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Abstract

Objective: To assess the generalizability of a clinical machine learning algorithm across multiple emer-
gency departments (EDs).
Patients and Methods: We obtained data on all ED visits at our health care system’s largest ED from May
5, 2018, to December 31, 2019. We also obtained data from 3 satellite EDs and 1 distant-hub ED from
May 1, 2018, to December 31, 2018. A gradient-boosted machine model was trained on pooled data from
the included EDs. To prevent the effect of differing training set sizes, the data were randomly down-
sampled to match those of our smallest ED. A second model was trained on this downsampled, pooled
data. The model’s performance was compared using area under the receiver operating characteristic
(AUC). Finally, site-specific models were trained and tested across all the sites, and the importance of
features was examined to understand the reasons for differing generalizability.
Results: The training data sets contained 1918-64,161 ED visits. The AUC for the pooled model ranged
from 0.84 to 0.94 across the sites; the performance decreased slightly when Ns were downsampled to
match those of our smallest ED site. When site-specific models were trained and tested across all the sites,
the AUCs ranged more widely from 0.71 to 0.93. Within a single ED site, the performance of the 5 site-
specific models was most variable for our largest and smallest EDs. Finally, when the importance of
features was examined, several features were common to all site-specific models; however, the weight of
these features differed.
Conclusion: A machine learning model for predicting hospital admission from the ED will generalize
fairly well within the health care system but will still have significant differences in AUC performance
across sites because of site-specific factors.
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M any health care systems are
becoming interested in operational-
izing machine learning (ML) predic-

tive models to guide resource allocation.1,2

The use of ML to predict which emergency
department (ED) patients may ultimately
require hospital admission has the potential
to reduce ED overcrowding and improve hos-
pital efficiency.3,4 Existing literature has re-
ported that regression analysis5,6 and ML
approaches7-9 can be suitable for this task,
achieving excellent performance. Specifically,
regression models, tree-based models, and
neural network models performed well when
Mayo Clin Proc Inn Qual Out n June 2022;6(3):193-199 n https://d
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structured data inputs were used, whereas
neural networks displayed better performance
when unstructured features, such as clinical
notes, were included.10

Modern health care systems often include
a network of hospitals, with lower-capacity
community or critical-access hospitals serving
more remote geographies while referring pa-
tients with complications to the network’s
larger secondary or tertiary care centers.11

With these structures becoming increasingly
common, it will be important to understand
how an algorithm for predicting admissions
generalizes across different sites in the health
oi.org/10.1016/j.mayocpiqo.2022.03.003
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care system, particularly given the context of
mounting concerns regarding the generaliz-
ability of health care ML algorithms.12 A better
understanding of this issue will likely help
guide model training and implementation for
many health care systems looking to imple-
ment these types of algorithms.

In particular, we hypothesized that issues
with model generalizability could arise from
site-specific or model-specific factors.
Site-specific factors contributing to model
generalizability could include differing patient
characteristics or ED practice patterns, which
may also be related to specific capabilities of
a given ED. Model-specific factors may include
random errors or differences in model perfor-
mance relating to the volume of training data
available, which may be of particular concern
for small-volume, rural EDs.

Here, we assessed the generalizability of a
model that predicts the likelihood of hospital
admission of ED patients. We elected to use
a gradient-boosted machine (GBM) model for
this task, given that we anticipated using struc-
tured data features for the ease of model
implementation in practice. Neural network
models were considered, but we suspected
that performance gains would be minimal
over GBM, given the lack of unstructured fea-
tures, and there would be an increase in the
complexity of model training and tuning. We
hypothesized that a model training strategy
that uses pooled data across ED sites with
downsampling training data set sizes would
lead to optimal model performance across
the sites. Additionally, we suspected that a
model trained at a referral center might gener-
alize poorly to a small, rural ED and vice versa.
Finally, we hypothesized that there would be
some common clinical features that are found
to be important across all predictive models.
PATIENTS AND METHODS

Data Collection
We obtained data on all ED patients presenting
to our health system’s largest ED (Rochester,
Minnesota) from May 5, 2018, to December
31, 2019. We also obtained data on all ED pa-
tients from 3 regional satellite EDs of various
sizes (Eau Claire, Wisconsin; Austin, Minne-
sota; and New Prague, Minnesota) and 1
distant-hub site (Phoenix, Arizona) from May
Mayo Clin Proc Inn Qual Out n June 2022
1, 2018, to December 31, 2018. Our study
was deemed exempt and granted a waiver of
consent by the Mayo Clinic Institutional
Review Board (#21-006291). The data were
stored in our organization’s electronic health
record data warehouse and extracted using
SAP Web Intelligence. Data on the hospital’s
surrounding communities were collected from
public US Census Bureau reports.

Feature Selection
We captured and engineered a total of 47
model features pertaining to real-time clinical
information about the patients (age and initial
vital signs), the chief symptom, any ED proto-
cols activated, and the mode and timing of
arrival at the ED. Chief symptom labels were
coded by our ED and, thus, did not have is-
sues with accommodating free text. Emer-
gency department protocol activation refers
to our ED’s use of several standardized docu-
mentation protocols for certain high-acuity
situations such as ST-elevation myocardial
infarction or trauma. We prioritized using
features that would be available early in a
patient’s ED course, likely within the first 15
minutes, to ensure that our predictions are
maximally forward looking. Of note, all EDs
included in our study shared a high degree
of data harmonization because of pre-existing
data infrastructure work. However, local prac-
ticesdand, thus, patterns in the datadmay
differ from site to site. All features included
in the model, along with data type, are listed
in the Supplemental Appendix (available on-
line at http://www.mcpiqojournal.org).

Pooled Model
We then used the XGBoost package with a
random 70/15/15 train/validation/test split of
all the sites’ data combined to train a model
and subsequently test it against a 15% random
test sample of each site’s data. The area under
the receiver operating characteristic (AUC)
and its SD, using jackknife estimation, were
calculated for each model test. For the jack-
knife estimation of SD, we calculated the
AUC for each of n test sets, where n corre-
sponded to the size of a given test set, with
each test set consisting of n�1 observations,
with each observation being excluded once.
We then calculated the SD of this AUC distri-
bution. Analysis of variance (ANOVA) was
;6(3):193-199 n https://doi.org/10.1016/j.mayocpiqo.2022.03.003
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TABLE 1. Characteristics of the Different Emergency Department Sitesa

Characteristic Rochester, Minnesota Phoenix, Arizona
Eau Claire,
Wisconsin Austin, Minnesota New Prague, Minnesota

ED visits/y 78,000 44,000 34,000 18,000 7,000

ED capabilities 76 beds, level 1 trauma
center, inpatient psychiatry,

ED observation unit

27 beds, level 4
trauma capabilities

27 beds, level 2
trauma center

17 beds, level 4
trauma center

4 beds, level 4 trauma center,
critical-access hospital

City population 115,557 1,680,992 68,187 25,114 7,899

City % White 82% 66% 91% 93% 97%

City median household
income (2019)

$73,106 $57,459 $55,477 $48,127 $77,949

aED, emergency department.

GENERALIZABILITY OF ED AI ADMISSION PREDICTION
performed to assess any significance of differ-
ences between the sites.

Pooled Model With Downsampled N
Because the number of visits sampled at each
site differed by up to 30 times, we sought to
remove this factor as a potential contributor
to differing model performance by site. There-
fore, each site’s data were randomly sampled
down to the size of our smallest ED site. The
train/validation/test split was repeated, and a
second model was trained on this down-
sampled, pooled data and again tested across
each site. Furthermore, ANOVA was repeated.

Site-Specific Models With Cross-Site Testing
To further understand the potential reasons
for the differing model performance, we then
trained a model on each ED’s downsampled
data and tested each of those models across
the sites to understand whether admission de-
cisions were consistently easier or more diffi-
cult to predict at certain sites. Furthermore,
ANOVA was performed for each of the 5
site-specific models to compare their AUC re-
sults across the sites.

Importance of Features
Finally, we examined the top 10 features that
the model deemed most important across the
5 site-specific models and the pooled model
to further understand how the model was
making predictions at each site.

RESULTS
The characteristics of the 5 EDs studied are
summarized in Table 1, along with basic
Mayo Clin Proc Inn Qual Out n June 2022;6(3):193-199 n https://d
www.mcpiqojournal.org
demographic information about their sur-
rounding communities. Specifically, in the
US component of our health care system, there
are 3 major EDs, in Rochester, Minnesota;
Phoenix, Arizona; and Jacksonville, Florida,
with the Rochester site being the largest. Sur-
rounding the Rochester site is a network of
smaller hospitals ranging from secondary
referral sites to critical-access hospitals. As
described in Table 1, we attempted to capture
1 ED of each of our institutional size
designations.

Table 2 presents the characteristics of
patient samples from each site. For context,
we included information about the fraction
of patients admitted, ED visit duration, and
emergency severity index (ESI; lower numbers
indicate greater patient acuity) as well as the
number of visits used for the training, valida-
tion, and testing of the model per site.

Table 3 presents the results of AUC testing
across the sites of models trained on pooled
data before and after the downsampling of
data set Ns. The downsampled models
matched each site’s data to the same N as
that of New Prague, Minnesota, before pooling
the data. The AUC performance decreased
slightly, and its SD increased at each site in
which the downsampling of the data occurred.
The same was true when the models on the
pooled samples were tested. The differences
in AUC by site were found to be significant,
with P<.01, determined using ANOVA. New
Prague, Minnesota, was not included in
ANOVA for the second model because its
AUC was identical to that of Austin,
Minnesota.
oi.org/10.1016/j.mayocpiqo.2022.03.003 195
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TABLE 2. Patient Sample Characteristics by Emergency Department Sitea

Characteristic Rochester, Minnesota Phoenix, Arizona Eau Claire, Wisconsin Austin, Minnesota
New Prague,
Minnesota

Training N 64,161 18,233 12,506 6,558 1,919

Validation N 12,322 3,907 2,680 1,405 411

Test N 12,322 3,907 2,680 1,405 411

Patients admitted (%) 35% 49% 27% 18% 21%

Median ED visit duration (h) 4.4 3.7 3.3 2.8 3.0

Patients ESI 1-3 (%) 80% 88% 82% 67% 75%

Mean patient age (SD) 55.9�20.7 58.6�19.7 52.4�21.4 52.5�22.3 54.0�21.8

aED, emergency department; ESI, emergency severity index; SD, standard deviation.

TABLE 3. Performance of

Test sites listed to the right

Pooled, not downsampled
AUC � SD

Pooled, downsampled
AUC � SD

aAUC, area under the receiver-
bIndicates P<.001 by analysis o
cIndicates P<.001 by analysis of
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Table 4 presents the results of the testing
of site-specific models, each trained using
training sets of downsampled Ns, across all
the sites and pooled test data. All AUCs were
significantly different from each other. When
the models were tested at the same site at
which they were trained, the performance
was highest at Eau Claire, Wisconsin (0.93),
and lowest at New Prague, Minnesota (0.79),
suggesting that the features included in our
model were particularly well suited to patients
and clinical practices in Eau Claire, Wisconsin,
and less so in New Prague, Minnesota. For 4 of
the 5 site-specific models, the AUC perfor-
mance was the best at Eau Claire, Wisconsin.
Interestingly, the AUC was higher in Eau
Claire, Wisconsin, than that at “home” sites
where the models were trained. The lowest
AUC was noted for a model trained at our ter-
tiary referral center, Rochester, Minnesota, and
was tested at our critical-access hospital, New
Prague, Minnesota. A model trained on data
from New Prague, Minnesota, similarly per-
formed poorly when tested on data from
Rochester, Minnesota, suggesting that the
Pooled Model Before and After N Downsamplinga

Rochester,
Minnesota

Phoenix,
Arizona

Eau Claire,
Wisconsin

0.89�.00002b 0.84�.0001b 0.94�.0001b 0

0.87�.0007c 0.83�.0008c 0.92�.0006c 0

operator characteristic; SD, standard deviation.
f variance when tested across the means with matching symbols.
variance when tested across the means with matching symbols.

Mayo Clin Proc Inn Qual Out n June 2022
patients and practices at these sites were
most dissimilar.

Table 5 presents the top 10 important fea-
tures for each model, along with the associated
feature weight. Specifically, we reported the
average gain across all splits in which a feature
was used. There appeared to be substantial
overlap in features that the model determined
to be of high importance, but the weights of
these features varied substantially across the
sites. The ESI score, arrival by an ambulance,
patient’s age, and having had an electrocardio-
gram were among the top 10 features at all the
sites. In the pooled model, having been a pa-
tient in Eau Claire, Wisconsin, was the only
site-specific indicator (there was 1 indicator
feature per site) among the top 10 features.
DISCUSSION
This article presents a strategy for assessing the
generalizability of a clinical artificial intelli-
gence model across multiple ED sites.
Although previous literature has reported the
suitability of GBMs for similar clinical predic-
tion tasks, few, if any, studies have proposed
Austin,
Minnesota

New Prague,
Minnesota

All sites
combined

.92�.0003b 0.86�.001b 0.88�.00002

.86�.0008c 0.86�.001 0.87�.0001

;6(3):193-199 n https://doi.org/10.1016/j.mayocpiqo.2022.03.003
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TABLE 4. Performance of Site-specific Models With Downsampled Nsa

Training sites listed below;
test sites listed to the right

Rochester,
Minnesota

Phoenix,
Arizona

Eau Claire,
Wisconsin

Austin,
Minnesota

New Prague,
Minnesota

All sites
combined

Rochester, Minnesota
AUC � SD

0.85�.0009b 0.78�.001b 0.89�.0007b 0.84�.0009b 0.71�.001b 0.84�.0002

Phoenix, Arizona
AUC � SD

0.77�.0009c 0.81�.0008c 0.90�.0007c 0.85�.0008c 0.81�.001 0.82�.0002

Eau Claire, Wisconsin
AUC � SD

0.79�.0009d 0.81�.0009d 0.93�.0005d 0.88�.0007d 0.75�.001d 0.84�.0002

Austin, Minnesota
AUC � SD

0.75�.0009e 0.79�.0009e 0.91�.0006e 0.88�.0007e 0.79�.001 0.83�.0002

New Prague, Minnesota
AUC � SD

0.74�.0009f 0.8�.0009f 0.86�.0007f 0.88�.0008f 0.82�.001f 0.83�.0002

aAUC, area under the receiver-operator characteristic; SD, standard deviation.
bIndicates P<0.01 by analysis of variance when tested across the means with matching symbols.
cIndicates P<0.01 by analysis of variance when tested across the means with matching symbols.
dIndicates P<0.01 by analysis of variance when tested across the means with matching symbols.
eIndicates P<0.01 by analysis of variance when tested across the means with matching symbols.
fIndicates P<0.01 by analysis of variance when tested across the means with matching symbols.

GENERALIZABILITY OF ED AI ADMISSION PREDICTION
methods for investigating the generalizability
of these models across multiple health care
sites.7-9,13 We used GBMs to train a model
predicting the likelihood of a patient’s admis-
sion from the ED early in their ED course.
We trained a model on pooled data from 5
diverse ED sites and tested the model’s perfor-
mance at each of the sites, noting high, but
different, AUC performance across the sites.
We then downsampled the data set Ns across
the sites to correct for any effect of site over-
representation on differing AUCs and found
small but significant decreases in the model’s
performance. This investigation revealed sig-
nificant differences in the AUC performance
when examined using ANOVA, even after
downsampling the data set Ns; the AUCs for
our downsampled, pooled model ranged
from 0.83 to 0.92 when tested across the sites,
which is likely attributable to a combination of
patient-specific and clinical practice (ie, site-
specific) factors. We also found that after the
downsampling of Ns, the AUC performance
decreased by 0.01-0.06 per site. Importantly,
the decrease in the model performance by
site was not proportional to the degree of
downsampling that occurred. Additionally,
the pooled, downsampled model performed
better than site-specific models at all the sites
when compared with how these performed
at their home sites, with the exception of
Eau Claire, Wisconsin. This suggests that
Mayo Clin Proc Inn Qual Out n June 2022;6(3):193-199 n https://d
www.mcpiqojournal.org
patient data from the other sites aided the
pooled model in detecting patterns that were
generalizable, thus raising the performance
for all the sites. Overall, this suggests that
training a model on site-pooled data, over as
long a time period as possible, will lead to
the best model performance; however, even
with significant downsampling, from pooled
training N¼103,377 to downsampled
N¼9595, the performance decreases only
modestly.

We then trained site-specific models using
the downsampled data sets for each of our 5
ED sites and tested those across all 5 ED sites.
This exercise suggested that at 1 site in partic-
ular (Eau Claire, Wisconsin), admission deci-
sions were easier to predict than at any other
site, which is likely because of a combination
of patient factors and practice patterns,
although the reasons for this were not explicitly
captured in our study. Additionally, this sug-
gested that a model trained at a tertiary referral
ED would perform particularly poorly at a
critical-access ED and vice versa. This seems
like an expected finding, given the differences
in patient complexity and ED capabilities.

Upon examining the top 10 important fea-
tures at each site, we noted that there was sig-
nificant overlap of all the models, including
the ESI score, arrival by an ambulance, patient
age, and having had an electrocardiogram.
This suggests that these factors are indeed
oi.org/10.1016/j.mayocpiqo.2022.03.003 197
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highly relevant clinical features for our predic-
tion, rather than site-specific outliers. The
weight of the top 10 features, however,
differed significantly between the site-specific
models.

Comparing our results with those of the
existing literature, our model’s AUC results fit
into the higher end of reported AUCs, support-
ing the suitability of GBMs for this task.7-9,13

There also appear to be limited studies that
examined model generalizability, particularly
using ML models. One study examined the
generalizability of a logistic regression model
across disparate hospitals and retrained the
model for each hospital.14 Other similar studies
focused on a single ED,5,6,13,15-19 used curated
survey data,10,20 or grouped multiple EDs
together for model training.8

Our study was limited in that only 1 health
care system’s EDs were represented, although
the EDs were substantially variable in size
and geography. All the EDs included shared
a high degree of data harmonization, which
facilitated model testing. Finally, our algo-
rithm generated predictions at only 1 time
point in the patients’ ED course, thereby
neglecting situations in which major changes
occurring in a patient’s ED course significantly
alter their probability of admission.

With respect to model deployment, our
health care system’s largest ED is currently
piloting an initiative in which hospital medicine
physicians collaborate with emergency medi-
cine physicians to help facilitate patient triage.
The leadership of this initiative is interested in
using this model to more quickly identify pa-
tients for interventions to expedite both admis-
sion and discharge. For other health care
systems looking to implement similar models,
our data appear to suggest that the best strategy
for achieving high performance across multiple
sites is to train a model on pooled data, without
downsampling, that contain features identifying
which patients came from which site, as was
done in our study. This approach contributes
to not only a high-performing model but also
the ease of maintenance, with only 1 model
to oversee, to which additional training data
can be easily added over time.

CONCLUSION
Overall, this study provides a strategy for sys-
tematically assessing the generalizability of a
;6(3):193-199 n https://doi.org/10.1016/j.mayocpiqo.2022.03.003
www.mcpiqojournal.org
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clinical ML model across multiple ED sites and
provides the estimates of AUC differences
across multiple scenarios. We determined
that optimal GBM model performance is
achieved when trained on multisite, pooled
data; however, even with this strategy, the
model will perform differently at some sites,
which was not explained by the random errors
or differences in the training set N. Instead,
the differences in the model performance
were likely due to site-specific factors. When
the importance of the features was examined
for our GBM models, the ESI score, arrival
by an ambulance, patient’s age, and having
had an electrocardiogram appeared to be
important clinical predictors across all the
sites, although the importance of the features
differed.
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