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The discovery of governing equations from scientific data has the
potential to transform data-rich fields that lack well-characterized
quantitative descriptions. Advances in sparse regression are cur-
rently enabling the tractable identification of both the structure
and parameters of a nonlinear dynamical system from data. The
resulting models have the fewest terms necessary to describe the
dynamics, balancing model complexity with descriptive ability,
and thus promoting interpretability and generalizability. This pro-
vides an algorithmic approach to Occam’s razor for model discov-
ery. However, this approach fundamentally relies on an effective
coordinate system in which the dynamics have a simple repre-
sentation. In this work, we design a custom deep autoencoder
network to discover a coordinate transformation into a reduced
space where the dynamics may be sparsely represented. Thus,
we simultaneously learn the governing equations and the associ-
ated coordinate system. We demonstrate this approach on several
example high-dimensional systems with low-dimensional behav-
ior. The resulting modeling framework combines the strengths of
deep neural networks for flexible representation and sparse iden-
tification of nonlinear dynamics (SINDy) for parsimonious models.
This method places the discovery of coordinates and models on
an equal footing.
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Governing equations are of fundamental importance across
all scientific disciplines. Accurate models allow for under-

standing of physical processes, which in turn gives rise to an
infrastructure for the development of technology. The tradi-
tional derivation of governing equations is based on underlying
first principles, such as conservation laws and symmetries, or
from universal laws, such as gravitation. However, in many mod-
ern systems, governing equations are unknown or only partially
known, and recourse to first-principles derivations is untenable.
Instead, many of these systems have rich time-series data due to
emerging sensor and measurement technologies (e.g., in biology
and climate science). This has given rise to the new paradigm
of data-driven model discovery, which is the focus of intense
research efforts (1–14). A central tension in model discovery
is the balance between model efficiency and descriptive capa-
bilities. Parsimonious models strike this balance, having the
fewest terms required to capture essential interactions (1, 3,
8, 10, 15), thus promoting interpretability and generalizability.
Obtaining parsimonious models is fundamentally linked to the
coordinate system in which the dynamics are measured. With-
out proper coordinates, standard approaches may fail to discover
simple dynamical models. In this work, we simultaneously dis-
cover effective coordinates via a custom autoencoder (16–18),
along with the parsimonious dynamical system model via sparse
regression in a library of candidate terms (8). The joint discov-
ery of models and coordinates is critical for understanding many
modern systems.

Numerous recent approaches leverage neural networks to
model time-series data (18–26). When interpretability and gen-
eralizability are primary concerns, it is important to identify
parsimonious models that have the fewest terms required to
describe the dynamics, which is the antithesis of neural networks

whose parameterizations are exceedingly large. A breakthrough
approach used symbolic regression to learn the form of dynami-
cal systems and governing laws from data (1, 3). Sparse identifi-
cation of nonlinear dynamics (SINDy) (8) is a related approach
that uses sparse regression to find the fewest terms in a library
of candidate functions required to model the dynamics. Because
this approach is based on a sparsity-promoting linear regression,
it is possible to incorporate partial knowledge of the physics,
such as symmetries, constraints, and conservation laws (27). Suc-
cessful modeling requires that the dynamics are measured in
a coordinate system where they may be sparsely represented.
While simple models may exist in one coordinate system, a
different coordinate system may obscure these parsimonious rep-
resentations. For modern applications of data-driven discovery,
there is no reason to believe that we measure the correct vari-
ables to admit a simple representation of the dynamics. This
motivates the present study to enable systematic and automated
discovery of coordinate transformations that facilitate this sparse
representation.

The challenge of discovering an effective coordinate system
is as fundamental and important as model discovery. Many key
scientific breakthroughs were enabled by the discovery of appro-
priate coordinate systems. Celestial mechanics, for instance, was
revolutionized by the heliocentric coordinate system of Coper-
nicus, Galileo, and Kepler, thus displacing Ptolemy’s doctrine
of the perfect circle, which was dogma for more than a mil-
lennium. The Fourier transform was introduced to simplify
the representation of the heat equation, resulting in a sparse,
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diagonal, decoupled linear system. Eigen-coordinates have been
used more broadly to enable sparse dynamics, for example
in quantum mechanics and electrodynamics, to characterize
energy levels in atoms and propagating modes in waveguides,
respectively. Principal component analysis (PCA) is one of the
most prolific modern coordinate discovery methods, represent-
ing high-dimensional data in a low-dimensional linear subspace.
Nonlinear extensions of PCA have been enabled by a neu-
ral network architecture, called an autoencoder (16, 17, 28).
However, PCA and autoencoders generally do not take dynam-
ics into account and, thus, may not provide the right basis
for parsimonious dynamical models. In related work, Koopman
analysis seeks coordinates that linearize nonlinear dynamics
(29); while linear models are useful for prediction and control,
they cannot capture the full behavior of many nonlinear sys-
tems. Thus, it is important to develop methods that combine
simplifying coordinate transformations and nonlinear dynam-
ics. We advocate for a balance between these approaches,
identifying coordinate transformations where only a few nonlin-
ear terms are present, as in near-identity transformations and
normal forms.

In this work we present a method to discover nonlinear
coordinate transformations that enable parsimonious dynamics.
Our method combines a custom autoencoder network with a
SINDy model for parsimonious nonlinear dynamics. The autoen-
coder enables the discovery of reduced coordinates from high-
dimensional data, with a map back to reconstruct the full system.
The reduced coordinates are found along with nonlinear gov-
erning equations for the dynamics in a joint optimization. We
demonstrate the ability of our method to discover parsimonious
dynamics on 3 examples: a high-dimensional spatial dataset with
dynamics governed by the chaotic Lorenz system, the nonlin-
ear pendulum, and a spiral wave resulting from the reaction–
diffusion equation. These results demonstrate how to focus
neural networks to discover interpretable dynamical models.
Critically, the proposed method provides a mathematical frame-
work that places the discovery of coordinates and models on
equal footing.

Background
We review the SINDy (8) algorithm, which is a regression tech-
nique for extracting parsimonious dynamics from time-series
data. The method takes snapshot data x(t)∈Rn and attempts
to discover a best-fit dynamical system with as few terms as
possible:

d

dt
x(t)= f(x(t)). [1]

The state of the system x evolves in time t , with dynamics
constrained by the function f. We seek a parsimonious model
for the dynamics, resulting in a function f that contains only
a few active terms: It is sparse in a basis of possible func-
tions. This is consistent with our extensive knowledge of a
diverse set of evolution equations used throughout the phys-
ical, engineering, and biological sciences. Thus, the types of
functions that compose f are typically known from modeling
experience.

SINDy frames model discovery as a sparse regression prob-
lem. If snapshot derivatives are available, or can be calculated
from data, the snapshots are stacked to form data matrices
X= [x1 x2 · · · xm ]T and Ẋ= [ẋ1 ẋ2 · · · ẋm ]T with X, Ẋ∈Rm×n .
Although f is unknown, we can construct an extensive library of
p candidate functions Θ(X)= [θ1(X) · · ·θp(X)]∈Rm×p , where
each θj is a candidate model term. We assume m� p so the
number of data snapshots is larger than the number of library
functions; it may be necessary to sample transients and multi-
ple initial conditions to improve the condition number of Θ. The
choice of basis functions typically reflects some knowledge about

the system of interest: A common choice is polynomials in x as
these are elements of many canonical models. The library is used
to formulate an overdetermined linear system

Ẋ=Θ(X)Ξ,

where the unknown matrix Ξ=(ξ1 ξ2 · · · ξn)∈Rp×n is the
set of coefficients that determine the active terms from Θ(X) in
the dynamics f. Sparsity-promoting regression is used to solve
for Ξ that result in parsimonious models, ensuring that Ξ, or
more precisely each ξj , is sparse and only a few columns of
Θ(X) are selected. For high-dimensional systems, the goal is to
identify a low-dimensional state z=ϕ(x) with dynamics ż= g(z),
as in Eq. 2. The standard SINDy approach uses a sequentially
thresholded least-squares algorithm to find the coefficients (8),
which is a proxy for `0 optimization (30) and has convergence
guarantees (31). Yao and Bollt (2) previously formulated system
identification as a similar linear inverse problem without includ-
ing sparsity, resulting in models that included all terms in Θ. In
either case, an appealing aspect of this model discovery formula-
tion is that it results in an overdetermined linear system for which
many regularized solution techniques exist. Thus, it provides a
computationally efficient counterpart to other model discovery
frameworks (3).

SINDy has been widely applied to identify models for fluid
flows (27), optical systems (32), chemical reaction dynam-
ics (33), convection in a plasma (34), and structural mod-
eling (35) and for model predictive control (36). There are
also a number of theoretical extensions to the SINDy frame-
work, including for identifying partial differential equations (10,
37), and models with rational function nonlinearities (38). It
can also incorporate partially known physics and constraints
(27). The algorithm can also be reformulated to include inte-
gral terms for noisy data (39) or handle incomplete or lim-
ited data (40, 41). The selected modes can also be evalu-
ated using information criteria for model selection (42). These
diverse mathematical developments provide a mature frame-
work for broadening the applicability of the model discovery
method.

Neural Networks for Dynamical Systems. The success of neural net-
works (NNs) on image classification and speech recognition has
led to the use of NNs to perform a wide range of tasks in sci-
ence and engineering (17). One recent focus has been the use
of NNs to study dynamical systems, which has a surprisingly
rich history (43). In addition to improving solution techniques
for systems with known equations (24–26), deep learning has
been used to understand and predict dynamics for complex sys-
tems with unknown equations (18–23). Several methods have
trained NNs to predict dynamics, including a time-lagged autoen-
coder which takes the state at time t as input data and uses an
autoencoder-like structure to predict the state at time t + τ (21).
Other approaches use a recurrent architecture, particularly long
short-term memory (LSTM) networks, for applications involv-
ing sequential data (44). LSTMs have recently been used for
forecasting of chaotic dynamical systems (20). Reservoir comput-
ing has also enabled impressive predictions (13). Autoencoders
are increasingly being leveraged for dynamical systems because
of their close relationship to other dimensionality reduction
techniques (28, 45–47).

Another class of NNs uses deep learning to discover coor-
dinates for Koopman analysis. Koopman theory seeks to dis-
cover coordinates that linearize nonlinear dynamics (29). Meth-
ods such as dynamic mode decomposition (DMD) (4, 5, 9),
extended DMD (48), and time-delay DMD (49) build linear
models for dynamics, but these methods rely on a proper
set of coordinates for linearization. Several recent works have
focused on the use of deep-learning methods to discover the
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proper coordinates for DMD and extended DMD (22, 23).
Other methods seek to learn Koopman eigenfunctions and
the associated linear dynamics directly using autoencoders
(18). While autoencoders are particularly useful when recon-
struction of the original state space is necessary, there are
many applications in which full reconstruction is unnecessary.
Koopman analysis and its combination with neural networks
have also shown impressive results for use in such forecasting
applications (19, 50).

Despite their widespread use, NNs face 3 major challenges:
generalization, extrapolation, and interpretation. The hallmark
success stories of NNs (computer vision and speech, for instance)
have been on datasets that are fundamentally interpolatory in
nature. The ability to extrapolate, and as a consequence gen-
eralize, is known to be an underlying weakness of NNs. This is
especially relevant for dynamical systems and forecasting, which
is typically an extrapolatory problem by nature. Thus models
trained on historical data will generally fail to predict future
events that are not represented in the training set. An additional
limitation of deep learning is the lack of interpretability of the
resulting models. While attempts have been made to interpret
NN weights, network architectures are typically complicated with
the number of parameters (or weights) far exceeding the original
dimension of the dynamical system. The lack of interpretabil-
ity also makes it difficult to generalize models to new datasets
and parameter regimes. However, NN methods still have the
potential to learn general, interpretable dynamical models if
properly constrained or regularized. In addition to methods for
discovering linear embeddings (18), deep learning has also been
used for parameter estimation of partial differential equations
(PDEs) (24, 25).

SINDy Autoencoders
We present a method for the simultaneous discovery of sparse
dynamical models and coordinates that enable these simple
representations. Our aim is to leverage the parsimony and
interpretability of SINDy with the universal approximation capa-
bilities of deep neural networks (51) to produce interpretable
and generalizable models capable of extrapolation and fore-
casting. Our approach combines a SINDy model and a deep
autoencoder network to perform a joint optimization that

discovers intrinsic coordinates which have an associated parsi-
monious nonlinear dynamical model. The architecture is shown
in Fig. 1. We again consider dynamical systems of the form 1.
While this dynamical model may be dense in terms of functions
of the original measurement coordinates x, our method seeks a
set of reduced coordinates z(t)=ϕ(x(t))∈Rd (d�n) with an
associated dynamical model

d

dt
z(t)= g(z(t)) [2]

that provides a parsimonious description of the dynamics; i.e.,
g contains only a few active terms. Along with the dynamical
model, the method provides coordinate transformsϕ,ψ that map
the measurements to intrinsic coordinates via z=ϕ(x) (encoder)
and back via x≈ψ(z) (decoder).

The coordinate transformation is achieved using an autoen-
coder network architecture. The autoencoder is a feedforward
neural network with a hidden layer that represents the intrinsic
coordinates. Rather than performing a task such as prediction
or classification, the network is trained to output an approx-
imate reconstruction of its input, and the restrictions placed
on the network architecture (e.g., the type, number, and size
of the hidden layers) determine the properties of the intrinsic
coordinates (17); these networks are known to produce non-
linear generalizations of PCA (16). A common choice is that
the dimensionality of the intrinsic coordinates z, determined by
the number of units in the corresponding hidden layer, is much
lower than that of the input data x: In this case, the autoen-
coder learns a nonlinear embedding into a reduced latent space.
Our network takes measurement data x(t)∈Rn from a dynam-
ical system as input and learns intrinsic coordinates z(t)∈Rd ,
where d�n is chosen as a hyperparameter prior to training the
network.

While autoencoders can be trained in isolation to discover use-
ful coordinate transformations and dimensionality reductions,
there is no guarantee that the intrinsic coordinates learned will
have associated sparse dynamical models. We require the net-
work to learn coordinates associated with parsimonious dynam-
ics by simultaneously learning a SINDy model for the dynamics
of the intrinsic coordinates z. This regularization is achieved
by constructing a library Θ(z) = [θ1(z),θ2(z), . . . ,θp(z)] of

A B

Fig. 1. Schematic of the SINDy autoencoder method for simultaneous discovery of coordinates and parsimonious dynamics. (A) An autoencoder architecture
is used to discover intrinsic coordinates z from high-dimensional input data x. The network consists of 2 components: an encoder ϕ(x), which maps the input
data to the intrinsic coordinates z, and a decoder ψ(z), which reconstructs x from the intrinsic coordinates. (B) A SINDy model captures the dynamics of
the intrinsic coordinates. The active terms in the dynamics are identified by the nonzero elements in Ξ, which are learned as part of the NN training. The
time derivatives of z are calculated using the derivatives of x and the gradient of the encoder ϕ. Inset shows the pointwise loss function used to train the
network. The loss function encourages the network to minimize both the autoencoder reconstruction error and the SINDy loss in z and x. L1 regularization
on Ξ is also included to encourage parsimonious dynamics.
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candidate basis functions, e.g., polynomials, and learning a sparse
set of coefficients Ξ= [ξ1, . . . , ξd ] that defines the dynamical
system

d

dt
z(t)= g(z(t))=Θ(z(t))Ξ.

While the library must be specified prior to training, the coef-
ficients Ξ are learned with the NN parameters as part of the
training procedure. Assuming derivatives ẋ(t) of the original
states are available or can be computed, one can calculate the
derivative of the encoder variables as ż(t)=∇xϕ(x(t))ẋ(t) and
enforce accurate prediction of the dynamics by incorporating the
following term into the loss function:

Ldz/dt =
∥∥∥∇xϕ(x)ẋ−Θ(ϕ(x)T )Ξ

∥∥∥2

2
. [3]

This term uses the SINDy model along with the gradient of the
encoder to encourage the learned dynamical model to accurately
predict the time derivatives of the encoder variables. We include
an additional term in the loss function that ensures SINDy pre-
dictions can be used to reconstruct the time derivatives of the
original data:

Ldx/dt =
∥∥∥ẋ− (∇zψ(ϕ(x)))

(
Θ(ϕ(x)T )Ξ

)∥∥∥2

2
. [4]

We combine Eqs. 3 and 4 with the standard autoencoder loss

Lrecon = ‖x−ψ(ϕ(x))‖22,

which ensures that the autoencoder can accurately reconstruct
the input data. We also include an L1 regularization on the
SINDy coefficients Ξ, which promotes sparsity of the coefficients
and therefore encourages a parsimonious model for the dynam-
ics. The combination of the above 4 terms gives the overall loss
function

Lrecon +λ1Ldx/dt +λ2Ldz/dt +λ3Lreg,

where the hyperparameters λ1,λ2,λ3 determine the relative
weighting of the 3 terms in the loss function.

In addition to the L1 regularization, to obtain a model with
only a few active terms, we also incorporate sequential thresh-
olding into the training procedure as a proxy for L0 sparsity
(30). This technique is inspired by the original algorithm used
for SINDy (8), which combined least-squares fitting with sequen-
tial thresholding to obtain a sparse model. To apply sequential
thresholding during training, we specify a threshold that deter-
mines the minimum magnitude for coefficients in the SINDy
model. At fixed intervals throughout the training, all coefficients
below the threshold are set to zero and training resumes using
only the terms left in the model. We train the network using the
Adam optimizer (52). In addition to the loss function weightings
and SINDy coefficient threshold, training requires the choice of
several other hyperparameters including learning rate, number
of intrinsic coordinates d , network size, and activation functions.
Details of the training procedure are discussed in SI Appendix.
Alternatively, one might attempt to learn the library functions
using another neural network layer, a double sparse library
(53), or kernel-based methods (54) for more flexible library
representations.

Results
We demonstrate the success of the proposed method on 3
example systems: a high-dimensional system with the underlying
dynamics generated from the canonical chaotic Lorenz system,
a 2D reaction–diffusion system, and a 2D spatial representation
(synthetic video) of the nonlinear pendulum. Results are shown
in Fig. 2.

A

B

C

Fig. 2. Discovered models for examples. (A–C) Equations, SINDy coeffi-
cients Ξ, and attractors for Lorenz (A), reaction–diffusion (B), and nonlinear
pendulum (C) systems.

Chaotic Lorenz System. We first construct a high-dimensional
example problem with dynamics based on the chaotic Lorenz sys-
tem. The Lorenz system is a canonical model used as a test case,
with dynamics given by the following equations:

ż1 =σ(z2− z1) [5a]
ż2 = z1(ρ− z3)− z2 [5b]
ż3 = z1z2−βz3. [5c]

The dynamics of the Lorenz system are chaotic and highly
nonlinear, making it an ideal test problem for model discov-
ery. To create a high-dimensional dataset based on this system,
we choose 6 fixed spatial modes u1, . . . , u6 ∈R128, given by
Legendre polynomials, and define

x(t)= u1z1(t)+ u2z2(t)+ u3z3(t)+ u4z1(t)
3 + u5z2(t)

3

+ u6z3(t)
3. [6]

This results in a dataset that is a nonlinear combination of the
true Lorenz variables, shown in Fig. 3A. The spatial and tempo-
ral modes that combine to give the full dynamics are shown in
Fig. 3B. Full details of how the dataset is generated are given in
SI Appendix.

Fig. 3D shows the dynamical system discovered by the SINDy
autoencoder. While the resulting model does not appear to
match the original Lorenz system, the discovered model is par-
simonious, with only 7 active terms, and the dynamics exhibit an
attractor with a 2-lobe structure, similar to that of the original
Lorenz attractor. Additionally, by choosing a suitable variable
transformation the discovered model can be rewritten in the
same form as the original Lorenz system. This demonstrates that
the SINDy autoencoder is able to recover the correct sparsity
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B

C

E

D

Fig. 3. Model results on the high-dimensional Lorenz example. (A) Trajectories of the chaotic Lorenz system (z(t) ∈R3) are used to create a high-dimensional
dataset (x(t) ∈R128). (B) The spatial modes are created from the first 6 Legendre polynomials and the temporal modes are the variables in the Lorenz system
and their cubes. The spatial and temporal modes are combined to create the high-dimensional dataset via [6]. (C and D) The equations, SINDy coefficients
Ξ, and attractors for the original Lorenz system and a dynamical system discovered by the SINDy autoencoder. The attractors are constructed by simulating
the dynamical system forward in time from a single initial condition. (E) Applying a suitable variable transformation to the system in D reveals a model with
the same sparsity pattern as the original Lorenz system. The parameters are close in value to the original system, with the exception of an arbitrary scaling,
and the attractor has a similar structure to the original system.

pattern of the dynamics. The coefficients of the discovered model
are close to the original parameters of the Lorenz system, up to
an arbitrary scaling, which accounts for the difference in magni-
tude of the coefficients of z1z3 in the second equation and z1z2
in the third equation.

On test trajectories from 100 initial conditions sampled from
the training distribution, the relative L2 errors in predicting x, ẋ,
and ż are 3× 10−5, 2× 10−4, and 7× 10−4, respectively. For ini-
tial conditions outside of the training distribution, the model has
higher relative L2 errors on 100 test trajectories of 0.016, 0.126,
and 0.078 for x, ẋ, and ż. In both cases, the resulting SINDy
models produce dynamics that are qualitatively similar to the
true trajectories, although due to the chaotic nature of the
Lorenz system and its sensitivity to parameters and initial con-
ditions, the phase of most predicted trajectories diverges from
the true trajectories after a short period. Improved prediction
over a longer duration may be achieved by increased parameter
refinement or training with longer trajectories.

Reaction–Diffusion. In practice, many high-dimensional datasets
of interest come from dynamics governed by PDEs with more
complicated interactions between spatial and temporal dynam-
ics. To test the method on data generated by a PDE, we consider
a lambda–omega reaction–diffusion system governed by

ut =(1− (u2 + v2))u +β(u2 + v2)v + d1(uxx + uyy)

vt =−β(u2 + v2)u +(1− (u2 + v2))v + d2(vxx + vyy)

with d1, d2 =0.1 and β=1. This set of equations generates a
spiral wave formation, whose behavior can be approximately
captured by 2 oscillating spatial modes. We apply our method
to snapshots of u(x , y , t) generated by the above equations.
Snapshots are collected at discretized points of the xy domain,
resulting in a high-dimensional input dataset with n =104.

We train the SINDy autoencoder with d =2. The resulting
model is shown in Fig. 2B. The network discovers a model with
nonlinear oscillatory dynamics. On test data, the relative L2 error
for the input data x and the input derivatives ẋ is 0.016. The rel-
ative L2 error for ż is 0.002. Simulation of the dynamical model
accurately captures the low-dimensional dynamics, with relative
L2 error of z totaling 1× 10−4.

Nonlinear Pendulum. As a final example, we consider a simu-
lated video of a nonlinear pendulum. The nonlinear pendulum
is governed by the following second-order differential equation:

z̈ =− sin z .

We simulate the system from several initial conditions and gen-
erate a series of snapshot images with a 2D Gaussian centered
at the center of mass, determined by the pendulum’s angle z .
This series of images is the high-dimensional data input to the
autoencoder. Despite the fact that the position of the pendu-
lum can be represented by a simple 1-dimensional variable,
methods such as PCA are unable to obtain a low-dimensional
representation of this dataset. A nonlinear autoencoder, how-
ever, is able to discover a 1-dimensional representation of the
dataset.

For this example, we use a second-order SINDy model with
a library of functions including the first derivatives ż to pre-
dict the second derivative z̈. This approach is the same as with
a first-order SINDy model but requires estimates of the sec-
ond derivatives as well. Second-order gradients of the encoder
and decoder are therefore also required. Computation of the
derivatives is discussed in SI Appendix.

The SINDy autoencoder is trained with d =1. Of the 10 train-
ing instances, 5 correctly identify the nonlinear pendulum equa-
tion. We calculate test error on trajectories from 50 randomly
chosen initial conditions sampled from the same distribution as
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the training data. The best model has a relative L2 error of
8× 10−4 for the decoder reconstruction of the input x. The rel-
ative L2 errors of the SINDy model predictions for ẍ and z̈ are
3× 10−4 and 2× 10−2, respectively.

Discussion
We have presented a data-driven method for discovering inter-
pretable, low-dimensional dynamical models and their associated
coordinates from high-dimensional data. The simultaneous dis-
covery of both is critical for generating dynamical models that are
sparse and hence interpretable. Our approach takes advantage
of the power of NNs by using a flexible autoencoder archi-
tecture to discover nonlinear coordinate transformations that
enable the discovery of parsimonious, nonlinear governing equa-
tions. This work addresses a major limitation of prior approaches
for model discovery, which is that the proper choice of mea-
surement coordinates is often unknown. We demonstrate this
method on 3 example systems, showing that it is able to identify
coordinates associated with parsimonious dynamical equations.
Our code is publicly available at http://github.com/kpchamp/
SindyAutoencoders (55).

A current limitation of our approach is the requirement for
clean measurement data that are approximately noise-free. Fit-
ting a continuous-time dynamical system with SINDy requires
reasonable estimates of the derivatives, which may be difficult
to obtain from noisy data. While this represents a challenge,
approaches for estimating derivatives from noisy data such as the
total variation regularized derivative can prove useful in provid-
ing derivative estimates (56). Moreover, there are emerging NN
architectures explicitly constructed for separating signals from
noise (57), which can be used as a preprocessing step in the
data-driven discovery process advocated here. Alternatively our
method can be used to fit a discrete-time dynamical system, in
which case derivative estimates are not required. It is also pos-
sible to use the integral formulation of SINDy to abate noise
sensitivity (39).

A major problem with deep-learning approaches is that mod-
els are typically neither interpretable nor generalizable. Specif-
ically, NNs trained solely for prediction may fail to generalize
to classes of behaviors not seen in the training set. We have
demonstrated an approach for using NNs to obtain classically
interpretable models through the discovery of low-dimensional
dynamical systems, which are well studied and often have physi-

cal interpretations. While the autoencoder network still has the
same limited interpretability and generalizability as other NNs,
the dynamical model has the potential to generalize to other
parameter regimes of the dynamics. Although the coordinate
transformation learned by the autoencoder may not generalize
to data regimes far from the original training set, if the dynam-
ics are known, the autoencoder can be retrained on new data
with fixed terms in the latent dynamics space (see SI Appendix
for discussion). The problem of relearning a coordinate trans-
formation for a system with known dynamics is simplified from
the original challenge of learning the correct form of the under-
lying dynamics without knowledge of the proper coordinate
transformation.

The challenge of utilizing NNs to answer scientific questions
requires careful consideration of their strengths and limita-
tions. While advances in deep learning and computing power
present a tremendous opportunity for new scientific break-
throughs, care must be taken to ensure that valid conclusions
are drawn from the results. One promising strategy is to com-
bine machine-learning approaches with well-established domain
knowledge: For instance, physics-informed learning leverages
physical assumptions into NN architectures and training meth-
ods. Methods that provide interpretable models have the poten-
tial to enable new discoveries in data-rich fields. This work intro-
duced a flexible framework for using NNs to discover models that
are interpretable from a standard dynamical systems perspective.
While this formulation used an autoencoder to achieve full state
reconstruction, similar architectures could be used to discover
embeddings that satisfy alternative conditions. In the future, this
approach could be adapted using domain knowledge to discover
new models in specific fields.
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