, their empirical standard error, the bias of the estimated standard error, the rejection

rate for / ¼ 0, power for / 6¼ 0, and the point and 95 % interval estimates of /. All
outcome measures are calculated for each condition and each estimation method.

4.1 Bias

The bias is computed as:

Bias ¼ 1

N

XN

n¼1

/̂n

 !
� /;

where n ðn ¼ 1; 2; . . .;NÞ refers to the replication number.

4.2 Variability

To compare the variability of the different estimators over the different conditions, we

consider two estimators: the empirical standard error and the bias of the estimated standard

error. The empirical standard error shows the variability of the /̂ across replications. The

bias of the estimated standard error shows to what extent the standard error estimated by

the estimation method, resembles the empirical standard error.

4.2.1 Empirical standard error: SDð/̂Þ

The empirical standard error of /̂ is calculated by:

SDð/̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

n¼1

/̂� �̂/
� �2

vuut ;

where
�̂/ is the mean estimated /̂ over all replications within a condition.
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4.2.2 Bias of the estimated standard error

For the frequentist estimators, the estimated standard error SEð/̂Þ is calculated using

Eqs. 3, 4 and 5, and for the Bayesian estimation, the estimated standard error is obtained

through MCMC. To estimate the expected value of SEð/̂Þ for each estimator, we compute

the average SEð/̂Þ over all replications within a condition:

SEð/̂Þ ¼ 1

N

XN

n¼1

SEð/̂Þ:

To assess the bias of the estimated standard error with regard to the observed standard

error, we substract the observed standard error, SDð/̂Þ from the mean estimated standard

error, SEð/̂Þ:

Bias of SEð/̂Þ ¼ SEð/̂Þ � SDð/̂Þ:

4.3 Rejection rate and power

For each estimation method and condition, we compute the empirical probability (EPr) for

rejecting H0 : / ¼ 0, with a ¼ 0:05. In the condition with / ¼ 0, the EPr indicates the

rejection rate or actual a, in all other conditions the EPr equals the actual power. For the r1,
MLE, OLS-S and C-statistic methods, first a p value is obtained using a t-distribution.

Considering the t-statistic for a correlation coefficient:

tall ¼
/̂
ffiffiffiffiffiffiffiffiffiffiffiffi
T � 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� /̂2

q ; dfall ¼ T � 3:

For the OLS-A method, a t test based on the estimated standard error of /̂ is applied, since

the possibility of /̂ having a higher value than one in absolute value renders the t-statistic

for correlations inapplicable:

tols ¼
/̂
SE/̂

; dfols ¼ T � 3:

For the Bayesian estimation methods, we consider the percentage of datasets for which the

95 % credible interval (CrI) does not hold zero.

For each condition and method, we then calculate the EPr of rejecting H0 : / ¼ 0 as:

forr1;C� statistic;MLE;OLS�A;OLS� S : EPr ¼ #ðH0isrejectedÞ=N;
forBf ;Bsr: EPr ¼ #ðCrI does not hold 0Þ=N:

4.4 Point and interval estimates for /

To illustrate the joint effects of bias and variability we consider the two estimation

methods with the smallest bias, using the point and interval estimates of /. As point

estimate we use the mean of /̂ per condition, for the interval estimation we use the mean

95 percentile of the /̂ over all replications per condition.

A comparative simulation study of AR(1) estimators… 9
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4.5 Procedure

For the simulations and analyses we use the program ‘R’ (R Core Team 2014). The

C-statistic was computed directly with the basic functions available. For the Yule–Walker,

OLS and MLE methods we use the command ‘ar’ from the software package ‘stats’. The

Bayesian analyses are done with the program ‘Rstan’ (Stan Development Team 2014).

5 Results study 1

The OLS estimator rendered estimates of / that were higher than one in absolute value,

and thus non-stationary, as expected. The highest percentage of non-stationary estimates,

15.1 %, was found for the shortest series, r = 10 and the highest autocorrelation, / ¼ 0:90.
For r = 10 and / ¼ �0:90 to / ¼ 0:80, up to 6.8 % of the estimates per condition were

non-stationary, with higher percentages associated with higher values of j/j. For T = 25 to

50 and / ¼ 0:50 to 0.90 in absolute value, up to 2.3 % of the estimates were non-

stationary. However, the difference in the results was quite small. Thus we will discuss

only the OLS-A results for the OLS, which includes all measurements, unless the OLS-S

shows a strong deviation from OLS-A.

For the Bayesian analysis, non-convergence is expressed in the potential scale reduction

factor, R̂. The potential scale reduction factor shows the ratio of how much the estimation

may change when the number of iterations is doubled, with a perfect 1 indicating that no

change is expected (Gelman and Rubin 1992; Stan Development Team 2014). For each

estimated parameter /, l and re, less than 0.39 % of the estimates showed a R̂ above 1.02.

Furthermore, a maximum of 2:8%, found for l as estimated with Bf, showed a R̂ above

1.01.

5.1 Bias

The bias of the six estimators as a function of / for T = 10, 25, and 50 is presented in

Fig. 1. The conditions for T = 40 and are not shown due to their uninformative nature: T =

40 yields results highly similar to T = 50, and T = 100 yields results with hardly any

differences between the estimators. As can be seen in Fig. 1, the bias becomes smaller as

T increases for all methods, which is to be expected. The relation between the bias and / is

roughly linear for all methods, being positive for negative values of / and negative for

positive values of /. Further, the bias for positive values of / is larger than the bias for

their negative counterparts (i.e. -/). This holds for all values of T and for all methods,

except for the C-statistic.

With regard to the ordering of the estimation methods, differences are found between

negative and positive values of / and between short time series, T = 10, and longer time

series, T C 25. For the shortest time series with T = 10, the differences between the

methods with regard to bias are strongly dependent on /. For low, negative values of /, the
smallest bias is shown by the OLS, MLE and, to a lesser extent, the r1. For positive values

of /, the smallest bias is shown by the Bsr, followed by the Bf. The largest bias for T = 10 is

associated with the C-statistic for negative values of /, and the r1 for positive values of /.
For T C 25 and any /, Bsr consistently shows the smallest bias. Just as for the shortest

series, the largest bias for T C 25 is associated with the C-statistic for negative values of /,
and with the r1 for positive values of /.
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5.2 Variability

With regard to variability, the results for T � 40 are highly similar to the results for T = 25

with regard to pattern of the variability and the order of the estimation methods. The only

difference is the decline in absolute size. This prompted us to only explicitly show the

results for T = 10 and T = 25 for the empirical standard error and the bias of the estimated

standard error.

5.2.1 Empirical standard error: SDð/̂Þ

The empirical standard error (SDð/̂Þ) as a function of / is shown in Fig. 2 for T = 10

(panel a) and T = 25 (panel b). For all frequentist estimators, the SDð/̂Þ for positive values
of / is larger than the SDð/̂Þ for their negative counterparts (i.e. -/), implying that the

variability is higher for positive values of / than for negative values of /. For the Bayesian
estimators, this differs between values of T and j/j.

With regard to the ordering of the estimation methods for the SDð/̂Þ, small differences

are found between the short time series, T = 10, and longer time series, T � 25. For the

shortest time series, T = 10, and / below 0.40, the lowest SDð/̂Þ is shown by r1, for /

above 0.40 this is shown by Bf. The highest SDð/̂Þ for / below 0.30 is shown by Bsr, for /
above 0.30 this is shown by the OLS estimator. The OLS and MLE stand out due to the

continuing increase in the SDð/̂Þ for higher values of /.

Fig. 1 Bias for the six estimators and time series lengths T = 10, 25 and 50 as a function of /

A comparative simulation study of AR(1) estimators… 11
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For T C 25, the Bsr shows an distinct pattern. The Bsr shows the lowest SDð/̂Þ for /
below -0.80 and above 0.80, but the highest SDð/̂Þ for / between -0.6 and 0.60. The

lowest SDð/̂Þ for / between —0.70 and 0.40 is shown by the r1. The highest SDð/̂Þ for /
below -0.70 is shown by the C-statistic, for / above 0.70 this is shown by the OLS

followed by the MLE. When T increases, the empirical standard error of the different

methods become smaller and more similar to each other. For T = 100, the size of the SDð/̂Þ
is between 0.05 and 0.10 for all values of / and all estimators.

5.2.2 Bias of the estimated standard error

The bias of SEð/̂Þ as a function of / is shown in Fig. 2 for T = 10 (panel c) and for T = 25

(panel d). In general, the bias of SEð/̂Þ decreases when T becomes larger, indicating a

smaller difference between the estimated and the empirical standard errors. For T = 100,

the bias of SEð/̂Þ is between -0.01 and 0.04 for all values of / and all estimators. With

regard to the ordering of the estimation methods, small differences are found between T =

10 and longer time series. Differences were also found for different values of /.

The direction of the bias of SEð/̂Þ differs between the methods and the value of /. For

r1 and the C-statistic, the bias of SEð/̂Þ is positive for all /, indicating an overestimation of

the standard error. The OLS shows a positive bias of SEð/̂Þ for / between -0.70 and 0.20,

and a negative bias of SEð/̂Þ for other values of /. For the MLE the bias of SEð/̂Þ is

negative for all /. Both Bf and Bsr show a negative bias of SEð/̂Þ for /\� 0:70, and a

positive bias of SEð/̂Þ for higher values of /.

Fig. 2 The empirical standard error for T = 10 (panel a) and T = 25 (panel b), and the bias of the estimated
standard error for T = 10 (panel c) and T = 25 (panel d), as a function of / by estimation method

12 T. Krone et al.
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For T = 10, the smallest bias of SEð/̂Þ for / below -0.70 is shown by the OLS method.

The smallest bias of SEð/̂Þ for / above -0.50 is shown by the C-statistic, closely followed

by the OLS and the MLE. The largest bias of SEð/̂Þ for / above -0.80, is shown by r1,

which is joined in this regard by Bf and Bsr for / between -0.20 to 0.60.

The bias of SEð/̂Þ for T C 25 is smaller than the bias of SEð/̂Þ for T = 10 and the

different methods are closer together. The domain of / for which the C-statistic shows the

largest bias of all estimators increases when T becomes larger; for T = 10 this is when / is

below -0.50 and above 0.70, for T = 100 this is when / is below -0.30 and above 0.20.

The other estimators show the same pattern and order in the bias of SEð/̂Þ as for T = 10.

5.3 Rejection rate and power

The EPr of the different methods is presented in Fig. 3 for T = 10, 25 and 50, where the EPr

at / = 0 indicates the empirical rejection rate and the EPr at / 6¼ 0 the empirical power. As

with the bias, the EPr for T = 40 and T = 100 are not shown due to their uninformative

nature. When looking at the rejection rate, the empirical rejection rate approaches the

nominal a as the length of the time series increases, as to be expected. The rejection rate

for T = 10 is between 0.01 and 0.04 and for T C 25 between 0.03 and 0.05, for most

estimators. The only exception is the rejection rate for OLS-A at T = 40, which is 0.06. At

T = 100, the MLE, Bsr, OLS-S and Bf show a rejection rate of 0.050, which is equal to the

nominal a of 0.05. For all practical purposes, the difference in rejection rates between

estimation methods is negligable.

Fig. 3 Power as a function of / for the different estimation methods and T = 10, 25 and 50

A comparative simulation study of AR(1) estimators… 13
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The power of the estimated / shows a positive relation to the size of T and the absolute

value of /, as expected. When we would consider a minimal power of 0.80, for T = 10 this

is only found for the estimators OLS and MLE, and at very low values of /, i.e.

/� � 0:90. For T = 25 and negative /, the power is above 0.80 for /� � 0:60 for all

estimators except for the C-statistic, which has a power above 0.80 for /� � 0:70; for
positive values of /, the Bsr shows a power above 0.80 for /� 0:60, for the other esti-

mators this is for /� 0:70. For larger T, the power reaches 0.80 at lower values of /; for T
= 100, the power is 0.80 for j/j � 0:30.

The order of the estimation methods with regard to the power is consistent for the

different values of T. The highest power for negative / is shown by the OLS, for positive /
this is Bsr. The lowest power for negative / is shown by the C-statistic, for positive / this

is /. In general, the difference in power between the methods becomes smaller as T be-

comes larger.

5.4 Point and interval estimates for /

The mean /̂ with a 95 % estimation interval for the MLE and Bsr estimations can be seen

in Fig. 4. We only present this for the MLE and Bsr, since these methods show the lowest

bias. As can be seen in Fig. 4, the 95 % intervals are larger for smaller values of T,

indicating a larger variability in the /̂, as would be expected. The strongest decrease in

both variability and bias is from T = 40 to T = 25: for Bsr the bias decreases with up to

89 % and the variability with 29–51 %, for the MLE the bias decreases by 82 % and the

variability by 34–51 %.

Fig. 4 Mean of /̂ (points) with a 95 % percentile interval (lines) for different values of / and T
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5.5 Conclusion

In general, it may be concluded that the Bayesian Bsr and the frequentist MLE perform best

in terms of bias, but not in terms of variability. With regard to empirical variability, the r1
performs best. For the bias of the estimated variability, the MLE performs best. Further-

more, the Bsr is favorable with regard to power for positive /, showing only slight dif-

ferences with the OLS estimator for a negative Bsr. This leads us to continue with the MLE

and the Bsr estimators for the misspecification study of this paper.

6 Research design study 2: robustness

To study the robustness of the estimation methods, we misspecify the model. The data is

still analysed as if they stem from an AR(1) model, but we generate the data using an

ARMA(1,1) model. We generate data sets for two different sizes of T, namely 25 and 50.

For / and h, we use parameters of -0.90 to 0.90 inclusive, taking steps of 0.15. Every

condition consists of 5000 replications. Considering a fully crossed design, this yields

13 9 13 9 2 9 5000 = 1,690,000 datasets.

Again, across all conditions, l is set to zero and r2e to one. We consider the same

outcome measures for Study 2 as we did for Study 1.

7 Results study 2

We successively present the results on the bias, empirical standard error, bias of the

estimated standard error, rejection rate, power, and point and 95 % interval estimates. Note

that when h is zero, the simulated data follows an AR(1) model, rendering the results equal

to the results discussed in the first study of this paper, apart from small deviations resulting

from simulation variability.

As with the first study, we checked the R̂ of the estimated parameters /, l and re of Bsr.

For each of the parameters, less than 0:14% showed an R̂ above 1.02, and less than 1:69%

showed an R̂ above 1.01.

7.1 Bias

In Fig. 5, heatmaps for the bias of Bsr and MLE for T = 25 and T = 50 are presented,

expressing the bias depending on the combination of / and h. The h influences the bias in

two ways: first, the bias is smaller when h is close to zero, second, the bias gets larger when
h is further from /.

The bias is also influenced by the value of T and the estimation method. When looking

at T, in the MLE the bias for T = 50 is larger than the bias for T = 25, unless both h and /
are negative. The difference between the bias of T = 50 and the bias of T = 25 ranges for

MLE from -0.03 to 0.12 per condition. For the Bsr, the bias for T = 50 is smaller than for T

= 25, unless / has a value above 0.30. The difference between the bias of T = 50 and T =

25 ranges for Bsr from -0.07 to 0.03 per condition. Comparing the estimation methods

reveals that the bias is small, and in general slightly larger for the Bsr than for the MLE,

with the largest difference being 0.11 for / ¼ 0:60, h ¼ 0, and T = 25. The difference

between the estimation methods is larger for T = 25 than for T = 50.

A comparative simulation study of AR(1) estimators… 15
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7.2 Variability

Close inspection of the results for the variability and EPr for the Bsr and MLE estimators

and the two lengths of T, revealed that the patterns are very similar across methods and

different lengths of T. This prompted us to only present the results of Bsr and T = 25 in

Fig. 6. However, we discuss any quantitative differences between the methods. For

comparison purposes, we also plotted the SDð/̂Þ, the bias of SEð/̂Þ and the EPr for Bsr and

T = 25 of Study 1.

7.2.1 Empirical standard error: SDð/̂Þ

The empirical standard error (SDð/̂Þ), for Bsr with T = 25 and h ¼ �0:45; 0:00, and 0.45,

can be seen in Fig. 6 (panel a). Some differences between the SDð/̂Þ over different values
of h, / and T are found. First, the SDð/̂Þ shows a positive slope over / for negative values

of h, and a negative slope over / for positive values of h. Second, the SDð/̂Þ is smaller for

T = 50 compared to T = 25. For the MLE estimator the SDð/̂Þ is up to 0.07 smaller for T =

50, for the Bsr the SDð/̂Þ is up to 0.08 smaller for T = 50. When comparing methods of

estimation, the SDð/̂Þ of the Bsr is larger than the SDð/̂Þ of the MLE, for both values of

T. For T = 25, this differs up to 0.03, for T = 50 this differs up to 0.01 per condition.

7.2.2 Bias of the estimated standard error

The bias of SEð/̂Þ for Bsr with T = 25 and h ¼ �0:45; 0:00, and 0.45, can be seen in Fig. 6

(panel b). The bias of SEð/̂Þ for most combinations of / and h, where h 6¼ 0, is positive

and higher than the bias for the AR(1) data. Only for low values of jhj combined with high

Fig. 5 Heatmaps for the bias of /̂mle for T = 25 and T = 50 (top panes) and the bias of /̂Bsr
for T = 25 and T

= 50 (bottom panes)
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values of j/j, the bias of SEð/̂Þ is negative. The bias of SEð/̂Þ is larger for T = 25 than for

T = 50, for all methods and conditions, with differences up to 0.02 for both methods.

Furthermore, the bias of SEð/̂Þ is slightly larger for the Bsr estimation than for the MLE,

with a maximum absolute difference of 0.01 for T = 25 and 0.03 for T = 50.

7.3 Rejection rate and power

The EPr for Bsr with T = 25 and h ¼ �0:45; 0:00, and 0.45, can be seen in Fig. 6 (panel c).

When h 6¼ 0, the curve of the EPr shifts relative to the curve of the AR(1) data. For a

negative h, the curve shifts to the right, for a positive h, the curve shifts to the left. In both

cases, the amount the curves shifts is roughly equal to the absolute value of h. This is the
same for both methods, with the shape of the curve being dependent on T, as in Study 1.

The differences between the methods are negligible.

7.4 Point and interval estimates for /

The mean /̂ with a 95 % estimation interval for the MLE and Bsr estimations are presented

in Fig. 7. As can be seen in Fig. 7, the 95 % intervals are larger for smaller values of T,

indicating a larger variability in the /̂. For both methods, the decrease in the 95 % esti-

mation interval is between 33 and 44 % from T = 25 to T = 50 for the different conditions.

In most conditions, the 95 % estimation interval is larger and the mean /̂ is slightly higher

for the Bsr than for the MLE.

Fig. 6 Empirical standard error (panel a), bias of the estimated standard error (panel b) and EPr (panel c)
for Bsr with T = 25 as a function of /

A comparative simulation study of AR(1) estimators… 17

123



7.5 Conclusion

We found that the further the h deviates from zero, the larger the difference between the /

and /̂ is. The Bsr shows a larger bias than the MLE when h is further from zero, showing a

larger influence of the h parameter in the estimated /. Furthermore, the observed vari-

ability is slightly smaller for the MLE, with the difference between Bsr and MLE being

larger for T = 25 than for T = 50.

8 Discussion

We compared five estimation methods for the autocorrelation: the r1, C-statistic, ordinary

least squares, maximum likelihood estimation and Bayesian MCMC estimation. For the

Bayesian MCMC estimation we used both a flat prior and a symmetrized reference prior,

giving a total of six autocorrelation estimators. We compared these estimators with regard

to bias, variability, rejection rate, power and point and 95 % estimation interval estimates.

After this comparison, we selected the Bayesian estimation with symmetrized reference

prior and the maximum likelihood estimator to use in a second study. In this small study

we assessed the robustness of the methods against underspecification.

The results we found in the first study largely complied with the results from previous

studies. For the bias for positive values of /, we found the bias of the C-statistic and the

OLS to be smaller than the bias of r1, as did previous studies (DeCarlo and Tryon 1993;

Huitema and McKean 1991; Solanas et al. 2010). For the empirical standard error, we

found smaller values for r1 than for OLS, as did Huitema and McKean (1991). The low

rejection rate we found for the r1 and the C-statistic confirms to earlier studies (Huitema

and McKean 1991; DeCarlo and Tryon 1993; Solanas et al. 2010). The power we found for

Fig. 7 Mean of /̂ (points) with a 95 % percentile interval (lines) for different values of / and T
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the C-statistic is similar to the power found by Arnau and Bono (2001). However, the

results of Solanas et al. (2010) with regard to power were only partly confirmed by our

study: for negative / we indeed found a higher power for OLS followed r1, than for the

C-statistic. But for positive /, we found a higher power for the C-statistic than for r1.

The first study showed a strong improvement in all measures for all methods between

T = 10 and T = 25. This improvement continued, be it not as strong, for higher values of

T. When comparing methods, Bsr showed the smallest bias. For the frequentist methods,

this was MLE followed by the C-statistic. The smallest empirical standard error is shown

by r1, the smallest bias of the estimated standard error is shown by the C-statistic, the OLS

and the MLE. We further found that a small bias is often paired with a high empirical

standard error. The power was rather low for all methods at the lengths of time series we

considered. For T = 25, the power is below 80 % for all methods for / between -0.5 and

0.5, for T = 100, the power is below 80 % for / between -0.2 and 0.2. The differences

between methods with regard to power are negligible. In research areas where effect sizes

are small, this may pose a problem. Some studies use moving windows to assess the

stability of parameter estimates over time. For these moving windows, these results

indicate that a moving window of at least 50 time points is advisable, especially when the

differences in parameters over time are small.

The first study was conducted to explore the differences between estimation methods for

the autocorrelation in a single subject design. However, this is only a small step in a large

research area. The next step may be to explore these results in multilevel or group analyses,

thus when there is not one but multiple subjects per dataset. Another issue may be how the

different methods respond to non-stationary data, i.e., j/j[ 1.

In the second study, the robustness of the MLE and Bsr to underspecification was

examined. In general, we confirmed the notion that the further the unmodelled parameter is

from zero, the larger the influence of this parameter is on /̂ (Tanaka and Maekawa 1984).

As with the first study, the empirical standard error decreased when T became larger.

However, the bias reacted differently for both methods: for the MLE, the bias became

slightly smaller for most conditions, where the bias of Bsr became slightly larger for a

larger T. The difference in performance for all measurements between the MLE and the Bsr

was small for both values of T. It was shown that the bias, variability, rejection rate and

power were all highly dependent on the value of the non-modeled parameter in the data, h.
This can be related to the fact that the autocorrelation of the error also has an influence on

the autocorrelation of the total score.

The robustness study was rather small and specific, looking into only one possible way

to misspecify the ARMA (1, 1) model. More options within misspecification should be

explored to find how robust the estimation methods are with regard to under-, over- and

misspecification. Important points are the influence of a misspecified error distribution or

overspecification of the model.

In conclusion, we found that the best performing methods for autocorrelation estimation

are the Bayesian estimator with symmetrized reference prior and the maximum likelihood

estimator. The difference in performance between these two is, for all practical purposes,

negligible. The results for the measurements improving greatly between T = 10 and T = 25

and continue to do so, but in a less spectacular fashion. For the misspecification study, we

found the size of h, the non-modelled parameter, to be vital for the performance of the

estimation methods. The differences between lengths of the series and estimation methods

was of lesser influence on the results.
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