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ABSTRACT

The 6‑Minute Walk Distance  (6-MWD) has been the most utilized endpoint for judging the efficacy of pulmonary arterial 
hypertension (PAH) therapy in clinical trials conducted over the past two decades. Despite its simplicity, widespread use in recent 
trials and overall prognostic value, the 6-MWD has often been criticized over the past several years and pleas from several PAH 
experts have emerged from the literature to find alternative endpoints that would be more reliable in reflecting the pulmonary 
vascular resistance as well as cardiac status in PAH and their response to therapy. A meeting of PAH experts and representatives 
from regulatory agencies and pharmaceutical companies was convened in early 2012 to discuss the validity of current as well as 
emerging valuable endpoints. The current work represents the proceedings of the conference.
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Clinical trials to assess the efficacy of drug therapy for 
pulmonary arterial hypertension (PAH) have routinely used 
the 6‑Minute Walk Distance (6-MWD) as a validated primary 
endpoint since the first controlled trial over  15  years 
ago.[1] Although reflecting functional status and predicting 
survival in PAH, this simple and practical measure has 
certain limitations and therefore there have been recent 
calls for alternate endpoints[2] that are clinically significant, 
have pathophysiological relevance to the disease and are 
sensitive enough to be subjected to statistical analysis. The 
following is a summary from a roundtable discussion on 
clinical endpoints that brought together experts in PAH 
and representatives from Pharma and from regulatory 
agencies (i.e., the US Food and Drug Administration), whose 
task was to review the strengths and limitations of current 
endpoints, along with recommendations for improvement.

TRADITIONAL ENDPOINTS

Functional class
Functional classification (FC) is widely used as a marker of 
disease severity in cardiovascular disease and is strongly 

predictive of mortality.[1,3‑6] In pulmonary hypertension (PH), 
it provides a measure of the limits imposed on a patient by 
the disease.[7,8] Regulatory agencies include FC in their 
labeling of PAH‑specific therapies. Published treatment 
guidelines include FC in their recommendations for the 
evaluation and treatment of patients,[7,8] and FC is commonly 
employed as an endpoint in clinical studies of PH therapies. 
In addition, FC correlates with quality of life  (QoL) 
assessment, enforcing its usefulness as an intermediate 
endpoint.[9]

New  York Heart Association and World Health 
Organization Classification 
The New  York Heart Association  (NYHA) Functional 
Classification System was primarily developed and 
validated in heart failure studies.[10] In 1998, the World 
Health Organization  (WHO) expert panel amended the 
NYHA diagnostic classification system specifically for 
patients with PH in order to include symptoms such as 
dyspnea, fatigue and chest pain, as well as syncope and 
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near syncope more relevant to patients with PH.[11] Patients 
who have experienced syncope are generally assigned to 
WHO FC IV  (although this is not explicitly stated in the 
WHO Functional Classification System). Due to similarities 
between the two classification systems, many clinicians 
refer to them collectively as NYHA/WHO Functional 
Classification.[12]

Prognostic value of functional classification
NYHA/WHO FC is a powerful predictor of survival in 
PH.[4,6] In untreated patients with idiopathic PAH (IPAH) or 
heritable PAH, the median survival was six months for WHO 
FC IV, two and a half years for WHO FC III and six years for 
WHO FC I and II.[13] In the REVEAL registry, patients who 
were NYHA/WHO FC IV at baseline had a significantly lower 
one‑year survival rate than those with better functional 
class.[4] In observational studies of patients receiving 
epoprostenol therapy, survival was significantly longer in 
patients at NYHA FC III, compared with those with NYHA 
FC IV.[5] In a follow‑up of patients receiving subcutaneous 
treprostinil, worse FC at baseline was associated with 
lower survival rates.[14] There was an association between 
increased mortality and baseline NYHA FC IV in a three‑year 
follow‑up of patients receiving oral bosentan.[6]

Functional classification as an endpoint in clinical trials
FC is an important endpoint in clinical trials of PAH therapy 
as it reflects patient well‑being. The key advantages of FC 
as an endpoint are that changes can be easily measured 
and assessed within three  months of therapy and are 
predictive of mortality. Therefore, FC can be used to trigger 
treatment adjustment.[11] It has also been included in the 
parameters defining goal‑oriented treatment strategies.[15] 
Several clinical trials of prostacyclins, endothelin receptor 
antagonists and phosphodiesterase‑5 inhibitors have 
shown improvements in FC [Table 1]. In the BREATHE‑1 
study, 42% of the bosentan‑treated patients and 30% 
of the placebo‑treated patients were in a better WHO 
FC at Week 16 than at baseline, which coincided with 
improvements in exercise capacity, Borg dyspnea score 
and reduced time to clinical worsening (TTCW).[16] In the 
SUPER study, sildenafil significantly improved WHO FC 
in addition to exercise capacity and hemodynamics.[17] In 
some clinical trials, improvements in FC were not evident 
despite improvements in other clinical endpoints. This 
may be related in part to the background treatments 
being used in these trials, making it more difficult to 
improve FC.[20,21]

Advantages/disadvantages of FC as a clinical endpoint
Strengths of FC as a clinical endpoint:
•	 Convenience
•	 Ease of classification
•	 Widely and broadly used
•	 Can be predictive of survival as well as QoL

Weaknesses of FC as a clinical endpoint:
•	 Self‑reporting is required by patients
•	 The subjective nature of functional classification results 

in great variability in how classifications are judged 
between physicians[9]

o	 Multiple factors not mentioned in NYHA/WHO 
definitions may be used

o	 Definition of symptoms may differ widely among 
clinicians and are not reliable in children

o	 A questionnaire could be used to aid standardization 
(AIR study, unpublished)

•	 Inconsistencies make inter‑trial comparisons difficult
•	 The simplistic nature of this endpoint may mean that 

this classification is poorly discriminating and that 
subtle changes in clinical status will not be detected[12]

•	 The reliability and validity of this measure is not clearly 
established.

Recommendations
•	 FC will continue to be an important secondary endpoint 

in future clinical trials as well as a component of 
primary composite endpoints

•	 It provides a useful indicator of survival, physical 
capacity and well‑being

•	 It is recognized in guidelines and by regulatory 
authorities

•	 However, as PH treatment improves, the focus of 
clinicians may shift to early detection of PH in patients 

Table 1: Improvements in new York Heart Association/
World Health Organization functional classification 
shown in pulmonary arterial hypertension clinical trials
Study Treatments Pts with FC 

improvement 
of ≥1 class

Other 
improved 
endpoints

BREATHE‑1[16] Bosentan
Placebo

42%
30% (P=NS)

Exercise 
capacity, Borg 
dyspnea score, 
time to clinical 
worsening

SUPER‑1[17] Sildenafil 
40 mg
Placebo

36%
7% (P<0.001)

Exercise 
capacity, 
hemodynamics

Primary PH 
Study[18]

Epoprostenol
Conventional 
therapy

40%
3% (P<0.02)

Exercise 
capacity, QoL, 
hemodynamics

AIR‑1[19] Iloprost
Placebo

23.8%
12.7% (P=0.03)

Combined 
endpoint (NYHA 
FC+6-MWD), 
hemodynamics, 
dyspnea, QoL

TRIUMPH‑1[20] Treprostinil
Placebo
(add‑on to 
oral therapy)

No significant 
improvement

Exercise 
capacity, QoL, 
NT‑pro BNP

PHIRST[21] Tadalafil
Placebo

No significant 
improvement

Exercise 
capacity, QoL, 
time to clinical 
worsening

FC: functional classification; BNP: blasma brain natriuretic peptide; 
PH: pulmonary hypertension
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with less severe disease. Therefore, it may prove 
challenging to use FC as an endpoint when a greater 
proportion of patients are in FC I/II and it may become 
difficult to determine improvement from FC II to I

•	 Development of tools to promote a uniform approach to 
NYHA/WHO Functional Classification is an important 
step in helping to standardize the clinical care of 
patients with PAH and in performing and interpreting 
clinical studies

•	 A questionnaire for standardization to harmonize 
understanding of FC may be useful

•	 There may be scope for development of a tighter or 
subdivided functional classification system[12]

•	 NYHA/WHO Functional Classification may not serve as 
a single primary endpoint in clinical trials but may be 
useful as an important part of a composite endpoint. 
Indeed, it has been utilized successfully as part of a 
combined primary endpoint previously.[19]

Exercise capacity
The 6-Minute Walk Distance test
 The use of exercise capacity as a measure of disease severity 
and treatment response is common in PH clinical trials and 
also in clinical practice. The most commonly used measure 
of exercise capacity is the 6-MWD test. It is not uncommon 
to enhance the 6-MWD test with a dyspnea rating at the 
end of the test, using either the Borg Dyspnea Index (BDI) 
or the Mahler dyspnea index. Adjunctive measures such 
as pulse oximetry (SpO2) and heart rate (HR) can also be 
added to further characterize exercise performance during 
the 6-MWD test.

Two major strengths of the 6-MWD test include its 
simplicity and its widespread use and validation in PAH. 
It is a test that reflects activities of daily living and, to the 
extent that 6-MWD can be improved, it is a worthwhile 
metric. In addition, the 6-MWD distance has been shown 
to predict survival in several cardiopulmonary disorders 
including PAH.[1,22] Baseline 6-MWD, as well as thresholds 
of 6-MWD distance reached under treatment, has been 
shown to correlate with patient outcome.[4,23‑25] In contrast, 
the change in 6-MWD, either in response to treatment or 
as patients deteriorate, has not been shown to correlate 
well with outcome,[25,26] although results have been variable 
depending on the length of observation.[27] A recent study, 
using both distributional and anchor‑based methods and 
a large cohort of PAH patients, determined the minimal 
important difference  (MID) in the 6-MWD test to be 
approximately 33  m.[28] Limitations of the 6-MWD test 
include a lack of ability to account for physical patient 
characteristics such as stride length and weight, a 
learning effect and inability to provide information on the 
physiologic response to exercise. Recent data suggest that 
6-MWD test alone is not sufficient to define the clinical 
status of the patient.[29]

Recommendations
•	 The 6-MWD test should continue to be used as part 

of the clinical assessment of PH patients; however, it 
should not be considered a mandatory test

•	 Performance of the 6-MWD test should be standardized 
and should follow  American Thoracic Society 
(ATS) guidelines[30]

•	 Patients must be developmentally able to perform the 
6-MWD test and should not have physical or mental 
comorbidities that could influence the performance 
of the test

•	 Adjunctive measurements such as HR and SpO2 can be 
used to enhance the interpretation of the test

•	 The use of the 6-MWD test as a primary endpoint 
alone in PH clinical trials should be restricted to 
instances whereby the results are projected to be both 
statistically and clinically significant

Cardiopulmonary exercise testing (CPET)
The physiologic response to exercise can be assessed with a 
comprehensive evaluation of several key exercise variables 
known to be affected by pulmonary vascular disease. 
These include HR and blood pressure, submaximal oxygen 
consumption  (anaerobic threshold, AT), peak oxygen 
consumption  (VO2), ventilatory inefficiency  (VE/VCO2, 
PETCO2), rest and exercise blood pressure and exercise and 
recovery patterns of these variables.

Strengths of CPET include its ability to evaluate physiologic 
severity, its prognostic use and its highly reproducible 
nature.[31‑33] Limitations relative to the 6-MWD test 
include the need for technical expertise and longer time 
for administration and interpretation. The use of CPET in 
clinical trials has been discouraged due to the technical 
expertise required; however, this has not been the case in 
studies of other cardiopulmonary disorders such as heart 
failure, where CPET has often been the gold standard  
reference test.

Recommendations
•	 CPET should continue to be used as part of the clinical 

assessment of PH patients; however, it should not be 
considered a mandatory test

•	 Performance of CPET should be standardized and 
should follow ATS guidelines[34]

•	 Patients must be developmentally able to perform CPET 
and should not have physical or mental comorbidities 
that could influence the performance of the test

•	 As drug development with new targets and combination 
therapies emerges, the use of CPET as a primary 
endpoint in PH clinical trials should be reconsidered

•	 A core CPET lab must be used to systematically interpret 
all physiologic data captured at clinical recruiting sites

•	 Recruiting sites charged with obtaining CPET data 
for clinical trials must operate using standardized 
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validation procedures and must be validated by the 
core CPET lab.

Hemodynamics
Use of hemodynamic endpoints to assess response to 
therapy in clinical trials is justified and reasonable as 
hemodynamic alterations are integral to the causal 
pathway of PAH. The significance of baseline hemodynamic 
alterations has long been recognized. For instance, 
elevated right atrial pressure  (RAP) and decreased 
cardiac index  (CI) are strong predictors of death and/
or lung transplantation.[13,35,36] However, traditional 
hemodynamic measures of disease severity, such as CI 
and RAP are inconsistently associated with outcomes 
in certain PAH groups such as scleroderma‑associated 
PAH (SSc‑PAH).[37‑39] This may be related to differential 
responses to cardiac loads between SSc‑PAH and IPAH 
as demonstrated in studies utilizing pressure-volume 
relationships, suggesting decreased mean ventricular 
pressure at any given afterload in SSc‑PAH.[40] Other 
hemodynamic measurements such as pulmonary arterial 
capacitance  (as estimated by stroke volume divided by 
pulmonary artery pulse pressure) independently predict 
survival in SSc‑PAH.[38] Further, stroke volume index (SVI), 
perhaps a more specific measure of  right ventricle 
(RV) function compared to CI, is also strongly predictive of 
outcome in this cohort; neither CI nor RAP independently 
predicted survival in this specific group of patients.[36]

Changes in hemodynamic values have also been examined 
in more recent studies. Reductions in RAP and mean 
pulmonary arterial pressure (mPAP) and increases in CI 
after intravenous epoprostenol therapy are associated 
with improved survival.[5] A failure of pulmonary vascular 
resistance (PVR) to decrease after therapy with bosentan 
or epoprostenol is a harbinger of poor prognosis.[25,27] Low 
CI and elevated RAP and PVR after 3 months of therapy 
with inhaled iloprost are associated with an increased 
risk of death.[41] Some of these hemodynamic endpoints 
have clearly been validated as surrogate markers in 
controlled trials. Significant reductions in mPAP and PVR 
and increases in CI, have been shown after a 12‑week 
treatment with intravenous epoprostenol, the only 
controlled study in PAH that has shown improved survival 
with treatment,[1] and in response to sildenafil therapy.[17] 
Improved hemodynamics was also recently shown in a 
randomized double‑blind, placebo‑controlled, dose ranging 
study of sildenafil in treatment‑naïve children with 
PAH.[42] However, the FDA recently recommended against 
the use of this drug in this population since there was 
an increased risk of death in the high‑  versus low‑dose 
groups. Hemodynamic changes  (decreased mPAP and 
PVR) in response to intravenous epoprostenol have also 
been shown in SSc‑PAH, although there was no change 
in survival in this group.[43] Other trials, however, have 

shown little or no change in hemodynamics between drug 
and placebo.[19,44] Hemodynamic values are not currently 
accepted as endpoints by regulatory authorities.[45]

Strengths
•	 Hemodynamic data are accurate, reproducible and 

highly reflect the disease as integrated cardiopulmonary 
function

•	 They are done routinely in all referral centers and have 
been standardized

•	 They have baseline prognostic values and change in 
response to therapy (at least in IPAH).

Weaknesses
•	 They are invasive and time‑consuming and may not 

necessarily represent a direct benefit to the patient
•	 They are usually obtained at baseline at rest and may 

not accurately reflect alterations related to exercise
•	 Optimal hemodynamic endpoint has not been defined
•	 They have not changed consistently in various 

recent trials;  however,  this may be related 
to the short time frame  (e.g.,  12  weeks), patient 
composition (e.g., SSc‑PAH patients unlikely to show 
hemodynamic changes with current therapy) and 
add‑on therapy trial.

Recommendations
•	 Hemodynamic data may be considered as primary 

endpoints (e.g., PVR, SVI, stroke volume/pulse pressure 
[SV/PP]) in select trials (e.g., children trials where other 
endpoints may be less reliable) and in randomized 
controlled trial (RCT) greater than four to six months, 
although missing values for patients who drop out or 
refuse a repeat catheterization represent a significant 
limitation.

OTHER CLINICAL ENDPOINTS

Clinical endpoints for PAH have undergone an evolution 
from the straight 6-MWD test to more comprehensive 
endpoints that reflect disease progression and/or medical 
failure. Amongst these endpoints, death and transplantation 
remain relatively clear, but the definition of “time to clinical 
worsening” has not always been consistent between trials.

Health‑related quality of life in pulmonary arterial 
hypertension
Ideally, therapeutic interventions in PAH should improve 
symptoms, prolong survival and enhance QoL. Of these three 
therapeutic goals, the impact of therapeutic interventions 
on PAH‑specific QoL is least well characterized. Most 
available health‑related QoL  (HR‑QoL) data in PAH has 
been derived from existing generic  (e.g.,  SF‑36, EQ‑5D) 
or condition‑specific heart failure instruments such 
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as the Congestive Heart Failure Questionnaire directly 
employed or adapted for use as secondary endpoints in 
pharmaceutical‑sponsored studies.[46,47] In this setting, 
instrument domains related to physical functioning appear 
to be the most sensitive to therapeutic interventions 
demonstrated to improve other functional parameters, such 
as the 6-MWD. However, the minimal change indicative of 
clinically meaningful improvement in PAH has not been 
determined for any instrument and the lack of consistency 
of HR‑QoL instruments employed in therapeutic trials has 
made between‑study comparisons difficult.

More recently, the Cambridge Pulmonary Hypertension 
Outcome Review  (CAMPHOR) has been developed as a 
PAH‑specific HR‑QoL instrument.[48] This instrument was 
derived and validated from separate cohorts of PAH patients 
in the UK. The instrument has been validated outside of 
the UK  (US),[49] although its performance in response to 
therapeutic interventions has yet to be determined. At least 
one additional PAH‑specific HR‑QoL instrument is currently 
in development.

The lack of a disease‑specific instrument to assess HR‑QoL 
in PAH in response to therapeutic interventions is currently 
an unmet need. The committee supports the development 
of specific and fully validated instruments for assessing 
HR‑QoL in PAH.

All‑cause mortality
Survival is the most meaningful clinical endpoint when 
evaluating new therapies; however, it can require the study 
of more than a thousand patients, which is not feasible in 
an orphan disease such as PAH. All‑cause mortality is one 
endpoint that is easily measured but may overestimate 
the number of deaths attributable to PAH. Another option 
is to use “disease‑related mortality” which would only 
include deaths due to PAH. This would require a clinical 
events committee to determine whether a death was due 
to PAH. Unfortunately, this is not always clear and may 
compromise the integrity of a trial. Further, mortality 

alone would not be a suitable endpoint because of the low 
event rate and inability to power a study adequately for a  
short‑term trial.

Lung transplantation
Whether or not a patient undergoes lung transplantation 
is also clear to capture; however, there is still room for 
error here. There are likely center‑specific patterns in 
lung transplant referral which may relate to the presence 
of a robust transplant program, success rates and average 
wait times, in addition to patient’s disease severity and 
projected prognosis. Therefore, the likelihood of listing 
and actual transplantation during the course of a clinical 
trial may differ between centers. One may account for this 
in part by noting at the trial baseline whether a patient is 
“actively listed” or not. This information should be routinely 
included in baseline data collection. It seems reasonable to 
analyze the “time to transplant” for those “actively listed” 
at trial onset separately from those who are not. For the 
patients who were not previously listed, the need for “new 
transplant listing” should be the worsening event and the 
transplant a censored event. This is still not without bias 
based on center‑specific practices.

Composite endpoints: TTCW
Since single surrogate endpoints such as the 6-MWD test are 
not ideal for clinical trials in PAH, composite endpoints have 
been proposed.[50] Therefore, composite endpoints have been 
used to increase the overall event rate and thereby reduce the 
number of patients needed for a trial. Indeed, the European 
Medicines Agency (EMA) encourages the use of a composite 
endpoint such as TTCW as the primary endpoint in PAH 
clinical trials (Table 2; EMA, 2009). TTCW has emerged as a 
frequently used secondary endpoint in recent long‑term PH 
clinical trials. However, as McLaughlin et al.[45] emphasize 
in the Dana Point recommendations from 2009, “time to 
clinical worsening” has not been entirely consistent in its 
definition in various recent trials, but certainly has value 
as a composite endpoint. This endpoint was designed to 

Table 2: Definition of time to clinical worsening in different trials
Component BREATHE‑1 & 

351 (5,41)
EARLY 
(42)

STRIDE‑1 
(35)

STRIDE‑2 
(22)

ARIES‑1 
(43)

ARIES‑2 
(43)

SUPER‑1 
(21)

STEP 
(23)

PACES 
(44)

Death √ √ √ √ √ √ √ √ √
Hospital stay √ √ √ √ √ √ √ √
Lung transplantation √ √ √ √ √ √ √
Atrial septostomy √ √ √ √ √
Symptomatic 
progression 
(NYHA/WHO FC)

√ √ √ √ √

Lack of improvement 
or worsening PAH  
(±6‑min walk)

√ √ √ √ √ √

Need for additional 
PAH therapy

√ √ √ √ √ √ √ √

P value <0.05 <0.05 NS NS NS <0.05 NS <0.05 <0.005

CW: clinical worsening; NYHA/WHO FC: New York heart association/world health organization functional class; PAH: pulmonary arterial hypertension
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be a more comprehensive analysis of disease progression, 
but has suffered from inconsistencies in definition, making 
trial comparisons more difficult. The most commonly used 
components of TTCW include events such as (1) all‑cause 
mortality, (2) need for an interventional procedure including 
transplant or septostomy, (3) PAH‑related hospitalization, 
and  (4) some additional measures of clinical worsening 
which may include WHO FC progression, decline in 6-MWD 
by at least 15%, signs of worsening right heart failure and/or 
need for additional PAH‑targeted therapies. Table 1[45] reports 
the various definitions used for TTCW in recent clinical trials. 
Composite endpoints include those that measure disease 
progression (e.g., TTCW) and those that assess improvement 
in a patient’s physical capacity and well‑being.

Endpoints measuring disease progression and 
deterioration
The impact of a treatment on disease progression associated 
with PAH can be measured by TTCW. This endpoint is 
viewed as clinically relevant by clinicians and regulatory 
agencies and has been used in several clinical trials as a 
secondary, or more recently a primary endpoint.[51] The 
composition of this endpoint varies from study to study. 
The main components include the following:
•	 Change in physical capacity, such as a 10-20% decrease 

in 6-MWD
•	 Deterioration in NYHA FC
•	 Significant clinical  events such as need for 

hospitalization or additional therapy, transplantation, 
or mortality.

Endpoints measuring improvement of patient’s 
physical capacity and well‑being
Despite the usefulness of endpoints measuring disease 
progression and deterioration, from the perspective of both 
the patient and the treating physician, it may be more relevant 
to assess improvement in physical capacity and well‑being. 
A composite endpoint was selected as the primary endpoint 
in the AIR study in order to give a more rigorous assessment 
of the efficacy of iloprost.[19] It included (1) an increase of 
at least 10% in the 6-MWD, (2) improvement in the NYHA/
WHO FC and (3) absence of a deterioration in the clinical 
condition or death. A significant effect of treatment in favor 
of iloprost  (P  = 0.007) with an estimated odds ratio of 
3.97 (95% CI 1.47-10.75) was found. Nearly 40% of patients 
showed increased 6-MWD by at least 10%. Approximately 
20% of patients showed improvement in FC. Not all patients 
with improved FC had a 10% increase in 6-MWD. Thus, a 
larger proportion than met the primary endpoint met lesser 
criteria for clinical improvement to warrant continuation of 
therapy. Despite the usefulness of composite endpoints in 
measuring physical capacity and well‑being and the obvious 
limitations of single surrogate endpoints, to date, the AIR 
study is the only large clinical trial that has employed such 

an endpoint.

Advantages/disadvantages of composite endpoints
Composite endpoints are derived from a combination of 
individual endpoints and have been validated in heart 
failure trials. They have several advantages over single 
endpoints:[52] (1) precision (and therefore statistical power) 
increases with event rate;  (2) a composite endpoint can 
make it easier to detect a therapeutic benefit compared with 
analyzing each component separately, without requiring an 
increase in sample size (the higher the number of events, 
the smaller the sample size required based on more power 
to detect any treatment effect); and (3) besides mortality, 
clinically relevant components such as 6-MWD or NYHA/
WHO FC may be incorporated, offering a more global 
assessment of the patient and their clinical condition. 
For both patients and physicians, it is more relevant to 
assess improvement over a short period of time rather 
than waiting for deterioration or death. Use of composite 
“improvement” endpoints allows individual responders to 
be identified, lowers the placebo response and thereby also 
lowers the number of patients needed. It also permits the 
investigation of a drug effect in a shorter period of time.

However, the use of composite endpoints in clinical trials 
also has several disadvantages: (1) for TTCW, the event rate 
may vary and is sometimes hard to predict at the start of a 
study. To mitigate this, more recent trials are “event‑driven,” 
that is, they keep patients enrolled until an endpoint occurs, 
which sometimes leads to considerable adjustments 
of the sample size and duration of the study;[51]  (2) an 
individual component may confound the entire composite 
endpoint;[53] (3) outcomes such as hospitalization can be 
driven by social and nonmedical factors and need to be 
defined as disease driven;[54] (4) the inclusion of individual 
endpoints with country‑specific availability, that is, lung 
transplantation, may pose an imbalance in multinational 
studies; (5) a composite endpoint assumes that each of the 
components has equal implications to the patient and the 
physician. This may not always be the case. For example, 
TTCW may be driven by deterioration in 6-MWD as opposed 
to death; and (6) due to the rigorousness of a composite 
“improvement” endpoint, the responder rate may be viewed 
as low even though a high proportion of patients may have 
benefitted in their clinical well‑being overall.

Recommendations
•	 Appropriately designed and validated composite 

endpoints can provide a clinically relevant and valid 
means of investigating new treatments in trials

•	 Should a composite endpoint such as TTCW or 
improvement be incorporated into a trial, the individual 
components of such an endpoint should be clinically 
relevant, of prognostic value and ideally standardized 
across clinical trials in PAH[50]
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•	 For non‑PAH indications, the composition of such an 
endpoint may read differently and should be developed 
according to the underlying disease

•	 The successful design and implementation of composite 
endpoints into clinical trials will require a consensus 
to be reached between PH experts, pharmaceutical 
companies and regulatory authorities

The group of experts from the Dana Point 4th  World 
Symposium proposed the following:
•	 A uniform definition of TTCW should be used in future 

pivotal  (Phase III) RCTs in PAH. In the definition of 
TTCW, hard events would include the following:
o	 All‑cause mortality
o	 Nonelective hospital stay for PAH (with predefined 

criteria, usually for initiation of intravenous 
prostanoids, lung transplantation, or septostomy)

o	 Disease progression defined as a reduction from 
baseline in the 6-MWD by 15%, confirmed by two 
studies done within two  weeks plus worsening 
FC (except for patients already in FC IV)

•	 The consensus was that when TTCW is used in an 
RCT, there would be an infrastructure required to 
adjudicate events in question. This will be necessary 
particularly with respect to “worsening PH” events. 
Other insights from the FDA on the use of TTCW as 
an endpoint have been that while acceptable, perhaps 
a numerical value assignment to each component 
would further enhance the reliability of this endpoint. 
In addition, considering capturing the total number 
of events would also provide a broader, more 
inclusive endpoint. A numerical system which would 
include multiple events for a given patient could be  
designed.

BIOMARKERS

BNP and NT‑pro BNP
Plasma brain natriuretic peptide  (BNP)[55‑57] and its 
terminal prohormone  (NT‑pro BNP)[58] are secreted 
mainly by the ventricular myocytes in response to volume 
overload and increased wall stress. Hesselstrand et al.[59] 
showed that natriuretic peptide levels were related to 
the transtricuspid gradient in 227 consecutive patients 
with scleroderma. Several studies have evaluated BNP 
and NT‑pro BNP as biomarkers of prognosis in patients 
with PAH.[55‑58] Various cutoff levels of BNP have been 
associated with poor outcomes compared to patients with 
lower levels.[60] BNP and NT‑proBNP have also been used 
in patients with PH in the setting of chronic parenchymal 
lung disease,[61,62] congenital systemic‑to‑pulmonary 
shunts,[63] and in acute and chronic thromboembolic  
disease.[55,64,65]

Uric acid
Serum uric acid  (UA) is a marker of impaired oxidative 
metabolism and is elevated in several chronic conditions 
such as heart failure and chronic obstructive pulmonary 
disease (COPD). In a study of 99 IPAH patients, Nagaya et al.[66] 
showed that serum UA levels were elevated, correlated with 
pulmonary hemodynamics, had strong association with 
long‑term mortality and decreased with vasodilator therapy.

Renal function
Decreased renal function as measured by elevated blood 
urea nitrogen levels[67] or increased serum creatinine and 
decreased glomerular filtration[68] have been shown to be 
associated with a worse hemodynamic profile and were 
independent predictors of mortality in patients with PAH.

Other circulating markers
Markers of endothelial dysfunction are of great interest 
in PAH. Endothelin‑1  (ET‑1) is a potent vasoconstrictor 
produced by endothelial cells[69] and has shown some 
promise as a biomarker for PAH. A  small study[70] found 
that active ET‑1 and its precursor, big ET‑1, correlated with 
cardiopulmonary hemodynamics and 6-MWD and were 
strong prognostic markers for patients with IPAH. In a 
recent study of PAH patients,[71] ET‑1⁄ET‑3 ratio had a strong 
correlation with RAP, mixed venous oxygen saturation, 
WHO FC and 6-MWD.

D‑dimer is elevated in patients with IPAH compared 
with controls and is associated with disease severity 
and 1‑year survival.[72] Synthesized mainly in endothelial 
cells, plasma von Willebrand factor  (vWF) plays a role 
in platelet aggregation and adhesion at sites of vascular 
injury, is elevated in severe PAH and changes in parallel 
with improvements in hemodynamics in response to 
prostacyclin therapy.[73] In a retrospective cohort study 
of PAH patients, increased vWF levels at baseline and 
follow‑up were associated with reduced survival.[74] 
Elevated plasma vWF antigen  (vWF:  Ag) has also been 
found in PAH and baseline vWF: Ag correlated with the risk 
of death in the subsequent year.[75,76]

Several markers of inflammation, such as C‑reactive 
protein,[77] growth differentiating factor‑15,[78] and certain 
interleukins[79] have been shown to have potential for 
prognostic information as well; however, these require 
further study and validation. Cardiac troponin‑T is a 
sensitive and specific marker for myocardial injury and 
can be detected in the setting of acute RV failure from acute 
pulmonary embolism.[80] Preliminary information suggests 
that detection of cardiac troponins may be markers of poor 
prognosis in patients PAH.[81] Very little information is 
available regarding changes in any of these biomarkers in 
response to therapy. A recent study showed an improvement 
in levels of angiopoietin 2, matrix metalloproteinase 9 and 
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vascular endothelial growth factor with the addition of 
intravenous treprostinil.[82]

There is very little experience with using blood biomarkers 
to assess response to therapy in PAH and thus there is 
little data on their utility regarding response to therapy in 
clinical practice.

Recommendations regarding blood biomarkers
•	 We should determine which biomarker (e.g., BNP vs. 

NT‑pro BNP) should be used in clinical trials to ensure 
adequate validation of that variable

•	 All clinical trials going forward should, at a minimum, 
include BNP or NT‑pro BNP as an exploratory measure 
of outcome

•	 All clinical trials should include at least two other 
biomarkers as exploratory outcome measures for 
future validation

•	 Blood and tissue repositories should be created in 
association with all clinical trials going forward so that 
if new biomarkers become available in the future, their 
validity may be determined objectively

Imaging of the RV in pulmonary arterial 
hypertension clinical trials
Despite the tremendous attention that left ventricular (LV) 
failure has received, RV failure has remained understudied 
both at the preclinical and clinical level, although in patients 
with PAH, the status of the RV is the most important 
predictor of both morbidity and mortality.[83‑85]

RV function can be affected by experimental therapies that 
target the pulmonary circulation. For example, the PDE 5 
inhibitors have direct effects on the hypertrophied (but not 
normal) RV.[86] The other two classes of currently approved 
drugs for PAH were both initially developed to treat LV 
diseases and both failed clinical trials with potentially 
increased mortality, suggesting possible adverse effects 
on the myocardium. Thus, the possibility that a negative 
response to an experimental therapy may be due to a 
suppression of RV function (while there are still beneficial 
effects on the pulmonary vessels) needs to be considered 
as it could completely alter the interpretation of the results.

Echocardiography
This is used widely in the assessment of patients with PAH 
and RV disease, although it remains inferior to magnetic 
resonance imaging  (MRI) for overall assessment of RV 
function (mostly due to the complex, crescent‑like shape of 
the RV). However, recently, two methods have emerged as 
reliable indices of RV function and contractility. Tricuspid 
Annular Plane Systolic Excursion  (TAPSE) reflects the 
longitudinal systolic excursion of the lateral tricuspid valve 
annulus toward the apex. It is usually measured using 
M‑mode imaging in the 4‑chamber view and studies showed 

good correlation between TAPSE and RV ejection fraction 
measured by radionuclide angiography.[87‑89] Another 
noninvasive index of contractility based on the myocardial 
isovolumic acceleration (IVA) assessed by tissue Doppler 
has been described; IVA reflects RV myocardial contractile 
function and is less affected by preload and afterload within 
a physiologic range when compared to either dP/dt max or 
elastance and has been extensively validated clinically.[90‑92] 
Both methods are used clinically and can be standardized 
for clinical trials.

Magnetic resonance imaging
Cardiac MRI (cMRI) is the gold standard for evaluating right 
heart structure and function. The complex 3D structure 
of the RV can be directly evaluated with MRI in order to 
measure RV volume, mass and function  (e.g.,  ejection 
fraction) [93,94] without the need for computational 
assumptions; values for RV mass and volume in normal 
cohorts have also been reported.[95] Recent studies using 
MRI have demonstrated the prognostic value of RV mass 
and end‑diastolic volumes assessed by MRI in PAH.[96] MRI 
has a very high inter‑study reproducibility of all methods for 
measurement of chamber volumes and mass,[97,98] making 
it an important tool for clinical trials.

Pulmonary angiography may also be performed using MRI 
and pulmonary blood flow can be quantified in patients 
with PAH.[99] In addition, RV stress  (e.g.,  adenosine) 
perfusion protocols can be added in a manner similar to 
those applied for LV ischemia.[7,100,101] Recent studies showed 
evidence of MRI‑measured ischemia in the RV of SSc‑PAH 
patients.[102] If RV ischemia is considered as a contributor 
to RV failure, this technique may allow protocols to directly 
measure perfusion. In addition, if experimental therapies 
to modulate angiogenesis are tested in PAH, their potential 
effect on the RV should be considered. MRI offers the ability 
to measure lung parenchyma and RV free wall ischemia 
in the same setting. MRI’s ability to offer “single stop 
shop” comprehensive assessment of the “RV‑pulmonary 
circulation” unit is increasingly being recognized.[86]

Metabolic and molecular imaging
There is some evidence that the metabolism of the RV which 
changes as it hypertrophies is etiologically involved in RV 
failure and can be therapeutically targeted.[103] This means that 
it could be followed by imaging tools like positron emission 
tomography (PET). There are still many questions that need 
to be resolved with mechanistic studies  (e.g.,  whether a 
switch in metabolism might be related to transition from 
compensated to de‑compensated RV function). In addition, 
the performance of appropriate PET studies is difficult to 
standardize as it is also possible that some patients with PAH 
may have a generalized metabolic disturbance (e.g., insulin 
resistance[104]). Overall, the use of PET is promising, but its 
inclusion in clinical trials may be premature.
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Recommendations
•	 cMRI is the gold standard test for assessment of 

RV function and remodeling. Therefore, some cMRI 
parameters  (e.g.,  RV mass and RVEF) should be 
validated as endpoints for clinical trials.

•	 All clinical trials should include imaging sub‑studies 
which would allow validation of valuable imaging 
endpoints.

•	 TAPSE should be validated as a reliable endpoint in 
response to therapy.

Conclusions

In this document, we have reviewed the evidence related to 
the validity of current and emerging endpoints in clinical 
trials for PAH. We believe there is at this time an urgent 
need to identify and validate novel endpoints that reliably 
reflect the disease status (both from a pulmonary vascular 
and RV standpoint) and its response to therapy. Composite 
endpoints seem to be most valuable at this time although 
defining the best objective endpoints (including survival 
and lung transplantation) to be included into a composite 
score may be challenging. As treatment of the disease is 
slowly moving to more effective targeted therapy, this effort 
at defining reliable endpoints should be rewarding.
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