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Abstract: Free radicals are generated as byproducts of normal metabolic processes as well as due
to exposure to several environmental pollutants. They are highly reactive species, causing cellular
damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antiox-
idants can control autoxidation by interfering with free radical propagation or inhibiting free radical
formation, reducing oxidative stress, improving immune function, and increasing health longevity.
Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have
been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic,
and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxi-
dant properties of nanomaterials are dependent on their tunable configuration, physico-chemical
properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating.
Nanoantioxidants have several advantages over conventional antioxidants, involving increased
bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes
the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine
nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This
review overviews the antioxidant potential of biologically synthesized nanomaterials, which have
emerged as significant alternatives due to their biocompatibility and high stability. The promising
nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers,
and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of
nanoantioxidant applications are discussed.

Keywords: oxidative stress; nanoantioxidants; nanotoxicity; nanoencapsulation

1. Introduction

Environmental pollution, climatic changes, and unhealthy lifestyles have increased
the prevalence of serious and chronic diseases and age-related disorders [1]. Evidence from
toxicological investigations on cultured cells and animal models has shown a strong and
direct relationship between exposure to hazardous pollutants and generation of oxidative
stress, leading to the development of a plethora of pathological diseases such as renal
failure [2], atherosclerosis [3], diabetes [4], systemic inflammation [5], acute respiratory
syndrome [6], asthma [7], Alzheimer’s and Parkinson’s disorders [8], certain types of
cancer [9], and arthritis [10], etc. (Figure 1). In 1985, the concept of oxidative stress
was formulated by Helmut Sies in the book entitled “Oxidative Stress” to describe the
disruption of the balance between antioxidative defenses and oxidant molecules [11]. The
imbalance between oxidants and the cellular defensive antioxidants triggers oxidative
stress. In 1956, the term ‘reactive species” was coined to refer to oxidizing radicals [12].
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Figure 1. Exposure to different toxic chemicals triggers oxidative stress progression (a) and the incidence of oxidative 
stress in the human body is accompanied by a plethora of pathological diseases and disorders that cause damage to the 
heart, lungs, intestine, joints, muscles, skin, liver, brain, kidneys, eyes, and immune system (b). 

The reaction of antioxidants with free radicals is governed by various mechanisms, 
involving hydrogen atom transfer (HAT), single electron transfer (SET), and proton-cou-
pled electron transfer mechanisms [13,14]. The HAT mechanism is based on the ability of 
antioxidants to quench free radicals by detaching a phenolic hydrogen atom from the an-
tioxidant via homolytic cleavage of the O–H bond to the free radical, producing a stable 
product [15]. In this mechanism, the antioxidant is converted into a radical, which is sig-
nificantly more stable than the original free radical, and as a result, inhibiting the overall 
oxidation processes [16]. The bond dissociation enthalpy (BDE), a numerical parameter 

Figure 1. Exposure to different toxic chemicals triggers oxidative stress progression (a) and the incidence of oxidative stress
in the human body is accompanied by a plethora of pathological diseases and disorders that cause damage to the heart,
lungs, intestine, joints, muscles, skin, liver, brain, kidneys, eyes, and immune system (b).

The reaction of antioxidants with free radicals is governed by various mechanisms, in-
volving hydrogen atom transfer (HAT), single electron transfer (SET), and proton-coupled
electron transfer mechanisms [13,14]. The HAT mechanism is based on the ability of antiox-
idants to quench free radicals by detaching a phenolic hydrogen atom from the antioxidant
via homolytic cleavage of the O–H bond to the free radical, producing a stable product [15].
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In this mechanism, the antioxidant is converted into a radical, which is significantly more
stable than the original free radical, and as a result, inhibiting the overall oxidation pro-
cesses [16]. The bond dissociation enthalpy (BDE), a numerical parameter related to HAT,
is an essential parameter to evaluate the antioxidant activity in this mechanism [17]. Gen-
erally, the lower the BDE of the H-donating group of the antioxidant, the easier it is to
inactivate free radicals, and thus the high is the antioxidant activity of a compound [18].
Examples of HAT-based assays are the oxygen radical absorption capacity (ORAC), total
peroxyl radical trapping antioxidant parameter (TRAP), and total oxyradical scavenging
capacity (TOSC) assays [19].

The SET mechanism is based on the transfer of a single electron from the antioxidant
to the free radical. The antioxidant molecule is converted to an intermediate radical cation
that is less reactive than the original free radical [20]. In the SET mechanism, the ionization
potential (IP) of the reactive functional group of the antioxidant is the most significant
parameter for determining its antioxidant activity. Examples of SET-based assays involve
cupric reducing antioxidant capacity (CUPRAC), the Folin–Ciocalteu (FC), and the ferric
reduction of antioxidant power (FRAP) [19]. SET can be subdivided into single-electron
transfer followed by a proton transfer (SET-PT) and sequential proton loss electron transfer
(SPLET) [21,22]. In the SET-PT mechanism, an electron is first transferred from the phenolic
OH to the radical and the phenolic OH becomes a phenoxy radical cation (PhOH•+), which
deprotonates during the second step, resulting in the formation of a phenoxy radical
(PhO•) [23]. In the SET-PT mechanism, the radical transfer (i.e., first stage) is measured
as the ionization potential (IP) and the deprotonation (i.e., second stage) corresponds
to the proton dissociation enthalpy (PDE). The SPLET mechanism was first proposed
by Litwinienko and Ingold [24–26]. This mechanism proceeds via two stages, involving
(i) deprotonation of PhOH and formation of a phenoxide ion (PhO−) and (ii) transfer of
an electron from PhO− ion to the radical, leading to the formation of PhO• [27,28]. The
enthalpies of the first and second stages in the SPLET mechanism are denoted as proton
affinity and electron transfer enthalpy, respectively. The aforementioned mechanisms are
dependent on radical and solvent properties [29].

Proton-coupled electron transfer (PCET) is a more complex mechanism by which an
electron and a proton are transferred and their coupling has significant thermodynamic and
kinetic impacts on the process [30]. In the PCET mechanism, the transfer of an electron and
a proton can be sequential or concerted. In the PCET sequential transfer mechanism, the
electron can be transferred first and this process is designated as electron transfer-proton
transfer (ETPT). On the other hand, when the proton is transferred first, the process is
referred to as proton transfer-electron transfer (PT-ET). In the concerted PCET mechanism,
the electron and the proton are transferred simultaneously [31].

Reactive oxygen species (ROS) include radical species such as hydroxyl radical (•OH)
and superoxide anion radical (O2

•−), while singlet oxygen (1O2), hydrogen peroxide
(H2O2), ozone (O3), lipid peroxide (LOOH), and hypochlorous acid (HOCl) represent the
non-radical forms of ROS [32]. Reactive nitrogen species (RNS) include nitric oxide (•NO),
peroxynitrite (ONO2

−), nitrous oxide (N2O), nitrogen dioxide (NO•2), peroxynitrous acid
(HNO3), and nitroxyl anion (NO−) radicals [33]. Reactive oxygen and nitrogen species
(RONS) are spontaneously produced by endogenous metabolic pathways, for instance the
electron transport chain (ETC) or by enzymes like xanthine oxidase and nitric oxide syn-
thase. However, excessive exposure to some exogenous factors such as ionizing radiation,
heavy metals, and UV radiation also trigger the generation of excessive levels of RONS [34].
Under homeostatic conditions, the thresholds of RONS are tightly controlled at a systemic
level to fine-tune multiple physiological processes, including autophagy, immune and
mitogen induction, muscle contraction, enzymatic activities, and cell signal transduction
pathways [35]. Nevertheless, the sustained increase of free radical levels (e.g., ROS and/or
RNS) suppresses the natural body defense mechanisms, causing significant damage to
biological macromolecules, leading to aberrant protein expression, lipid peroxidation,
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oxidative DNA disruption, red blood cell degradation, enzyme inactivation, and vascular
and nerve impairment, hence affecting normal cellular functions [36].

Human cells possess cellular mechanisms devoted to the establishment of redox home-
ostasis. The disruption of this homeostasis has substantial pathophysiological implica-
tions [37]. In human cells, endogenous enzymatic and non-enzymatic defense mechanisms
counteract the disruption triggered by oxidative stress and help maintain appropriate levels
of RONS [38]. The enzymatic defenses involve catalases (CAT), superoxide dismutases
(SOD), and glutathione peroxidases (GSH-Px), whereas the non-enzymatic defenses in-
volve glutathione, uric and lipoic acids, thioredoxin, bilirubin, and ubiquinone [39]. These
enzymatic and non-enzymatic molecules have a crucial role in maintaining adequate levels
of RONS. Generally, the activity of antioxidants takes place via two basic pathways, either
by scavenging RONS or by inhibiting the synthesis of RONS. In certain cases, antioxidants
particularly, enzymatic compounds, exhibit antioxidant capacity via the simple degrada-
tion of RONS to less damaging intermediates [40]. Exogenous natural antioxidants such
as vitamins, carotenoids, polyphenolic compounds, curcumin, and metabolic sensitizers,
which are derived from fruits, vegetables, and their byproducts have displayed a high
potential to scavenge and combat the exacerbated levels of free radicals [41]. However,
natural antioxidants can be degraded prior to delivery to target sites and their biodistri-
bution is restricted by low absorption [42]. Some synthetic antioxidants such as butylated
hydroxyanisole, hydroxytoluene, and gallic acid esters have exhibited antioxidant potency;
however, adverse health effects limit their use [41].

Nanotechnology has opened up new horizons to explore creative solutions for the
treatment of oxidative stress-related disorders. Progress in nanotechnology has revolution-
ized the potential use of a number of nanomaterials as effective nanoantioxidants [43–46].
Nevertheless, the antioxidant capacity of these nanostructures varies according to their
chemical configuration, nature, surface charge, crystallinity, particle size, and surface
coating [47]. Recently, engineered nanoparticles (NPs) and nanocomposites have been
considered as nouveau tools for the development of innovative nanoantioxidants with
enhanced properties for health longevity. The integration of nanoscience with biomedicine
for the development of nanoantioxidant therapy has witnessed a significant breakthrough,
leading to major progress in the pharmaceutical and biotechnological industries [48]. In-
deed, nanoscience has provided promising solutions to address the challenges associated
with conventional antioxidant compounds and to enable the development of pioneering
classes of nanoantioxidants [49]. More interestingly, many categories of nanoantioxidants
have potent radical scavenging and quenching capacities that have shown greater antioxida-
tive sturdiness and more resistance to severe microenvironments than natural antioxidants.
Nanoantioxidants improve the pharmacokinetics of natural antioxidant molecules by pre-
venting their rapid degradation under stress conditions either through nanoencapsulation
or nanodelivery [50]. Although antioxidant-functionalized nanostructures have displayed
tremendous potential in animal experiments, clinical studies in humans remain elusive.

Reviews describing nanoantioxidant types and diverse applications can be found in
the recent scientific literature [51–55]. The presented 3D pie chart illustrates the number of
published original scientific literature under the keywords “nanoantioxidants”, “antioxi-
dant nanomaterials”, and “nanomaterials and antioxidant activity” in the last ten years
(Figure 2). This review covers the literature published over the last ten years by provid-
ing a discussion of the most pioneering nanoantioxidant types, such as ceria NPs, silica
NPs, polydopamine NPs, carbohydrate-and protein-based NPs, and nanocomposite-based
nanoantioxidants. The promising antioxidant role of biologically synthesized nanomate-
rials as alternative candidates is also overviewed. Solid lipid NPs, nanostructured lipid
carriers, and liposome NPs are overviewed as efficient nanoencapsulation nanosystems.
The toxicity concerns of nanoantioxidant applications are emphasized. The advantages,
limitations, and future perspectives of nanoantioxidant applications are proposed.
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Figure 2. Published original scientific articles under the keywords “nanoantioxidants”, “antioxidant nanomaterials”, and
“nanomaterials and antioxidant activity” (based on a SciFinder search; duplicates removed, November 2021).

2. Pioneer Types of Nanoantioxidants

Antioxidants are molecules that can counteract the action of reactive species and
inhibit the subsequent chain reactions before essential biological macromolecules are
damaged and cellular processes are disrupted. For a compound to be an antioxidant, it
should be capable of forming new intermediates that are non-reactive and quite stable
when exposed to further oxidation [56]. Antioxidants are divided into two main classes,
including (i) radical-trapping antioxidants, also referred to as chain-breaking antioxidants,
which capture chain-carrying radicals and hence cause the breaking of the oxidation
chain and (ii) preventive antioxidants, which reduce the rate of radical chains [57]. The
antioxidant mode of action involves (i) combating reactive radicals that induce peroxidation,
(ii) preventing the generation of reactive radicals and decomposition of peroxides by metal
ion chelation, (iii) scavenging O2

•− to inhibit peroxide production, (iv) interrupting auto-
oxidative reactions, and/or (v) minimizing localized O2 concentrations [58].

Currently, nanotechnology is growing rapidly in all scientific disciplines. The conver-
gence of nanotechnology with other scientific fields such as biomaterial science, molecular
biology, and medicine has contributed to the expansion and progress of nanomedicine.
Nanotechnology enables the synthesis and manipulation of nanometer-scale materials,
resulting in the development of novel nanomaterials for therapeutic and diagnostic ap-
plications in biological systems. NPs are the building blocks of nanoscience and have
outstanding properties such as a high surface-area-to-volume ratio [59]. The high crys-
talline surface area provides NPs with superb mechanical, optical, magnetic, catalytic,
and optical properties, thus increasing their potential pharmacological and biomedical
applications [60]. Nanoantioxidants are nanomaterials that can slow the overall rate of
autoxidation by trapping chain-carrying radicals or reducing initiation processes [61]. The
term nanoantioxidant (artificial antioxidants) was proposed by Sharpe et al. [40]. These
artificial antioxidants can be engineered at the nanoscale level, depending on the chemical
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composition, surface charge, surface-to-volume ratio, and surface coating of the NPs [40].
Antioxidants were defined by Halliwell as “any substance that can significantly delay or
prevent oxidation of an oxidizable substrate, when present at low concentrations compared
to those of that substrate” [56]. Numerous approaches have been established for the syn-
thesis of nanoantioxidants. The most common techniques applied for the preparation of
nanoantioxidants are summarized in Table 1. The antioxidant potential of nanoantioxidants
can be ascribed to their tunable catalytic and redox properties and the capacity to oscillate
between different oxidation states [51] (Figure 3).

Table 1. The most common methods applied for the preparation of nanoantioxidants.

Preparation Techniques Suitable Materials Advantages References

Templating Mesoporous materials
Easy operation, precise control over

particle size, shape, and structure, less
sensitive to operating conditions

[52]

Supercritical fluid Temperature-sensitive
materials Mild operating conditions [62]

Emulsion/solvent
evaporation Polymeric materials Rapid, mild operating conditions,

economical, no toxic solvents [54]

Solvent displacement
(Nanoprecipitation)

Lipophilic, polymeric, and
bioactive materials

Facile, rapid, reproducible, formation of
polymeric NPs, nanospheres, and

nanocapsules
[63]
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Nanoantioxidant biomedical applications have significantly advanced the biotechno-
logical and pharmaceutical industries, with remarkable progress in the field of antioxidant
therapy [64]. Nanoantioxidants have shown promising results to address the challenges
associated with conventional antioxidants and have enabled the development of an innova-
tive class of antioxidants [49]. They exhibit high antioxidative potential and high tolerance
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to harsh microenvironments. The potential use of nanoantioxidants has been reported
for several biomedical applications, such as treatment of autoimmune and metabolic dis-
eases [65,66], wound healing [67], tumor therapy [48], drug delivery [68], gene delivery [69],
theranostics [70] (Figure 4). The subsections that follow describe the most common and
pioneer types of nanoantioxidants based on the previously published literature.
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2.1. Metal Oxide-Based Nanoantioxidants

Metal oxide NPs are highly reactive particles due to the presence of atoms with
unpaired valence electrons located on the NP surface [71]. As a result of the unique
characteristics of NPs, their clinical application has significant advantages as compared to
conventional treatment therapies, which have several side effects and reduced efficiency at
target sites. Metal oxide NPs have been studied for a variety of biomedical applications,
involving antioxidant and antimicrobial applications, bioimaging, drug delivery, and
biosensing [72].

2.1.1. Nanoceria or Cerium Oxide-Based Nanoantioxidants

Several synthesis techniques have been reported for the chemical fabrication of
cerium oxide NPs (CeO2 NPs) or nanoceria including chemical precipitation [71], co-
precipitation [73], sonochemical [74], sol-gel [75], microwave [76], hydrothermal [77], and
microwave-assisted hydrothermal [78] techniques. CeO2 NPs are one of the most intriguing
metal oxide NPs, which have been widely employed for nanomedical and nano pharma-
ceutical research fields. Numerous studies have shown that CeO2 NPs have the potential
to suppress oxidative stress-related diseases such as Alzheimer’s disease [79,80], cardiomy-
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opathy [81], and cancer [82]. Free radicals play a dual role in living cells, having either
beneficial or toxic effects. At low/moderate levels, free radicals have several physiological
activities, involving immune function, cellular signaling pathways, mitogenic responses,
redox signaling, and growth regulation [83]. However, high levels of ROS/RNS can cause
oxidative stress and nitrosative stress, respectively, causing significant damage to cellular
biomolecules [84]. The ability of CeO2 NPs to scavenge free radicals is attributed to their
superior optical and catalytic properties and their potential to switch the oxidation states
(e.g., Ce3+ and Ce4+) [85] (Equations (1)–(3)) (Figure 5).

SOD mimic activity Ce4+ + O•−2 → Ce3+ + O2 (1)

Ce3+ + O•−2 + 2H+ → Ce4+ + H2O2 (2)

CAT mimic activity H2O2 → Ce3+ + 2H+ → Ce4+ + 2H2O (3)
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Figure 5. Antioxidant effect of cerium oxide NPs in normal cell under physiological pH via endocytosis and then scavenging
ROS, such as •OH, O2

•−, and H2O2 as a result of SOD mimetic activity, by which O2
•− is reduced to H2O2 and CAT activity

by which H2O2 is further degraded into H2O, and hence providing protection to normal cells.

However, CeO2 NPs are poorly soluble in water, posing several challenges when it
comes to biological applications. As a result, several studies reported that CeO2 NPs could
be well-dispersed in aqueous solutions when coated with dextran [86], polyethylene glycol
(PEG) [87], and polyacrylic acid [88] to improve their stability, biocompatibility, and water
solubility. Impregnation of nanoceria in polymeric matrices such as three dimensional (3D)
scaffolds or polymer coatings is a promising option for increasing biocompatibility, but it
may result in a reduction in therapeutic effects [89]. For instance, fructans are poly-fructose
molecules that are made up of fructose-linked polymers, involving levan and inulin.
Levan is a β-2, 6-conjugated fructose polymer. By applying a one-pot co-precipitation
technique, CeO2 NPs were conjugated with levan that acted as a reductant and a stabilizing
agent [90]. Coating CeO2 NPs with levan boosted its antioxidant potential. Additionally,
ROS levels were reduced in H2O2-induced NIH3T3 cells after treatment with levan-coated
CeO2 NPs, which could be useful in the treatment of ROS-mediated diseases. Using 3D
printing strategies may also be advantageous for the proper design of structures containing
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nanoceria to fine-tune their release for better therapeutic effects [89]. Entrapment within
an encapsulation hydrogel was reported as a strategy to reduce the cytotoxicity of CeO2
NPs. This delivery strategy allows particles to be targeted at the site of interest, reducing
phagocytosis while retaining their catalytic potential. A nanocomposite was engineered by
the incorporation of CeO2 NPs within an encapsulating alginate microbead hydrogel [91].
The as-prepared nanocomposite provided high antioxidant potential and cryoprotection
to beta cells against O2

•− attacks without cytotoxic effects up to 10 mM of encapsulated
CeO2 NPs. In contrast, phagocytosis of beta cells occurred even at concentrations as low as
1 mM of non-encapsulated CeO2 NPs.

Several factors affect the antioxidant potential of nanoantioxidants, such as size, shape,
surface charge, agglomeration, coating, and dissolution [92]. The effect of shape and
agglomeration on the antioxidant activity of CeO2 NPs-modified with AuNPs was stud-
ied [93]. Au/CeO2 NPs were prepared by hydrothermal technique and three morphological
structures of Au/CeO2 NPs were obtained (i.e., NPs, nanocubes, and nanorods). At low
concentrations, the antioxidant capacity of Au/CeO2 nanorods and NPs was enhanced,
while that of Au/CeO2 nanocubes was reduced. On the other hand, at high concentrations,
a reduction in the antioxidant activity of Au/CeO2 nanorods and NPs was observed, while
that of Au/CeO2 nanocubes was improved. This could be attributed to the severe agglom-
eration of Au/CeO2 nanorods and NPs at high concentrations, which covered the active
sites and reduced the antioxidant activity when compared to Au/CeO2 nanocubes, which
exhibited less aggregation. The behavior of nanocubes was contradictory to that of the NPs
and nanorods, which could be attributed to the (1 0 0) crystal planes, which might have
had an impact on the transfer of electrons at the interface.

2.1.2. Other Metal Oxide-Based Nanoantioxidants

Coating or surface functionalization of iron oxide (IO) NPs boosts their antioxidant
potential [54]. Gallic acid-functionalized Fe3O4 NPs with average sizes of 5 and 8 nm
had 2- to 4-folds lower half maximal inhibitory concentration (IC50) values than the non-
functionalized Fe3O4 NPs using the 1, 1-diphenyl-1-picrylhydrazyl (DPPH) scavenging
assay [47]. The free radical scavenging activity was due to the reaction of gallic acid with
DPPH-radicals. FTIR clearly demonstrated the disappearance of the hydroxyl groups
of gallic acid. In another study, under physiological conditions, monocrystalline and or-
thorhombic forms of vanadia (V2O5) nanowires with a size of ~100 nm exhibited significant
antioxidant potential by mimicking the antioxidant behavior of the antioxidant enzyme
GPx [94]. Although the bulk form of V2O5 is known for its cellular toxicity, this can be
dramatically altered when it is reduced to the nanoscale dimensions. Furthermore, the
biocompatibility of V2O5 nanowires may inspire its therapeutic potential for the prevention
of oxidative stress-related diseases. Another study showed that 20 nm-sized molybdenum
trioxide (MoO3) NPs had an intrinsic biomimetic sulfite oxidase potential, allowing for
the conversion of sulfite to sulfate and thus had a significant role in the detoxification pro-
cesses [95]. MoO3 NPs were surface-functionalized with dopamine as an anchor group and
triphenylphosphonium ion as a targeting agent. Lutetium oxide NPs (Lu2O3 NPs) were
synthesized via the sol-gel technique and doped with europium (Eu3+) [96]. The antiradical
activity of Lu2O3 NPs-doped with Eu3+ ions remarkably reached 86% as determined by the
2, 2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay. In another report, cop-
per oxide NPs (CuO NPs) were synthesized using the co-precipitation technique and were
coated with PEG and polyvinyl-pyrrolidone (PVP) by simple adsorption [97]. Interestingly,
the antioxidant potential of the coated CuO NPs (i.e., CuO-PEG and CuO-PVP NPs) was
higher than that of the uncoated particles. Similar behavior was noticed with that of ZnO
NPs that were capped with PEG and PVP [98]. The high antioxidant potency could be
attributed to the presence of ester linkages and carbonyl groups in both PEG and PVP [99].
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2.2. Mesoporous Silica or Silicon Dioxide-Based Nanoantioxidants

According to the Woodrow Wilson International Center for Scholars, silica NPs (SNPs)
are one of the five most commonly used nanomaterials in consumer products [100]. The US
Food and Drug Administration (FDA) approved the use of Cornell Dots (C-Dots) and silica-
integrated NPs for clinical trials on humans [101]. SNPs are perfect candidates to overcome
a variety of medical problems, including rapid hydrolysis, enzymatic degradation, mass
transport complications, difficulties of suspension formulation, and toxicity [102]. SNPs
have distinct properties, involving tunable mesoporous structures with versatile morpho-
logical structures depending on the synthesis techniques. SNPs are distinguished by their
biocompatibility and ease of fabrication, which allow for tunable surface modification [103].
The amorphous structure, size, stability, porosity, and surface modification are dependent
on the reaction parameters [104]. For the preparation of gel-type SNPs, the sol-gel technique
is usually applied, in which temperature, catalyst concentration, reagent ratio, and pressure
are important criteria that can alter the properties of SNPs. Mesoporous SNPs are excellent
nano vehicle candidates for smart drug delivery because of their porous structure, which
can encapsulate therapeutic agents [105]. Furthermore, altering the surface of the SNPs or
incorporating magnetic NPs to their cores can allow in vivo targeting to specific sites [106].

Novel mesoporous silica organic-based nanocomposites have been extensively in-
vestigated because of their large surface area and pore size, excellent thermal stability,
size control potential, monodispersity, and tunable functionalities [107]. The antiradical
properties of silicon dioxide (SiO2) NPs were assessed via the DPPH assay using UV/Vis
and electron paramagnetic resonance (EPR) spectrophotometers [108]. The SiO2 NPs were
covalently grafted and functionalized with gallic acid (SiO2-GA NPs). The DPPH solution
exhibited a rapid decolorization of the initial characteristic purple color upon reaction
with the SiO2-GA NPs. The key advantage of this preparation was the possibility of gallic
acid regeneration. DLS data indicated that SiO2-GA NPs exhibited a dramatic agglomer-
ation after their interaction with DPPH-radicals, resulting in an approximately six-fold
increase in the size of the SiO2-GA NPs compared to their original size (180 nm) before
the interaction with the DPPH-radicals. In another study, a silica-based nanocomposite
was fabricated using the modified Stöber technique via the incorporation of mesoporous
poly-(tannic acid) with SNPs (p(TA)- SNPs) [109]. SEM images showed the formation of
300 nm-sized spherical-shaped p(TA)- SNPs. The Folin–Ciocalteu and Trolox equivalent
antioxidant capacity assays were used to assess the antiradical potential of p(TA)-SNPs
against gallic acid and Trolox standards, respectively. The antiradical potency of p(TA)-
SNPs was 140.3 g/mL total phenol content in terms of gallic acid equivalency and 686 mM
trolox equivalent/g.

Two biopolymer silica-based nanocomposites, chitosan-SiO2 and carboxy methyl
cellulose-SiO2 (Chi-CMC-SiO2) were fabricated and loaded with an aqueous extract of
Larrea divaricata [110]. SEM micrographs demonstrated the uniform and porous structure of
the prepared silica-based nanocomposites. The antiradical activity was assessed using the
DPPH scavenging assay and by evaluating the SOD activity. Chi-CMC-SiO2 nanocomposite
exhibited 3.5-folds higher antiradical capacity when compared with Chi-SiO2 nanocom-
posite. In another report, a synthetic antioxidant fluorescent flavone was anchored onto
APTES-modified SNPs via sulfonamide linkage (FMES) [111]. The polydispersed index of
FMFS NPs was 443.7 nm and the zeta potential value was 10.2 mV. FMFS NPs displayed
a ferric reducing antiradical value of 55.6 ± 0.06 mM of gallic acid equivalent/g, which
was almost similar to quercetin [112]. Uniform spherical-shaped quercetin-loaded SNPs
(70–140 nm) were prepared by an oil-in-water microemulsion method [113]. The variations
in the sizes of the prepared particles were attributed to the increased concentrations of
quercetin. Nitroblue tetrazolium reduction method was used to quantify the generated
O2
•− by xanthine/xanthine oxidase (XO). Quercetin-loaded SNPs displayed a scavenging

activity of 73% towards O2
•−, which could be attributable to the highly porous structure

of SNPs that provided a favorable platform for increasing the biological activities of the
embedded components.
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2.3. Nanocomposite-Based Nanoantioxidants

Nanocomposites are innovative nanostructures consisting of organic and inorganic
components, which act as nanofillers dispersed in ceramic, metal, or polymeric matri-
ces [114]. Nanocomposite configuration depends on the integration of specific matrices
with nanofillers such as NPs, nanofibers, or nanofragments that bind together and surround
the matrix. Nanocomposites have several phases and at least one, two, or three phases
are within the nano dimensional range [115]. The fabrication of nanocomposites has been
extensively investigated owing to their distinctive features, novel design, cost-effectiveness,
and ease of preparation. The combination of a nanofiller with specific matrices boosts the
unique features of the nanocomposite, such as high mechanical stability (i.e., toughness,
strength, flexibility), good optical characteristics, low water and gas permeability, and high
electrical and thermal conductivity [116]. The properties of nanocomposites are highly de-
pendent on the strength of the matrix and the reinforcing properties of the fillers. The type,
size, concentration, and shape of the embedded fillers within the matrix impart unique
properties to each nanocomposite [117]. The radical scavenging potential of nanocomposite-
based nanoantioxidants is dependent on several criteria such as methods of preparation,
used solvents, and nanocomposite size [118]. The primary goal of hybrid nanocomposite-
based nanoantioxidants is to introduce innovative nanoantioxidants with multi-functional
and innovative properties that are distinct from their individual components.

A nanocomposite-based nanoantioxidant consisting of V2O5 nanowires and MnO2
NPs acted as a platform to mimic the endogenous antioxidant enzyme-based defense
reactions [119]. V2O5 nanowires mimicked the activity of GPx, whereas MnO2 NPs mim-
icked the activities of SOD and CAT. Dopamine was employed as a crosslinker to com-
bine and assemble the two nanomaterials into a nanocomposite form. The prepared
V2O5@PDA@MnO2 nanocomposite functioned as a multi-nanozyme model to mimic the
intracellular antioxidant enzymes. Both in vitro and in vivo experiments revealed the
biocompatibility of the synthesized nanocomposite with superior intracellular ROS scav-
enging potency, indicating its potential use in inflammation therapies. In another study, a
nanocomposite (MoS2@TiO2) containing TiO2 nano-belts and decorated with MoS2 NPs
was synthesized [120]. The prepared MoS2@TiO2 nanocomposite had the highest CAT
and SOD activities under physiologically relevant conditions. Notably, the nanocomposite
activity surpassed the single components in terms of dispersibility and catalytic behavior.
This could be attributed to the high surface area and the exposure of more reactive sites.
The MoS2@TiO2 nanocomposite exhibited good in vitro and in vivo biocompatibility as
well as efficient elimination and restoration of endogenous ROS to the normal levels using
fibroblast cell (L929) line as a testing model. In another study, the ROS-scavenging potency
of the CDs-CeO2 nanocomposite was assessed using 2′,7′-dichlorofluorescin diacetate
dye-based assay (DCFHDA). CDs-CeO2 nanocomposite had the potential to scavenge ROS
and prevent H2O2-mediated oxidative stress in NIH3T3 fibroblast cells [121]. The initiation
of radical adducts is largely dependent on the sp2 carbon content. However, CDs with very
little sp2 carbon content can display scavenging potency [122].

The stability and dispersibility of IO NPs in aqueous media represent the two main
barriers to their biomedical applications. IO NPs have a high tendency for agglomeration
due to interactions with the NPs themselves or with other biological molecules, leading
to subsequent precipitation out of the colloidal system [123]. Effective approaches have
been investigated to enhance the stability of IO NPs either by grafting with polymers
or surfactants or by encapsulation with inorganic coating materials, such as metals, non-
metals, metal oxides, and/or metal sulfides [124]. It is worth mentioning that surface
coating not only prevents IO NPs from being aggregated but also provides them with
more functionality. The antiradical potential of a rod-shaped chitosan-coated iron oxide
nanocomposite (CS-FeO) (20–90 nm) was evaluated using the DPPH and H2O2 assays [125].
The scavenging potency was concentration-dependent as it increased with the increase in
the nanocomposite concentration. Interestingly, CS-FeO nanocomposites showed higher
scavenging activity compared to the uncoated FeO NPs. The free radical scavenging
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efficiency of CS-FeO nanocomposites might be due to the presence of phenolic molecules
that had the ability to release the hydrogen atoms located in their hydroxyl groups. In
another report, reduced graphene oxide/zinc oxide nanocomposite-decorated with PdNPs
(Pd-RGO-ZnO) was synthesized via a one-pot hydrothermal method [126]. The size of
the Pd-RGO-ZnO nanocomposite ranged from 20 to 50 nm. The scavenging activity was
concentration-dependent and the highest radical scavenging potential was 48.6% using
200 µg/mL of Pd-RGO-ZnO.

Interestingly, the progress of advanced technologies such as microfluidics enables the
development of large-scale production of nanocomposites with desirable characteristics.
Microfluidic reactors provide a facility for the reaction of small reagent volumes, precise
monitoring of fluid blending, effective mass transport, better heat transfer, safe and low-
cost operations, and ease of automation in a short period [127]. They are extremely useful
in a variety of applications, including chemical, biological, material, and pharmaceutical
industries [128].

2.4. PDA-Based Nanoantioxidants

PDA has recently been studied as a novel biomaterial with numerous biomedical
applications such as drug carriers [129]. In 2007, Lee et al. [130] proposed the groundbreak-
ing pathways for PDA polymerization inspired by the exceptional adhesive properties
of mussel proteins and their ability to bind to almost any type of surface. The two pro-
posed pathways are the covalent bonding oxidative polymerization as well as physical
self-assembly (Figure 6). The adhesive power was attributed to the amino acid, lysine and
3,4-dihydroxy-L-phenylalanine (DOPA) [131]. Dopamine, a DOPA derivative, is a cate-
cholamine that has a significant role in mussel strong adhesion to a variety of substrates via
covalent and non-covalent linkages. PDA, a dopamine polymerized product, can adhere to
almost any material, such as metal-, ceramic-, and semiconductor-based polymers [132].
PDA is distinguished by its ease of synthesis without the need for organic solvents. Fur-
thermore, adjusting synthesis parameters, such as temperature, pH, reaction time, and
oxidant and dopamine concentrations aids in controlling the thickness of PDA films [133].
NPs can be significantly loaded onto PDA via physical or chemical bonds as a result of the
abundance of catechol/quinone moieties [134]. The unique properties of PDA can enhance
the hydrophilicity of the NPs, provide excellent biocompatibility and ROS scavenging po-
tency, and exhibit appropriate biodegradability. PDA has been extensively used for coating
organic and inorganic NPs due to its outstanding adhesive and biochemical properties.
PDA-based NPs have sparked the interest of researchers for cancer treatment, tissue repair,
antibacterial, antioxidant, and anti-inflammatory applications [135].

PDA core-shell NPs were synthesized by a simple stirring of dopamine hydrochlo-
ride in a Tris-HCl buffer saline solution at pH 8.5. Using Schiff base chemical bonding,
reduced PDA NPs (rPDA NPs) were integrated into oxidized dextran/chitosan hybrid
hydrogel [136]. The rPDA NPs were spherical in shape with a particle size of 240 ± 36 nm.
The prepared hydrogel exhibited a wound-healing effect due to its outstanding antioxidant
and antibacterial properties. The rPDA NPs were biocompatible and provided protection
against oxidative damage. In another study, lipid-coated PDA NPs (L-PDA NPs) were pre-
pared using Stöber method [137]. Transmission electron microscope (TEM) and scanning
electron microscope (SEM) revealed the uniform rounded shape of L-PDA NPs with an
average size of 170 ± 30 nm. The as-prepared L-PDA NPs had both antioxidant and neuro-
protective activities and provided a photothermal conversion platform, hence enhancing
the neuronal activity. L-PDA NPs suppressed the accumulation of ROS in different SH-
SY5Y, which were prone to pro-oxidative stimulation exerted by tert-butyl hydroperoxide.
Moreover, L-PDA NPs suppressed mitochondrial ROS-induced dysfunction and enhanced
neurite outgrowth.
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CuCl2 was successfully anchored on PDA-coated magnetic NPs (Fe3O4@PDA-CuCl2),
which displayed a uniform and well-dispersed quasi-spherical shape with a mean di-
ameter of 10–20 ± 5 nm [138]. Successful coordination of Cu species on Fe3O4@PDA
surface was confirmed using energy-dispersive X-ray (EDX)-coupled with FESEM, which
revealed the presence of elemental peaks of Fe, C, N, O, and Cu. Additionally, TEM images
showed the successful coating of dark Fe3O4 cores with the grey PDA/CuCl2 shells. The
DPPH radical scavenging activity of the prepared PDA-based nanocomposite was close
to that of butylated hydroxytoluene. The development of osteoarthritis has been related
to excessive ROS production as a result of mitochondrial dysfunction [139]. In another
study, uniform and non-agglomerated PDA nanospheres (117.7 nm) acted as dual-task
platforms for the treatment of osteoarthritis by scavenging ROS and regulating cellular
powerhouses (Figure 7) [140]. Zeta potential measurements revealed that the NPs were
negatively charged (−39.8 mV), which could be ascribed to the abundance of catechol
functional groups on the surface of PDA NPs. ROS scavenging activity of PDA NPs
was assessed against 1O2, •OH, H2O2, and O2

•. A dramatic reduction in ROS levels oc-
curred in presence of different concentrations of PDA NPs. The 1O2, •OH, H2O2, and
O2
•− were eliminated using 200 µg/mL of Fe3O4@PDA-CuCl2 with percentages of 66.6%,

71.1%, 76.1%, and 83.9%, respectively, indicating the remarkable scavenging potential
and the efficient removal of ROS in aqueous solutions. Furthermore, the intracellular
ROS-scavenging potential of PDA NPs was further assessed using DCFHDA and MitoSOX
(i.e., mitochondria-specific ROS probe). After incubation with PDA NPs for 24 h, the
ROS levels significantly decreased in a PDA concentration-dependent manner. Generally,
nutritional molecules are converted to ATP in mitochondria via mitochondrial oxidative
phosphorylation (OXPHOS). Mitochondria, cellular powerhouses, are considered signif-
icant cellular compartments for ROS production [141]. ROS are generated through the
ETC as byproducts of oxidative metabolism. ETC is found in the inner mitochondrial
membrane and is comprised of four protein complexes (i.e., Complex I, II, III, and IV) that
mediate electron transport and ATP synthesis. To investigate the effect of PDA NPs on
mitochondrial functionality, ATP levels were measured in LPS-treated chondrocytes in
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the presence and absence of PDA NPs. A significant increase in ATP levels was noticed
in chondrocytes incubated with LPS-PDA NPs. PDA NPs reversed the decrease in OX-
PHOS efficiency by boosting the efficiency of Complexes II, III, and IV in the ETC, hence
improving mitochondrial function and decreasing mitochondrial ROS production [140].

Molecules 2021, 26, x FOR PEER REVIEW 15 of 41 
 

 

negatively charged (−39.8 mV), which could be ascribed to the abundance of catechol func-
tional groups on the surface of PDA NPs. ROS scavenging activity of PDA NPs was as-
sessed against 1O2, •OH, H2O2, and O2•. A dramatic reduction in ROS levels occurred in 
presence of different concentrations of PDA NPs. The 1O2, •OH, H2O2, and O2•− were elim-
inated using 200 μg/mL of Fe3O4@PDA-CuCl2 with percentages of 66.6%, 71.1%, 76.1%, 
and 83.9%, respectively, indicating the remarkable scavenging potential and the efficient 
removal of ROS in aqueous solutions. Furthermore, the intracellular ROS-scavenging po-
tential of PDA NPs was further assessed using DCFHDA and MitoSOX (i.e., mitochon-
dria-specific ROS probe). After incubation with PDA NPs for 24 h, the ROS levels signifi-
cantly decreased in a PDA concentration-dependent manner. Generally, nutritional mol-
ecules are converted to ATP in mitochondria via mitochondrial oxidative phosphorylation 
(OXPHOS). Mitochondria, cellular powerhouses, are considered significant cellular com-
partments for ROS production [141]. ROS are generated through the ETC as byproducts 
of oxidative metabolism. ETC is found in the inner mitochondrial membrane and is com-
prised of four protein complexes (i.e., Complex I, II, III, and IV) that mediate electron 
transport and ATP synthesis. To investigate the effect of PDA NPs on mitochondrial func-
tionality, ATP levels were measured in LPS-treated chondrocytes in the presence and ab-
sence of PDA NPs. A significant increase in ATP levels was noticed in chondrocytes incu-
bated with LPS-PDA NPs. PDA NPs reversed the decrease in OXPHOS efficiency by 
boosting the efficiency of Complexes II, III, and IV in the ETC, hence improving mitochon-
drial function and decreasing mitochondrial ROS production [140]. 

 
Figure 7. Illustration of PDA NPs as ROS scavengers and as regulators of cellular powerhouses (mitochondria) to reduce 
osteochondral inflammation. 

2.5. Polysaccharide-and Protein-Based Nanoantioxidants 
Polysaccharide NPs have been extensively studied in a variety of basic and applied 

science fields, ranging from polymer chemistry to material research to advanced pharma-
ceutical and biomedical applications [142]. Pharmaceutical applications of polysaccharide 

Figure 7. Illustration of PDA NPs as ROS scavengers and as regulators of cellular powerhouses (mitochondria) to reduce
osteochondral inflammation.

2.5. Polysaccharide-and Protein-Based Nanoantioxidants

Polysaccharide NPs have been extensively studied in a variety of basic and applied sci-
ence fields, ranging from polymer chemistry to material research to advanced pharmaceuti-
cal and biomedical applications [142]. Pharmaceutical applications of polysaccharide NPs
involve targeted drug release [143], in vivo drug delivery [144], and stabilizing cosmetic
ingredients (e.g., skin and hair care) [145], gene delivery [146], and vaccine delivery [147]
as a result of their biodegradability, biocompatibility, muco-adhesive properties, and cel-
lular uptake [148,149]. Cell viability tests have revealed their non-cytotoxicity [150,151],
whereas biomedical applications of the polysaccharide NPs involve their use as sensors for
the detection of viruses and bacteria [142], tissue engineering [152], wound healing [153],
tumor therapy, and delivery of anticancer agents [154].

Chitosan and sodium alginate has been extensively investigated as carrier molecules
to encapsulate micro-and nano-particulate drugs under mild conditions [155]. Chitosan
(cationic biopolymer) and sodium alginate (anionic biopolymer) have the potential to
encapsulate active macromolecular and low molecular weight molecules [156]. Chitosan is
a biodegradable and naturally occurring bio-based marine polysaccharide derived from
the fractional N-deacetylation of crustacean shell chitin [157]. The poor water solubility
of chitosan limits its diverse applications; however, it can be resolved via the preparation
of chitosan nanoformulations, which have distinct properties such as antimicrobial and
antioxidant activities. In one study, tripolyphosphate acted as a cross-linker for the syn-
thesis of naringenin-encapsulated chitosan NPs (CS-NPs/NAR) via ionic gelation [158].
The free radical scavenging activity of CS-NPs/NAR was evaluated at two concentrations
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(e.g., 0.3 mg/mL and 0.5 mg/mL). The DPPH and •OH radical scavenging activities were
84% and 75%, respectively using 0.5 mg/mL of CS-NPs/NAR. A significant reduction
in nitrate rate (0.16 µM and 0.12 µM) was noticed using 0.3 mg/mL and 0.5 mg/mL of
CS-NPs/NAR, respectively. NAR is a potential scavenger of •NO and it reacts with •NO
by competing with oxygen, hence aiding in the inhibition of nitrite production. Addi-
tionally, NAR released from CS-NPs/NAR had the potential to convert DPPH radicals to
non-radical forms, which are inactive. In another report, catechin-loaded NPs were formu-
lated by ionic gelation via the dropwise addition of tripolyphosphate in chitosan cationic
solution [159]. Catechin-loaded NPs displayed higher DPPH-radical scavenging activity
than pure catechin, exhibiting scavenging activities of 67.01 ± 0.15% and 65.69 ± 0.34%,
respectively. Additionally, catechin-loaded NPs exhibited •NO and H2O2 scavenging
activities of 46.12 ± 0.11% and 36.31 ± 0.31%, respectively, which were higher than those
of pure catechin, which exhibited scavenging activities of 42.31 ± 0.14% and 38.12 ± 0.11%,
respectively. This could be ascribed to the presence of a matrix structure containing ionic
polymers. A similar interpretation for the high scavenging activity was proposed in the
study of Nallamuthu et al. [160], in which chlorogenic acid, a phenolic compound, was
encapsulated into chitosan NPs by ionic gelation method.

Alginate is a naturally occurring biopolymer that is derived from algae, seaweeds,
and bacteria [161,162]. It is charcaterized by its high biocompatibility and biodegradability
as well as its water-forming gel characteristics. Because of its availability, cost-effectiveness,
and ease of formulation, alginate became one of the most commonly used polymers in
formulation studies [54]. Alginate nanohydrogels have been used to deliver antioxidants,
primarily by combining a multi-functional cross-linker with other polymers to boost the
mechanical properties and bioactive release profiles. In one study, AuNPs were synthesized
and impregnated with a highly conducting colloidal nanocomposite, polyaniline boronic
acid/sodium alginate (PABA-SAL) [163]. The nanocomposite exhibited a moderate antioxi-
dant potential. The highest tested concentration of PABA-SAL@AuNPs nanocomposite
(i.e., 6 µg/mL) exhibited a low radical scavenging activity of 15.6%. The results obtained
were lower than that of ascorbic acid, a potent antioxidant. Findings obtained from the
FRAP assay revealed that both PABA-SAL@AuNPs and ascorbic acid showed the same
reduction power.

Proteins are biodegradable, biocompatible, and readily available molecules for NP
preparation [164]. Protein-based NPs have been employed for the targeted delivery of
bioactive drugs due to their potential to interact with both hydrophilic and hydrophobic
moieties [165]. They can act as delivery nano vehicles for DNA, RNA, anticancer drugs,
hormones, and growth factors. When compared with other colloidal nanocarriers, protein-
based NPs are highly stable and can be easily manufactured using various methods. The
most common techniques are desolvation, complex coacervation and nanospray; however,
nanospray drying is still in its infancy with some drawbacks, involving decreased flow
rates and purity [166]. As a result, more studies are required to resolve these disadvan-
tages. Polycaprolactone-gelatin nanofiber (PGNPNF) mesh-functionalized with CeO2 NPs
was synthesized by electrospinning and was evaluated for its antioxidative activities in
wound healing applications [167]. The synthesized CeO2 NPs were ~42 nm in size with
a zeta potential value of 30.8 mV. The bioactive PGNPNF nanocomposite maintained
the fibrous morphological structure for 14 days. The incorporation of CeO2 NPs in the
PGNPNF mesh exhibited a SOD mimetic potential. The PGNPNF mesh reduced oxida-
tive stress by ROS scavenging as revealed by relative dichlorofluorescein intensity and
fluorescence microscope.

2.6. Biologically Fabricated Nanoantioxidants

The “Green Chemistry” approach first proposed in 1991 was pursued to reduce hu-
man and environmental exposure to toxic chemicals as well as decrease or eliminate the
use of toxic constituents [168]. In 1998, John C. Warner and Paul Anastas published their
pioneer book “Green Chemistry: Theory and Practice” [169]. The twelve key principles of
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green chemistry included in this book paved the way for inspiring academic scientists and
industrial personnel at that time and they continue to influence the advancement of the
green chemistry approach to the present day. These fundamental principles affirmed the
importance of reducing or eliminating the use of hazardous solvents in chemical reactions.
Furthermore, an emphasis was directed towards the urgent need to avoid the release of
any toxic waste products or discharges from chemical procedures [170]. The principles
shed the light on the importance of using environmentally friendly guidelines during
the fabrication, manipulation, and analysis of chemical products. The primary goal of
these principles was to decrease any inherent occupational or environmental hazards that
may exist while operating industrial activities [171]. Nanobiotechnology has emerged as
a significant biological route for NP fabrication that can employ sustainable strategies by
following the basic principles of green chemistry [172]. Table 2 shows a list of some of the
biologically fabricated monometallic, bimetallic, and metal oxide NPs exhibiting antioxi-
dant/antiradical activity. A schematic representation showing the biological fabrication of
nanoantioxidants using different biological entities is illustrated in Figure 8.

Table 2. List of biologically fabricated monometallic, bimetallic, and metal oxide NPs endowing antioxidant potential.

Type of NPs Biological
Extract

Size (nm),
Shape

Characterization
Techniques

Evaluation
Assays

IC50 Value
(µg/mL)

Antiradical/
Antioxidant
Activity (%)

References

Monometallic-Based Nanoantioxidants

Ag Malus domestica 100,
spherical

UV/Vis spectroscopy, SEM,
Zeta potential DPPH - 75.16 [173]

Ag Asphodelus
aestivus

50,
spherical

UV/Vis spectroscopy, NTA,
XRD, TEM, FTIR

DPPH,
ABTS•+,

H2O2

-
67.54,
79.94,
31.67

[174]

Ag Lippia
nodiflora

30–60,
spherical

UV/Vis spectroscopy, FTIR,
XRD, SE-EDX, TEM, Zeta

potential

DPPH,
O2
•−,

H2O2,
•OH

-

67,
70,

71.1,
69

[175]

Ag Memecylon
umbellatum

7–22,
spherical

UV/Vis spectroscopy, FTIR,
HRTEM, XRD,
Zeta potential

DPPH 53.46 81.57 [176]

Ag Calophyllum
tomentosum

24,
spherical

UV/Vis spectroscopy, FTIR,
XRD, EDX, SEM

DPPH,
H2O2,
•NO

-
90,

83.94,
78.46

[177]

Ag Morus alba 12–39,
spherical

UV/Vis spectroscopy, FTIR,
HRTEM, XRD,
FESEM, EDX

ABTS•+,
DPPH,
O2
•−,

•NO

25.929,
97.273,
37.097,
70.992

95.08,
47.81,
81.92,
64.04

[178]

Ag Piper longum 28.8,
spherical

UV/Vis spectroscopy,
FESEM,

XRD, FTIR, HRTEM
DPPH - 78.64 [179]

Ag Rosa canina 19.75,
spherical

UV/Vis spectroscopy, TEM,
XPS, XRD DPPH - 86.4 [180]

Ag Clove bud 17.94,
spherical

UV/Vis spectroscopy, EDX,
XRD, FTIR, Zeta potential,

cyclic voltammetry

ABTS•+,
•OH

33.03,
47.37 - [181]

Ag Cleome viscosa
50,

Rod/spherical/
triangular

UV/Vis spectroscopy, FTIR,
XERD, SEM,

TEM

DPPH,
ABTS•+

20.32,
48.5

92.8
77.63 [182]

Ag Allium
ampeloprasum

35,
spherical/quasi

spherical/
ellipsoidal/

triangu-
lar/hexagonal

UV/Vis spectroscopy, FTIR,
XRD, TEM

DPPH,
ABTS•+,
H2O2,
•NO,
O2
•−

8.93,
18.31,
11.25,
16.51,
23.22

- [183]
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Table 2. Cont.

Type of NPs Biological
Extract

Size (nm),
Shape

Characterization
Techniques

Evaluation
Assays

IC50 Value
(µg/mL)

Antiradical/
Antioxidant
Activity (%)

References

Ag Aesculus
hippocastanum

50 ± 5,
spherical

UV/Vis spectroscopy, FTIR,
XRD, SEM, Zeta potential

DPPH,
O2
•− - 93.48

62.9 [184]

Ag Lactobacillus
brevis

45,
spherical

FTIR, XRD, SEM, TEM,
elemental analyzer

DPPH,
H2O2,
•NO

-
81.4,
70.1,
75.06

[185]

Ag Achillea
millefolium

20.77
(spherical),

18.53
(triangular),
14.27 (cubic)

UV/Vis spectroscopy, FTIR,
SEM, XRD DPPH 7.03 - [186]

Ag Cannabis sativa 11.5,
spherical

UV/Vis spectroscopy, FTIR,
FESEM, TEM DPPH 218 - [187]

Au Lotus
leguminosae

37,
spherical UV/Vis, IR, TEM, TGA DPPH 30.54 - [188]

Au Clove bud
27.12,

hexagonal/
polyhedral

UV/Vis spectroscopy, EDX,
XRD, FTIR, Zeta potential,

cyclic voltammetry

ABTS•+,
•OH

36.76,
50.32 - [181]

Au Curcuma
pseudomontana

20,
spherical

UV/Vis spectroscopy, SEM,
HRTEM, FTIR

DPPH,
H2O2,
•NO,

reducing
power,

CUPRAC

-

85.2,
83.2,
84.5,
87.9,
85.6

[189]

Ag,
Au

Plumbago
zeylanica

28.47
(spherical),

16.89
(spherical)

UV/Vis spectroscopy, FTIR,
TEM, XRD, EDX DPPH 56.98 (Ag),

68.53 (Au)
78.17,
87.34 [190]

Pt Tragia
involucrata

10,
spherical

UV/Vis spectroscopy, XRD,
FTIR, FESEM,

HRTEM
DPPH - 64 ± 0.43 [191]

Cu Falcaria
vulgaris

20–25,
spherical

UV/Vis spectroscopy, XRD,
HRTEM, FESEM, FTIR DPPH 190 - [192]

Cu Borreria
hispida

121 ± 37,
quasi

spherical

UV/Vis spectroscopy, XRD,
SEM, EDX, FTIR DPPH 0.6 - [193]

Bimetallic-Based Nanoantioxidants

Ag/Cu Borassus
flabellifer

80,
-

UV/Vis spectroscopy, FTIR,
SEM

DPPH,
•OH,
H2O2

-
58,
48,
42

[194]

Cu/Zn Borassus
flabellifer

100,
-

UV/Vis spectroscopy, FTIR,
SEM

DPPH,
•OH,
H2O2

-
40,
38,
28

[194]

Ag/Pt Vernonia
Mespilifolia

35.5 ± 0.8,
spherical

UV/Vis spectroscopy, TEM,
EDX, FTIR

DPPH,
ABTS•+,

FRAP

19.5
21.6
44.1

- [195]

Au/Ag Clove bud 16.04,
spherical

UV/Vis spectroscopy, EDX,
XRD, FTIR, Zeta potential,

cyclic voltammetry

•OH,
ABTS•+

30.59
18.27 - [181]

Metal Oxide-Based Nanoantioxidants

CuO Cucurbita sp.

45–65,
rod/

rectangular/
hexagonal

UV/Vis spectroscopy, XRD,
SEM, EDX, HRTEM DPPH 40.81 91.37 [196]

MgO Pisonia alba <100,
spherical

UV/Vis spectroscopy, TEM,
EDX, XRD, FTIR

DPPH,
FRAP - 65,

69.3 [197]
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Table 2. Cont.

Type of NPs Biological
Extract

Size (nm),
Shape

Characterization
Techniques

Evaluation
Assays

IC50 Value
(µg/mL)

Antiradical/
Antioxidant
Activity (%)

References

ZnO Tecoma
castanifolia

70–75,
spherical

UV/Vis spectroscopy, TEM,
XRD, FTIR DPPH - 56.11 [198]

ZnO Knoxia
sumatrensis

50–80,
rod

UV/Vis spectroscopy, XRD,
FTIR, FESEM

DPPH,
ABTS•+,

H2O2

95.80,
92.29,
98.92

-
50.70

-
[199]

CuO Cissus
vitiginea

~32.3,
spherical XRD, EDS, TEM DPPH 45.29 86.78 [200]

TiO2 Cola nitida 25–191,
spherical

UV/Vis, FTIR, TEM, EDX,
XRD, FESEM

DPPH,
H2O2

- 62.06
99.23 [201]
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Figure 8. A schematic representation showing the biological fabrication of nanoantioxidants using different biological entities.

Rounded-shaped CeO2 NPs with an average diameter of 21 nm were synthesized us-
ing the extract of Stachys japonica [202]. In vitro studies showed that the S. japonica-derived
CeO2 NPs exhibited an antiradical activity against DPPH-radicals and ABTS+ with IC50
values of 109.5 ± 0.26 µg/mL and 12.16 ± 0.12 µg/mL, respectively. S. japonica-CeO2 NPs
were biocompatible and efficiently reduced the cellular oxidative stress in mouse fibroblast
NIH3T3 cells in terms of cytotoxicity, ROS generation, and prevention of mitochondrial
membrane potential (MMP) loss, and nucleus impairment. Neurodegenerative disorders
such as Alzheimer’s and Parkinson’s diseases occur as a result of neural cell death and/or
weakening of neural cell-to-cell signaling [203]. In a recent study, Aloe vera leaf extract
acted as a reducing and stabilizing agent for the biological synthesis of 2–3 nm-sized CeO2
NPs [204]. Pretreatment of mouse neuroblastoma cells with A. vera-derived CeO2 NPs
resulted in inhibition of oxidative stress in terms of cell viability, generation of intracellular
ROS, loss of MMP, neural connectivity, and cell cycle arrest.
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Nonetheless, certain drawbacks of green nanoantioxidant fabrication impose further
investigations. The most significant disadvantages of the green synthesis of nanoantiox-
idants are the difficulties in completely separating nanoantioxidants from biomass. On
the other hand, the requirement for additional purification stages may have inevitable
effects, particularly on potential pilot up-scale production [205]. The antioxidant properties
of the biogenic nanomaterials are closely related to the chemical functionalities present
on their surface, making standardization difficult. For the efficient synthesis of green
nanoantioxidants, it is necessary to optimize the various process parameters that may
influence the synthesis of desirable sizes, shapes, and monodispersed particles [206]. To
gain a comprehensive understanding of the entire fabrication process, the precise identifi-
cation of the bioactive molecules participating in the green synthesis of nanoantioxidants
is required; however, the presence of numerous phytochemicals and biomolecules makes
this a difficult task [205]. The application of synthetic approaches based primarily on
the use of sustainable materials is quite interesting and necessitates more in-depth re-
search to achieve commercial and industrial-scale production. Industrial upscaling of
green synthesized nanoantioxidants can be accomplished by employing simple, low-cost
protocols, and standardizing the synthesis parameters. Biologically fabricated nanoan-
tioxidants have to be precisely fabricated, carefully monitored, and analyzed to overcome
challenges related to crystallinity degree, morphological configuration, and conceptual
size [207]. More in vivo research on biologically fabricated nanoantioxidants is critical for
safe biomedical applications.

3. Solid-Lipid-Based NPs, Nanostructured Lipid Carriers, and Liposome NPs as
Efficient Nanoencapsulation Systems
3.1. Solid-Lipid-Based NPs and Nanostructured Lipid Carriers

The structural configuration of solid lipid nanoparticles (SLNs) and nanostructured
lipid carriers (NLCs), as well as their distinguishing features, make them preferable for
delivering sensitive bioactive molecules while avoiding chemical degradation. SLNs were
first introduced in 1991 as a revolutionary strategy to resolve the various drawbacks
associated with other encapsulation methods [208]. SLNs are composed of lipids that
remain solid at both the room and human body temperatures, making them extremely
useful when it comes to achieving controlled drug release and for the development of
new formulations [209]. Moreover, the size of SLNs ranges between 40 and 1000 nm,
allowing for a broader range of NPs and bioactive compounds to be encapsulated based on
specific requirements [210]. SLNs possess various advantages compared to other colloidal
systems, involving high stability, biodegradability, lack of toxicity, the possibility of up-
scale production, and the ability of lyophilization, and incorporation of hydrophilic and
lipophilic drugs [211]. However, some limitations are associated with SLNs, such as a
relatively high water content (i.e., 70%–99.9%), which may represent a major issue during
incorporation into a final product [212]. Furthermore, due to the tendency of lipid crystals
to recrystallize over time, loading efficiency can decrease. Nanostructured lipid carriers
(NLCs) are a new generation of lipid NPs that are made up of both solid and liquid lipids
in ratios ranging from 70:30 to 99.9:0.1 [210]. When using liquid lipids, the melting point
is reduced, which improves some of the intrinsic properties such as reduced drug release
during storage and improved loading potential [213]. However, it is important to note that
drug localization in the SLNs/NLCs is also affected by lipophilicity and the structure of the
target molecule [214]. For the aforementioned reasons, NLCs are an interesting option for
preserving antioxidant molecules while controlling their release rates. Several studies have
shown that some antioxidants, such as lycopene [215], quercetin [216], curcumin [217],
and astaxanthin [218] can be successfully loaded onto NLCs. Other studies revealed
the successful encapsulation of resveratrol [219], idebenone [220], ferulic acid [221], and
curcumin [222] on SLNs. Some of the most common techniques applied for the synthesis
of SLNs and NLCs are presented in Figure 9 [209].
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3.2. Liposomes and Their New Generations

Liposomes were first introduced by Alec Bangham in 1961 [223] and since then they
have become one of the most common carriers for encapsulation purposes, particularly in
cosmetic and pharmaceutical applications. Liposomes are spherical vesicular structures
made up of naturally occurring phospholipid bilayers, allowing lipophilic and hydrophilic
drugs to be incorporated into the lipid layers and the aqueous core, respectively [224].
Liposomes are characterized by their decreased toxicity, biocompatibility, biodegradabil-
ity, and non-immunogenicity because of their natural bilayer composition. Liposomes
also have the ability to encapsulate hydrophilic, lipophilic, and amphiphilic molecules as
well as having a versatile chemical structure [225]. The natural bilayer is composed of
phosphatidylcholine, cholesterol, phosphatidylglycerol, dipalmitoylphosphatidylcholine,
stearylamine, distearoylphosphatidylcholine, and dicetylphosphat [226]. Properties of lipo-
somes are mainly dependent on their lipid structure, size, surface charge, and method of
preparation. The rigidity and the charge of the liposomes are affected by the choice of the
bilayer components [227]. Liposome NPs are classified into the following categories based
on their size, involving small uni-lamellar vesicle (20–100 nm), large uni-lamellar vesicle
(>100 nm), multi-lamellar vesicle (>500 nm), and multi-vesicular vesicle (>1000 nm) [228].

Liposomes as drug delivery systems have become a biomedical research hotspot
because they offer specific-targeted delivery at target sites [229]. The innovative use of
liposomes has significantly improved therapies by providing stability to therapeutic com-
pounds, tackling the limitations related to cellular and tissue uptake, and enhancing their
biodistribution and permeation at target sites in vivo [230]. Drugs loaded into liposomes
are further protected from the surrounding physiological conditions, including enzymatic
degradation, immunologic inactivation, and rapid plasma clearance, thus improving and
extending their action. Liposomes have been reported as efficient nanoencapsulation
systems because they can fuse with the cell membrane and deliver the exogenous drug
molecules to target cells due to the similarity of the liposome lipid bilayer to the real cellular
membrane [231]. However, the use of liposomes can be restricted due to their short life
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span, sensitivity to oxidation, tendency for aggregation, and poor response to external
stimuli [232,233]. Furthermore, one of the major disadvantages of liposome formulation
is its rapid clearance from systemic circulation. This rapid clearance is caused by the ab-
sorption of the phospholipid membrane that comprises the liposome structure by plasma
proteins [234]. To overcome these limitations, liposome–polymer integration is regarded as
an innovative strategy for improving in vitro and in vivo performance of liposomes [235].
Liposomes can be modified with polymers either by surface coating or grafting [236].
Liposome surface modification alters their shape, size, surface charge, and lipid chain
ordering. Consequently, surface-modified liposomes can exhibit improved biological prop-
erties, such as increased stability, consistent targeting, and long-term circulation [237].
Examples of the several biopolymers that can be used for the modification of liposome
surface involve chitosan, cellulose, pectin, polysaccharide gums, and proteins [238–241].
Moreover, coating the liposomal surface with hydrophilic polymers such as polyethylene
glycol (PEGs) can slow the clearance of liposomes. PEGs are characterized by low im-
munogenicity and antigenicity, hence can act as a protective covering over the liposome
phospholipid bilayer [234,242]. The improved stability of surface-modified liposomes is
due to the electrostatic and/or steric repulsion between liposome vesicles. Various attempts
have been carried out to develop new generations of liposome NPs such as transferosomes,
ethosomes, niosomes, cubosomes, biosomes, novasomes, and vesosomes. The composition
and advantages of each new generation of liposomes are shown in Table 3.

Table 3. Composition and characteristic features of each liposomal new generation.

Type Composition Advantages References

Transfersomes Lipid chains and surfactants
“edge activators”

High elasticity, flexibility, and
penetration potential [243,244]

Ethosomes Phospholipids, water, and high ethanol
concentrations (20–45%)

High elasticity, permeability, distribution,
flexibility, steric stability, and low aggregation [245]

Niosomes Non-ionic surfactant Ease of production, low production cost, high
chemical stability and storage [246]

Cubosomes Lipid cubic phase and coated by
apolymer-based outer coating

High surface area, water solubility, better
stability, and encapsulation efficiency [247]

Biosomes Bile salts Deep penetration, high stability, and
encapsulation efficiency [248]

Novasomes
Numerous amphiphiles such as fatty
alcohols and acids with each other, or

with phospholipids
Precise targeting and efficient delivery [249]

Vesosomes Liposomal vesicles encapsulating
smaller liposomes of different sizes High protection and encapsulation efficiency [250]

4. Toxicity Concerns of Nanoantioxidant Applications

The discipline of nanotoxicology is concerned with determining the toxicity and safety
of NMs [251]. The assessment models used for this purpose include 2D cultures at the
cellular level, small animal experiments (mice and rats), and traditional model organisms
(zebrafish). 2D cultures are basic and beneficial means for toxicity assessment. They have
several merits, including low cost, short test period, and the ability to obtain quick results;
thus, they can be used to conduct pro-phase experiments under controlled conditions.
However, they have drawbacks, such as the inability to simulate the human body’s complex
tissue structure and microenvironment. Animal experiments are complicated because of
the inevitable species differences as well as ethical concerns that may prevent their use
by the scientific community. Recently, some emerging non-animal models have gradually
emerged for toxicity assessment, including 3D co-cultures, organoids, as well as organ-
on-chip technologies [252–254]. These emerging non-animal models can simulate the
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structure and key functions of human organs. More notably, when compared to 2D
cultures, they can reproduce the interactions between cells and secreted substances in the
microenvironment. Furthermore, they have other advantages, such as high throughput
and less consumption [255].

Although nanoantioxidant-based therapies have shown promising results in laborato-
ries, there are still some hurdles to overcome before their use in clinical applications. In vivo
studies are a prerequisite for assessing the biological effects of nanoantioxidants. In vivo
systems are distinguished by their complexity, which allows the elucidation of diverse
biodistribution and metabolic mechanisms as well as excretion and immune responses [256].
For instance, several in vitro and in vivo animal studies indicated that different shapes
and sizes of nanoceria have therapeutic efficacy; however, no clinical trials have certified
their use in the treatment of human diseases [89]. This could be attributed to the deficiency
of clinical guidelines and care protocols for the use of nanoceria. In this regard, more
research is mandatory to thoroughly determine the possible accumulation and clearance of
nanoceria in target tissues and vital organs and to define the best administration routes
and optimum doses. Attention must be taken into account when using nanoceria because
their pharmacokinetics and distribution differ significantly from their bulk counterparts.
In male Wistar adult rats, toxicity studies were carried out to evaluate the histopathological
changes after the administration of CeO2 NPs that were synthesized using pullulan [257].
When compared to negative control groups, in vivo experimental results revealed that
CeO2 NPs had no significant effects at hematological and biochemical levels. Furthermore,
the biosafety of CeO2 NPs was evaluated by performing histopathological examinations
on kidney and liver tissues using an optical microscope, which confirmed the absence of
any significant pathological modifications. Findings were consistent with those reported
by Srinivas et al. [258]. There were no negative effects on kidney and liver functions,
hematology, or blood biochemistry of the tested rats after the exposure to CeO2 NPs in
either study. Using the serum of Wistar rats, the pullulan-mediated CeO2 NPs displayed
a strong anti-radical activity as revealed by ferric reducing/antioxidant power (FRAP)
assay. This was due to their ability to bind to oxygen under various oxidizing and reducing
conditions. Future research should be directed towards elucidating the long-term fate of
nanoceria and quantifying the lowest nanoceria therapeutic doses that can be administered
without causing any toxic effects.

One of the major issues causing complications during the interpretation of SNP nan-
otoxicity is the presence of numerous influential parameters that must be controlled one
by one. Nanotoxicity of SNP are influenced by two major factors: (i) physicochemical
properties such as size, surface charge, surface area, aggregation severity, porosity, geom-
etry, degradability, density, and dissolution, and (ii) treatment conditions such as dose
concentration, tested medium, exposure time, cell type, and animal model [259]. The use of
capping molecules to prevent the off-target release of SNPs is an innovative strategy. These
capping molecules can be polymeric multi-layered supra-molecules, DNA constructs, or
proteins [260]. Fabrication of these complexes facilitates the responses towards the changes
of specific stimuli, such as redox chemistry, temperature, pH, and enzymes [102]. The effect
of the SNP size administrated intravenously on the biodistribution and pharmacokinetic
behavior in mice was investigated [261]. Interestingly, small-sized SNPs (i.e., 50 nm) ex-
hibited no significant toxic effect, whereas large-sized SNPs (i.e., 100 and 200 nm) caused
liver inflammation in mice. All SNPs were excreted via urine and bile; however, particles
accumulated in the liver and spleen remained for four weeks after the single first dose
injection [262]. As a result, biosafety considerations, long-term accumulation in tissues
and organs, nanotoxicity, and biodegradability of nano-sized silica particles necessitate
further research [263]. Comprehensive research is required to precisely assess the geno-
toxicity levels and mechanisms, the impact of long-term exposure to SNPs, the effect of
their physicochemical characteristics, their routes of exposure, and the role of the immune
response [259]. Ecotoxicological studies for assessing the potential risk of SNP are critical
for a safer application and handling. To control its potential hazards, safety designs, bio-
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logical monitoring, appropriate hazard evaluation, and suitable waste discharge should be
implemented [264]. As a result of mass production, widespread application, and potential
environmental release, occupational exposure to SNPs has become increasingly common
and unavoidably resulting in different impacts on human health [265]. Several studies
postulated that uncontrolled exposure to SNPs can result in negative impacts on multi-
ple organs and systems, involving respiratory [266], cardiovascular [267], hepatic [268],
renal [269], nervous [270], immune [271], and reproductive systems [272].

In one study, in vivo toxicity of CeO2 NPs synthesized by a co-precipitation technique
via the reaction of cerium nitrate (i.e., precursor) and xanthan gum (i.e., a hydrophilic
polysaccharide with cellulose-like biopolymer and a green stabilizer) was investigated [273].
Intraperitoneal injection was applied to assure the uniform distribution of CeO2 NPs in the
tissues of albino laboratory male rats. The biochemical and histological studies revealed
that the green synthesized CeO2 NPs exhibited a dose-dependent biological activity. Serum
samples were analyzed for some biochemical parameters, including aspartate transaminase,
alanine aminotransferase, creatinine, and blood urea nitrogen. The effect of CeO2 NPs on
the activity of the two antioxidant enzymes (e.g., SOD and CAT), peroxidation of liver
lipids, and liver histopathology were also studied. The intraperitoneal administration of
CeO2 NPs at a dose of 30 mg/kg had no significant changes on the biochemical parameters
or antioxidant status, whereas the injection of CeO2 NPs at a dose of 60 mg/kg dramatically
reduced the activities of serum liver enzyme and enhanced the activities of serum CAT
and SOD. However, for long-term biomedical applications, proper dose selection is manda-
tory. In another study, selenium NPs-enriched polysaccharide (Se-POP-21) synthesized
by Pleurotus ostreatus were purified, analyzed using column chromatography, and evalu-
ated for their antioxidant potential [274]. Se-POP-21 expressed a strong scavenging effect
towards DPPH-radicals and •OH and the scavenging rate was concentration-dependent.
Interestingly, Se-POP-21 exhibited no remarkable effects on normal cells.

5. Advantages of Nanoantioxidant Applications

Progress in the design of nanomaterials with antioxidant activity over the last few
years has given rise to promising therapeutic applications at different target sites [275].
The unique opportunities for clinical use of nanoantioxidants are attributed to the fact
that their size is larger than the size of renal filtration (i.e., 10 nm) and can therefore be
retained in circulation for longer periods [276]. Nanoantioxidants can also be used at low
doses but with high efficacy, minimizing any possible adverse health effects. Nanoantioxi-
dants are characterized by high accessibility, reactivity, and responsiveness to task-specific
functions in targeted tissues. Treatment with nanoantioxidants can be integrated with
conventional therapy to provide a potential therapeutic option for patients with oxida-
tive stress-mediated pathological disorders. In this context, excellent efficiency has been
achieved by covalent linkage and encapsulation of natural antioxidants within nanospheres
containing antioxidant-functionalized nanomaterials [277].

6. Limitations of Nanoantioxidant Applications
6.1. Limitations of Nanoantioxidant Methods of Detection and Measurements

Although nanoantioxidants possess distinct advantages over conventional antioxi-
dants, they do have some limitations [278]. Prior to the clinical use of nanoantioxidants,
several critical hurdles and challenges need to be addressed. Spectroscopic or fluoromet-
ric detection techniques of nanoantioxidants are influenced by interference, caused by
overlaps between the absorption peaks of nanomaterials tested and those of the probes
or reaction products. Noble metal-based nanomaterials reveal surface plasmon resonance
(SPR) properties at visible wavelengths, which may cause the falsification of absorption
peaks. The properties of SPR are usually influenced by the size, shape, and surface con-
figuration of nanoantioxidants [279]. Interference of antioxidant determination assays is
significantly related to the types of nanomaterials employed and their catalytic, absorption,
fluorescence, and optical properties. Additionally, the suitability of the assay to determine
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the nanoantioxidant potential should be studied on a case-to-case basis to prevent any
incorrect measurements. EPR is also referred to as electron spin resonance (ESR) or electron
magnetic resonance (EMR) spectroscopy. The EPR spectrophotometer provides remarkable
data for the identification, quantification, dynamics, and analysis of ROS and RNS. EPR
spectrophotometer detects free radicals directly and accurately even at extremely low
concentrations (i.e., 1 µM) [280]. It is distinguished by the ability to directly measure ROS
in vivo. When dealing with short-lived ROS, the spin-trapping technique forms a spin
adduct by adding radicals to a nitrone spin, which has a comparatively long half-life and
can be detected using an EPR spectrophotometer. EPR combined with appropriate spin
traps have emerged as powerful tools for measuring •OH, O2

•−, and •NO in biological
systems [280]. Pyrroline-based cyclic nitrones such as 5,5-dimethyl-pyrroline N-oxide and
5-diethoxyphosphoryl-5-methyl pyrroline N-oxide are the most frequently utilized spin
traps [281]. Both types of spin traps react with the •OH and O2

•− radicals and form –OH
and –OOH adducts, respectively. In comparison to other spectrophotometric techniques,
EPR facilitates the interpretation of complex heterogeneous solutions [282]. However, the
short lifetime of free radicals and the low-rate extent of radical generation in living tissues
and organs make radical detection by EPR challenging. As a result, rapid-scan EPR has
emerged as a powerful technique for sensitive detection of ROS with excessively short
lifetimes (e.g., •OH and O2

•−) at ambient temperatures, which were difficult to detect
using EPR [283].

It is a contentious issue to improve existing protocols and assays for assessing the
antioxidant potency of nanoantioxidants. Assays based on the spectrophotometric or spec-
trofluorimetric basis are subjected to light scattering exhibited by a variety of nanomaterials.
In this context, inhibited autoxidation methods, which rely on measuring the autoxidation
rate of a reference substrate in the presence and absence of nanoantioxidants, are among
those methods that cause less interference. Inhibited autoxidation methods are preferable
protocols because they assess the antioxidant activity in close-to-real settings. Monitor-
ing the absence of reactants, most commonly O2 or the generation of oxidation products
(e.g., hydroperoxides or conjugated dienes) can be used to assess inhibited autoxidation
kinetics [284]. Oximetry methods measure oxygen (O2) consumption and are carried out in
closed systems and monitored by a fluorescence quenching probe [285], a polarographic
probe [286], or a pressure transducer [287]. The trend of O2 uptake in oximetry methods
typically follows a biphasic behavior, with an induction phase in which the antioxidant
suppresses the autoxidation accompanied by a rapid rate of autoxidation. Oximetry meth-
ods can be implemented in homogeneous organic solutions, water-based solutions, and
heterogeneous models such as liposomes or micelles. The potency of nanoantioxidants can
be easily assessed using oximetry methods with a differential pressure transducer because
this method is not affected either by the color of the colloidal solution or the incidence of
the suspended NPs [288].

6.2. Other Limitations of Nanoantioxidant Applications

Nanomaterial agglomeration may also cause interference during antioxidant deter-
mination assays. The morphological structure, shape, surface charge, and type of nano-
materials affect the agglomeration tendency, which further affects the cellular uptake and
ultimately affects the associated toxicity [289]. Some adjustments and strategies to avoid
interference of conventional antioxidant assays and to provide more reliable measurements
of the nanoantioxidant biological effects are described as follows [290]:

• Use of well-dispersed nanomaterials (not-agglomerated);
• Application of washing and separation steps (e.g., centrifugation, filtration, and

precipitation);
• Use of appropriate conditions similar to those of biological systems;
• Application of concentrations below toxicity ranges.

Overall, a combination of more than one detection assay will provide a fully compre-
hensive and informative picture of the antioxidant capacity of nanomaterials.
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Nanoantioxidant doses and their frequency vary greatly based on the levels of RONS
in different inflammatory diseases and even within the several phases of the same inflam-
matory disease. Application of appropriate doses of nanoantioxidants for the control of
intracellular RONS should be directed towards therapeutic applications without exacer-
bating any adverse clinical manifestations. Ideally, nanoantioxidants should significantly
contribute to the well-being of patients and reduce or prevent treatment-induced health
side-effects to overcome potential risks. Enhancing biocompatibility and feasibility of
nanoantioxidants are also issues of concern that need to be addressed prior to commer-
cialization of nanoantioxidants. Scientists have spent the previous decade assessing and
monitoring the impact of nanomaterials on biological systems and it has been suggested
that the cytotoxic effects of nanomaterials are variable and can be reduced [52].

From a synthesis point of view, optimizing the synthesis parameters would contribute
to the development of high-quality nanoantioxidants and well-defined and reproducible
nanostructures with better physicochemical characteristics. Cost-effective commercial pro-
duction is also a crucial step that should be considered for the potential use of nanoantioxi-
dants in biomedical practices. Long-term chronic cytotoxic effects need to be thoroughly
investigated and assessed for safe in vivo applications. The precise identification of nature,
physicochemical properties, and the mechanism of action of functionalized nanoantioxi-
dants is a prerequisite for achieving the maximum biological benefits [54]. Additionally,
a comprehensive assessment of the toxicity of non-biodegradable nanoantioxidants is a
vital issue for any future biomedical application. Hence, applications of sophisticated
safety measurements for precise analysis, assessment, and toxicity evaluation are the basic
requirements. To address some of the toxicity issues, nanoantioxidants derived from var-
ious biological sources, such as bacteria, fungi, algae, plants, and lichens have emerged
as significant alternative options for improved biocompatibility, durability, efficacy, and
stability. Biological sources are efficient producers of a wide range of biomolecules and
secondary metabolites [291]. The amalgamation of these biologically active compounds
mediates the manufacture of biogenic-derived nanomaterials with antioxidant potency.

7. Future Insights of Nanoantioxidant Applications

Nanoantioxidants have exhibited high potency for oxidative stress depletion with high
cellular antioxidant potential, specificity, and targeted delivery. However, to achieve signif-
icant clinical benefits, a thorough understanding of the detailed antioxidative mechanisms
of nanoantioxidants necessitates extensive cross-collaboration of experts from various
fields, including materials science, chemistry, as well as physical and biomedical fields.
In-depth mechanistic studies of oxidative stress in vivo will be helpful to revolutionize the
nanoantioxidant therapeutic field. Identification of the oxidative species that are primarily
responsible for the onset and progression of oxidative stress-related diseases is required.
Most notably, the use of nanoantioxidants will be significantly dependent on their rational
design, characterization, as well as tools and methods that can provide a thorough and
detailed understanding of their antioxidant activities. The tailored design of nanoantiox-
idants can result in significant antioxidative potential in vivo and, as a result, improve
clinical effectiveness. It is necessary to precisely identify the nature, physicochemical prop-
erties, and mechanisms of action of nanoantioxidant composites in terms of their biological
and catalytic activities. Searching for the best and the most cost-effective routes for the
preparation of nanoantioxidants is necessary while minimizing their cytotoxic effects. The
use of advanced models to assess their cytotoxic effects will aid in the robust evaluation of
emerging antioxidative monotherapies. Prior to practical applications of nanoantioxidants,
more research is required related to their in-situ delivery and on-time release at target sites.
Evaluation of the benefits and side effects of using nanoantioxidants is necessary before
they can be used safely in vivo, particularly for long-term treatments. Moreover, novel
and efficient therapeutic nanoantioxidant delivery methods are required. Understanding
the nature of new nanostructures with antioxidant activity will thus pave the way for
nanoantioxidant-mediated treatments in the future.
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To summarize, future studies shall be aimed at (i) analyzing the impact of prolonged
exposure to minor concentrations of nanoantioxidants; (ii) assessing the potential risks of
nanoantioxidants during fabrication, manipulation, and storage; (iii) simplifying the fabri-
cation processes for the manufacture of highly potent nanoantioxidants; (iv) enhancing the
reproducibility, biocompatibility, reliability, robustness, and stability of nanoantioxidants in
biological microenvironments; and (v) designing microreactors that can effectively control
the parameters of reaction synthesis.

8. Conclusions

Specific types of nanoantioxidants have emerged as pioneer types due to their an-
tioxidant potency, demonstrating a superior potential to reduce oxidative stress with
increased sensitivity, low cytotoxicity, and better-targeted delivery. Ceria-, silica-, PDA-
, polysaccharide-, protein-, and nanocomposite-based nanoantioxidants are among the
most interesting and investigated types of nanoantioxidants due to their unique physico-
chemical properties, which can be tunned/adjusted to produce superior multifunctional
nanoantioxidants. This can be accomplished by monitoring the preparation methods and
optimizing the reaction parameters to obtain the desired types of nanoantioxidants with
proper surface functionalization. Bioengineered nanomaterials have emerged as promising
green nanoantioxidants and better alternatives due to their biocompatibility, biodegradabil-
ity, low toxicity, and stability. Solid lipid NPs, nanostructured lipid carriers, and liposome
NPs are efficient nanoencapsulation systems. The toxicity concerns of nanoantioxidant
applications have been emphasized. The advantages, limitations, and future insights of
nanoantioxidant applications have been proposed to achieve a win-win situation in the
fight against oxidative stress-mediated disorders.
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