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Abstract: Photodynamic therapy is a relatively new treatment method for cancer which 

utilizes a combination of oxygen, a photosensitizer and light to generate reactive singlet 

oxygen that eradicates tumors via direct cell-killing, vasculature damage and engagement 

of the immune system. Most of photosensitizers that are in clinical and pre-clinical 

assessments, or those that are already approved for clinical use, are mainly based on cyclic 

tetrapyrroles. In an attempt to discover new effective photosensitizers, we report the use of 

the quantitative structure-activity relationship (QSAR) method to develop a model that 

could correlate the structural features of cyclic tetrapyrrole-based compounds with their 

photodynamic therapy (PDT) activity. In this study, a set of 36 porphyrin derivatives was 

used in the model development where 24 of these compounds were in the training set and 

the remaining 12 compounds were in the test set. The development of the QSAR model 

involved the use of the multiple linear regression analysis (MLRA) method. Based on the 

method, r2 value, r2 (CV) value and r2 prediction value of 0.87, 0.71 and 0.70 were 

obtained. The QSAR model was also employed to predict the experimental compounds in 
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an external test set. This external test set comprises 20 porphyrin-based compounds with 

experimental IC50 values ranging from 0.39 µM to 7.04 µM. Thus the model showed good 

correlative and predictive ability, with a predictive correlation coefficient (r2 prediction for 

external test set) of 0.52. The developed QSAR model was used to discover some 

compounds as new lead photosensitizers from this external test set. 

Keywords: QSAR; photodynamic therapy; photosensitizer; porphyrin; IC50 half maximal 

inhibitory concentration 

 

1. Introduction 

Cancer is a dangerous disease in which cells grow and divide beyond their normal limits. Currently, 

the major treatments for cancer include surgery, chemotherapy, and radiation [1]. However, high 

incidences of undesirable side effects have prompted researchers to search for safer and more  

effective treatments. 

Photodynamic therapy (PDT) provides an alternative treatment for cancer with relatively low side 

effects [2]. This treatment uses the combined effects of light and light activated toxic drugs or 

photosensitizers to target tumor cells. Photosensitizers are chemical compounds that could be excited 

by light of a specific wavelength [3], often with visible or near infrared light. A photosensitive drug 

absorbs photons which alter the drugs into an excited state. These excited drugs then pass their energy 

to oxygen to form free radicals (singlet oxygen) which oxidize cellular structures [4–7]. Oxidative 

damage caused by the free radicals exceeds a threshold level causing the cells to die. 

Photofrin and other early photosensitizers (often referred to as first generation sensitizers), have 

properties that make them less than ideal for use in clinical PDT settings. First generation 

photosensitizers have several serious drawbacks in that they are not specific to cancer cells, but also 

tend to accumulate in normal tissues [7]. This means that not only the cancer cells, but also normal 

cells could be damaged by the treatment. In addition, first generation photosensitizers do not discharge 

rapidly from the human body. Hence, patients receiving photofrin treatment must stay out of the sun 

for at least a month following treatment [8]. In addition, larger and deep-seated tumors cannot 

normally be treated with these agents. 

Much work has been done to develop new photosensitizers (second generation) to improve the 

pharmacokinetics and physical properties of the first generation photosensitizers [9]. Important 

objectives for scientists remain to develop new photosensitizers of pure compounds which are 

activated strongly by red light above 630 nm [10]. 

Many QSAR approaches have been used to search for new photosensitizing agents for cancer 

therapy. For example, Boyle and Dolphin [11] reported the relationship between structure and properties 

affecting tumoricidal effects of compounds in their development of second generation photosensitizers. 

Henderson and co-workers [12] reported a comparative study between tumor localizing properties and 

hydrophilicity, as well as dimerization abilities of 28 porphyrins and pheophorbides. They observed 

the tumoricidal activities of the compounds to be dependent upon a delicate balance between their 

hydrophilic and hydrophobic characters. Another study by Potter et al. [13] examined the relationship 
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between the photophysical properties and photodynamic activities of five tetrapyrroles. A good 

correlation between generation of singlet oxygen and PDT effect was observed. An in vivo  

structure-activity relationship of a set of silicon phthalocyanine sensitizers was reported in 1994 [14]. 

Henderson and co-workers [12] reported PDT activity to be a non-linear function of lipophilicity for 

a series of pyropheophorbide derivatives. They used a semi-empirical, non-linear activity lipophilicity 

relationship model, and found lipophilicity to be highly predictive for photodynamic activity. 

Unfortunately, accumulation of photosensitizers in the cancer tissue is not enough for good  

tumoricidal effects. 

Another study on a QSAR model by Vanyur et al. [10] predicted the biological activity of a 

congeneric series of pyropheophorbides used as sensitizers in photodynamic therapy based on their 

molecular structures using multiple linear regression and artificial neural network (ANN) techniques.  

In this study, QSAR models correlating the molecular characteristics of some porphyrin-based 

compounds with their inhibitory concentration (IC50) is generated. The QSAR model developed was 

subsequently applied to predict the PDT activity of unknown compounds, not only those in the test set 

(i.e., data set), but also some unknown compounds used in an external test set. 

2. Results and Discussion 

2.1. QSAR Modeling 

The best QSAR model obtained is shown below: 

Log 1/IC50 = 0.96 × Verloop B2 (subst.1) + 6.43 × inertia moment 3 length − 1.63 × VAMP 

octupole ZZY + 0.72 
(1)

This model, developed using multiple linear regression analysis (MLRA) technique has the r2 value 

of 0.87 and r2 (CV) value of 0.71. The cross-validated coefficient (CV) defines the goodness of 

prediction while the non-cross-validated conventional correlation coefficient (r2) defines the goodness 

of fit of the QSAR model [15]. The F test value is the degree of statistical confidence. 

In general, a QSAR model is acceptable when it has an r2 value greater than 0.6 and r2 (CV) greater 

than 0.5 [15,16]. The r2 (CV) value of 0.71 exhibits a good internal predictive power of the developed 

model. The model also showed an r2 value of 0.87. This high value obtained added to its usefulness as 

a predictive tool. The statistical output of the MLRA model is presented in Table 1. 

Table 1. Statistical output of multiple linear regression analysis (MLRA) model. 

Statistical Output Value 

Non-cross validated r2 0.87 
Cross validation r2 (CV) 0.71 
F-value 37.85 
F-probability 1.95 × 10−8 
Standard error of estimate (SEE) 0.49 
Residual sum of square (RSS) 4.12 
Predictive sum of square (PRESS) 9.23 
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Based on this QSAR model described above, it could be inferred that inhibitory activity will 

improve with increase of the electrostatic parameter (i.e., Vamp octupole ZZY). The electrostatic 

parameters are properties of a molecule which are related to its electron affinity and demonstrate the 

susceptibility of a molecule towards attack by nucleophiles. In this study, VAMP octupole ZZY 

correlates well with the PDT activity. Compounds numbers 1, 2, and 5 were observed to be more active 

than compound numbers 11, 14, and 16 to 20. The increasing value of this descriptor (Figure 1 and Table 2) 

made the photosensitizers more efficiently absorb photons and produce reactive singlet oxygen (ROS). 

This may explain the activities observed by these photosensitizers [17,18]. 

Figure 1. Effects of descriptors in quantitative structure-activity relationship (QSAR) 

model with their photodynamic therapy (PDT) activity. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

verloop B2 (subst. 1) inert 3 lgth vamp oct ZZY IC50
 

Table 2. Descriptor values of compounds in the external test set. 

No. Verloop B2 (subst. 1) Inert 3 Length Vamp Octupole ZZY Exp IC50 (µM)

1 0.00 0.02 0.49 0.39 
2 0.17 0.03 0.85 0.52 
3 0.00 0.11 0.52 0.51 
4 0.17 0.11 0.44 0.39 
5 0.79 0.71 0.75 0.68 
6 1.00 1.00 1.00 0.50 
7 0.00 0.13 0.63 0.45 
8 0.00 0.13 0.73 5.63 
9 0.00 0.14 0.67 0.44 

10 1.00 0.98 0.77 5.69 
11 0.00 0.00 0.18 4.47 
12 0.17 0.29 0.93 4.96 
13 0.84 0.84 0.99 7.04 
14 0.00 0.00 0.56 0.62 
15 0.90 0.12 0.74 4.86 
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Table 2. Cont. 

No. Verloop B2 (subst. 1) Inert 3 Length Vamp Octupole ZZY Exp IC50 (µM)

16 0.00 0.09 0.58 4.45 
17 0.89 0.14 0.15 4.72 
18 0.80 0.14 0.29 3.43 
19 0.92 0.15 0.00 5.11 
20 0.97 0.17 0.30 4.49 

Verloop parameters are sets of multi-dimensional steric descriptors. They can be used to characterize 

the shape and volume of the substituent, which are important in explaining the steric influence of 

substituents in the interactions of organic compounds with macromolecular drug receptors [19]. The 

verloop descriptor and PDT activity has negative correlation. Increasing value of verloop descriptor 

will decrease the PDT activity. Some functional groups in substituent 1 will be exerted into PDT 

activity, such as the presence of hydrophilic groups (i.e., -COOH) and causes a decrease in the verloop 

values for the compounds numbers 1, 2 and 5 (0.17, 017 and 0.10, respectively); presumably resulting 

in the compounds being more active. Anyway, the presence of amino acid, such as in compound No. 19, 

increased the verloop values and decreases the PDT activity. 

The QSAR model showed a negative correlation between the moment of inertia descriptor and PDT 

activity where molecules with smaller size and length were observed to have better PDT activities. For 

example, compound No. 11, which has a smaller size and length compared to compound No. 15, 

showed better PDT activity [20]. The statistical significance of the parameters in the QSAR model is 

presented in Table 3 and a brief description of these descriptors are detailed in Table 4. 

Table 3. Statistical significance of parameters. 

Descriptors 
Regression  

Coefficient a Jacknife SE b Covariance SE c t-Value d t-Probability e

Verloop B2 0.96 0.41 0.44 2.16 0.05 

Inertia moment 3 length 6.42 0.52 0.73 8.75 1.04 × 10−7 

Vamp octupole ZZY −1.63 1.06 0.80 −2.03 0.06 
a The regression coefficient for each variable in the equation; b An estimate of the standard error of each 

regression coefficient derived from a Jacknife procedure on the final regression model; c Estimate of the 

standard error of each regression coefficient derived from the covariance matrix; d Significance of each 

variable included in the final model; e Statistical significance for t-values. 

Table 4. Descriptors which were included in the MLRA model. 

Descriptor Symbol Explanation 

Verloop 
parameter 

Verloop B2 
(substituent 1) 

The distance from the axis of the attachment bond, measured 
perpendicularly to the edge of the substituents. 

Molecular 
attributes 

Inertia moment  
3 length 

Indicates the strength and orientation behaviors of molecule in 
an electrostatic field. 

Electrostatic 
parameter 

Vamp  
octupole ZZY 

Properties of molecule arising from the interaction between a 
charge probe, such as positive unit point reflecting a proton, 
and target molecule. 
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A plot of experimental vs. predicted IC50 is shown in Figure 2, while a plot of residual vs. predicted 

value is shown in Figure 3. These two plots are important for the predictive ability of QSAR. Residual 

plots (scatter) are used to detect the existence of outliers from a QSAR model [21,22]. Figure 3 shows 

that there are no outliers, in this study. Hence, the developed QSAR model is considered to be stable. 

Figure 2. Plot of actual value vs. predicted value of training set. 

 

Figure 3. Plot of residual value vs. predicted value. 

 

2.2. Model Validation 

To determine the stability of a predictive model the most used method is by analyzing the influence 

of each of its elements on the final model. Any model, even with excellent goodness-of-fit and 

satisfactory predictions, may lack a real relationship between structural descriptors and activities.  

To confirm the existence of chance correlations, a reliable validation procedure must be carried out. 

The definitive validity of a model is examined with the external validation, to evaluate its efficacy. 

The inhibition concentrations of the compounds in the test set (i.e., 12 porphyrin-based compounds 

in the test set and 20 porphyrins-based compounds in the external test set) were predicted using the 

QSAR model developed in this study. The calculated IC50 values of the compounds in the predicted set 

and external test set are listed in Tables 5 and 6, respectively. The correlation coefficient (r2) between 
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predicted and experimental value for the QSAR model was also calculated. A predictive correlation 

coefficient r2
 value (test set) of 0.70 and external set of 0.52 were obtained for the developed QSAR 

model. An r2 value of more than 0.5 between the predicted and the experimental values renders the 

model to be good and able to predict the PDT activities of compounds not included in the model 

development process [21]. 

Table 5. Calculated log 1/IC50 for compounds in the test set. 

Compounds No. Experimental log 1/IC50 Predicted log 1/IC50 

1 1.39 1.70 
2 1.39 1.83 
3 1.37 2.12 
4 1.25 2.12 
5 1.11 1.58 
6 1.03 1.84 
7 0.97 1.54 
8 0.96 1.46 
9 0.82 1.66 
10 0.80 1.32 
11 0.78 1.42 
12 0.71 1.72 

To further evaluate the significance of the developed model, it needs to undergo a stability test. For 

this, standard error of estimate and root mean squares are used. The values of standard error (SEE), 

root mean square error (RMSE) and root mean squares error prediction (RMSEP) in this model are 0.49, 

3.7 and 3.6, respectively, which further adds to the statistical significance of the developed model. In 

addition, the low values of SEE, RMSE and RMSEP indicate that the developed QSAR model is stable 

for predicting unknown compounds in the test set. 
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Table 6. Calculated IC50 for compounds in the external test set. 

No. Compounds 
Exp. Value 

(µM) 
Pred. Value 

(µM) 
No. Compounds 

Exp. Value 
(µM) 

Pred. Value 
(µM) 

 
 

1 
Subst2 
Subst1 

 

 

NNH

N HN

H
H

H
H

H H

O OH

OO
O

H

 

                              Subst 3 
Pheophorbide A (pha) 

 
 

0.39 

 
 

6.02 

 
 

2 
NNH

N HN

H
H

H
H

H H

O OH

O

 
 

Pyropheophorbide A 

 
 

0.52 

 
 

0.6 

 
 

3 
 
 
 

NNH

N HN

H
H

H
H

H H

O O

OO
O

H

 
Pheophorbide A methyl ester 

 
 

0.51 

 
 

1.65 

 
 

4 
NNH

N HN

H
H

H
H

H H

O O

OO
O

HO

 
Hydroxy pheophorbide A 

methyl ester 

 
 

0.39 

 
 

0.61 
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Table 6. Cont. 

No. Compounds 
Exp. Value 

(µM) 
Pred. Value 

(µM) 
No. Compounds 

Exp. Value 
(µM) 

Pred. Value 
(µM) 

 

 

5 

 

 

 

NNH

N HN

CH3

CH2

H3C

CH3H3C

O NH

O O

HO

O2CH3C

HO

O HO
O

 

G2 aspartyl (deprotected) 

 

 

0.68 

 

 

0.54 

 

 

6 
NNH

N HN

CH3

CH2

H3C

CH3H3C

O NH

O O

HO

O2CH3C

O

O O
O

CH3H3C

CH3
CH3

H3C

H3C

G2 aspartyl (protected) 

 

 

0.50 

 

 

0.56 

 

 

7 

 

 

 

NNH

N HN

H
H

H
H

H H

O O

OO
O

HO

O H

 
Hydroxy pheophorbide B methyl ester

 

 

0.45 

 

 

1.12 

 

 

8 
NNH

N HN

H
H

H
H

H H

O O

O O

O

O

O

 
Methoxy G2 methyl ester (a type) 

 

 

5.63 

 

 

1.08 
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Table 6. Cont. 

No. Compounds 
Exp. Value 

(µM) 
Pred. Value 

(µM) 
No. Compounds 

Exp. Value 
(µM) 

Pred. Value 
(µM) 

 

 

9 

 

 

 

NNH

N HN

H
H

H
H

H H

O O

O O

HO

O

O

 
G2 dimethyl ester  

(151- hydroxypurpurin-7-lactone 

methyl diester) 

 

 

0.44 

 

 

0.95 

 

 

10 
NNH

N HN

H
H

H
H

H H

O OH

O OO

 
Purpurin 18 (KMP1) 

 

 

5.69 

 

 

4.82 

 

 

 

11 

 

 

 

 

NNH

N HN

H
H

H
H

H H

O O

O OO

 
Purpurin-18 methyl ester 

 

 

 

4.47 

 

 

 

8.78 

 

 

 

12 

NNH

N HN

CH3

CH3

CH2

H3C

CH3H3C

O OH

O O

HO

O2CH3C

 
G2 acid methyl  

(151-hydroxypurpurin-7-lactone 

methyl ester) 

 

 

 

4.96 

 

 

 

3.67 
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Table 6. Cont. 

No. Compounds 
Exp. Value 

(µM) 
Pred. Value 

(µM) 
No. Compounds 

Exp. Value 
(µM) 

Pred. Value 
(µM) 

 

 

13 

 

 

 

NNH

N HN

CH2

CH3H3C

H

H

O

O
OH

H

 
 

 

Chlorophyllone a 

 

 

0.62 

 

 

0.95 

 

 

 

 

14 
NNH

N HN

CH3

CH3

CH2

H3C

CH3H3C

O NH

O O

HO

O2CH3C

H2N

CO

O

C

CH3

CH3

H3C

 
G2 lysine (protected) 

 

 

7.04 

 

 

5.15 

 

 

15 

 

 

 

NNH

N HN

H
H

H
H

H H

O O

H

OO
O

HO

 
 

Hydroxy pheophorbide A 

 

 

4.45 

 

 

0.88 

 

 

16 NNH

N HN

CH3

CH3

CH2

H3C

CH3H3C

O NH

O O

HO

O2CH3C

H2N

HO2C

 
G2 lysine deprotected 

 

 

4.86 

 

 

5.72 
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Table 6. Cont. 

No. Compounds 
Exp. Value 

(µM) 
Pred. Value 

(µM) 
No. Compounds 

Exp. Value 
(µM) 

Pred. Value 
(µM) 

 

 

17 

 

 

 

NNH

N HN

CH3

CH3

CH2

H3C

CH3H3C

O NH

O O

H2N

HO2C

O

 
Purpurin Lys 

 

 

4.72 

 

 

3.43 

 

 

18 
NNH

N HN

CH3

CH3

CH2

H3C

CH3H3C

O NH
OH CO2Me

O

OHHO
O  

Pha Asp 

 

 

3.43 

 

 

1.23 

 

 

 

19 

 

 

 

NNH

N HN

CH3

CH3

CH2

H3C

CH3H3C

O NH

H2N

HO2C

OMeO2C
H

 
Pha Lys 

 

 

 

5.11 

 

 

 

4.49 

 

 

 

20 

NNH

N HN

CH3

CH3

CH2

H3C

CH3H3C

O NH

H2N

HO2C

OMeO2C
HO

 
HO-Pha-Lys 

 

 

 

4.49 

 

 

 

2.76 

 



Int. J. Mol. Sci. 2011, 12             

 

8638

As expected, the developed QSAR model was able to endorse the experimental IC50 values for the 

compounds in the external test set. Some of the compounds, such as 2, 4, 5, 6, and 9 are confirmed 

active photosensitizers; while others such as compounds 8 and 15 showed good activities in the QSAR 

model but did not provide good activity when tested experimentally. This difference between 

theoretical and experimental results may be due to the experimental conditions in which the 

compounds possibly did not reach the required site for action which would result in good activities. 

However, further experiments will have to be carried out to ascertain the reason for this inactivity. 

3. Experimental 

3.1. QSAR Modeling of Porphyrin 

Data set of the photosensitizing agents obtained from the literature [23,24] was used to develop the 

QSAR models. The data set consisted of 36 chemical compounds which were divided into a training 

set (24 compounds) for model development and a test set (12 compounds) for model validation. In 

addition, 20 porphyrin-based compounds have been shown to be good photosensitizers with 

experimental IC50 values ranging from 0.39 µM to 7.04 µM. Hence, these compounds were used as 

external set for model validation (data shown herewith). 

The training set selection was performed by first sorting through the biological activity list in 

increasing value. Next, the list of compounds were divided into three groups, i.e., group I comprising 

of compounds No. 1 to 12, group II with compounds No. 13 to 24 and group III comprising of 

compounds No. 25 to 36. The compounds in groups I and III were assigned to the training set, and 

compounds in group II were assigned to the test set. 

The molecular structure of each compound was sketched using ChemDraw 6.0 (Cambridge Soft) [25] 

and then converted to 3D using Corina in TSAR 3.3 software package (Accelrys) [26]. Cosmic in 

TSAR 3.3 (Accelrys) was used to optimize these molecular structures where the optimizations were 

terminated when the energy differences or the energy gradients become smaller than 1 × 10−5 or  

1 × 10−10 kcal/mol, respectively. Molecular descriptors were also generated using TSAR 3.3 (Accelrys) [26] 

for each compound. 

In this study, 316 descriptors were first generated for then correlation matrix was applied to select 

the best subset of descriptors to be included in the QSAR model development. It could be used to 

identify highly correlated pairs of variables, and thus identifying the redundancy in the data set.  

A coefficient of 1.0 indicates two variables to be perfectly correlated while a coefficient 0.0 indicates 

no correlation. Pair-wise correlations were performed on members of the descriptors pool, moving one 

of the two descriptors randomly when their correlation coefficient exceeded 0.9 [22]. The reduced 

descriptors pool used to develop QSAR model reported in this work contained 50 descriptors and are 

shown in Table 7. 

The next step involved scaling the descriptors, prior to the model development stage. This was a 

very delicate procedure since there could be underlying relationships amongst the descriptors, and 

manipulations involved in this step might lead to unforeseen effects. Range scaling could assist in 

preventing weightings of descriptors upon the Euclidean distance calculations in multidimensional 

descriptors space. The scaling was calculated as follows: 
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iy  = 
 

   xx

xxi

minmax

min




 (2)

where, iy  is the scaled value; ix  is the original value; min  x  is the minimum collection of x  objects; 

and max  x  is the maximum collection of x  objects. 

Table 7. List of descriptors which were used to develop QSAR model. 

Descriptor 
Statistics 

Descriptor 
Statistics 

X  SD X  SD 

Verloop L (subst. 1) 0.50 0.29 Verloop L (subst. 2) 0.23 0.26 
Verloop B1 (subst. 1) 0.54 0.26 Verloop B1 (subst. 2) 0.66 0.32 
Verloop B2 (subst. 1) 0.37 0.25 Verloop B2 (subst. 3) 0.05 0.11 
Verloop B4 (subst. 1) 0.58 0.28 Verloop B5 (subst. 2) 0.48 0.31 
Inert. Moment 2 size 0.14 0.07 Inert. Moment 1length 0.31 0.27 
Inert. Moment 3 length 0.23 0.15 Ellipsoidal volume 0.15 0.07 
Log P 0.60 0.26 Total lipole 0.37 0.25 
Lipole X component 0.34 0.22 Lipole Z component 0.53 0.27 
Kier ChiV5 (ring) 0.24 0.33 Kappa 2 0.22 0.15 
Balaban topological 0.42 0.29 ADME H bond donor 0.14 0.28 
ADME violation 0.27 0.27 VAMP total energy 0.78 0.15 
VAMP heat of formation 0.68 0.18 VAMP HOMO 0.44 0.14 
VAMP polarization XX 0.26 0.13 VAMP polarization XY 0.41 0.29 
VAMP polarization XZ 0.49 0.25 VAMP polarization YY 0.33 0.16 
VAMP polarization YZ 0.47 0.25 VAMP polarization ZZ 0.33 0.24 
VAMP quadpole XX 0.62 0.16 VAMP quadpole XY 0.57 0.19 
VAMP quadpole XZ 0.58 0.26 VAMP quadpole YY 0.55 0.18 
VAMP quadpole YZ 0.34 0.21 VAMP quadpole ZZ 0.25 0.10 
VAMP octupole XXX 0.14 0.09 VAMP octupole XXY 0.88 0.07 
VAMP octupole XXZ 0.27 0.11 VAMP octupole YYX 0.88 0.10 
VAMP octupole YYY 0.42 0.23 VAMP octupole YYZ 0.89 0.07 
VAMP octupole ZZX 0.75 0.19 VAMP octupole ZZY 0.59 0.23 
VAMP octupole ZZZ 0.57 0.19 VAMP octupole XYZ 0.19 0.08 
Total dipole 0.26 0.16 Dipole x component 0.19 0.13 
Dipole Y component 0.52 0.27 Dipole Z component 0.60 0.23 

X is mean value of the descriptors; SD: standard deviation of the descriptors. 

3.2. Development of QSAR Model 

The selected descriptors were then used to develop a QSAR model. In this study, the QSAR model 

is developed using the multiple linear regression analysis (MLRA) technique [15]. The main goal of 

QSAR model development is to find the best set of descriptors that will produce a stable QSAR model 

with the ability to predict properties of unknown compounds. 

For the MLRA technique, stepwise regression was chosen in the development of the QSAR  

model, in which a selection algorithm was used to select a subset of the input variables, X. The 

advantage of estimating a model with stepwise MLRA is that only a few variables are needed to build 
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the QSAR model [16]. The stepwise method combines two approaches, which are the forward and 

backward stepping. 

In forward stepping, the partial F (statistical significance) values for all variables outside the model 

were calculated. This process is continued until no more variables qualified to enter the model. In 

backward stepping, the partial F values for all variables inside the model were calculated. The variable 

with the lowest partial F value was removed from the model. This process is continued until no more 

variables were qualified to be removed from the model. In general, a model can be accepted if it had 

fewer variables with better predictive power r2 (CV). 

Cross validation provides a rigorous internal check on the models derived using multiple regression 

analysis, giving an estimate of the true predictive power of the model i.e., how reliable are the 

predicted values for the untested compounds. The cross validation analysis in TSAR 3.3 software 

package (Accelrys) [26] was performed using leave-one-out method where one compound is removed 

from data set and its activity is predicted using the model derived from the rest of the data set [22]. 

3.3. Model Validation 

The last step in QSAR model development is model validation. It is important to evaluate the 

robustness and the predictive capacity or validity of the model before using the model to predict and 

interpret biological activities of compounds in the test set. When estimating the predictive ability of 

QSAR models, it is necessary to distinguish two classes of predictive power, namely the internal and 

external predictivity. Internal predictivity measures how accurately the model can predict the 

bioactivities of the set of compounds (training set) used to build the statistical model. External 

predictivity tries to measure the predictive power for molecules to which the model has not been 

subjected to before. Of the two, external predictivity is observed to be more accurate [19]. 

In this study, external validation was performed on a test set (i.e., test set and external test set). The 

best QSAR model developed was validated by predicting IC50 value of compounds in the test set, and 

tested for chance correlation by comparing the predicted and experimental photodynamic activities. 

3.4. Preparation of Compounds for External Test Set 

Compounds 1 and 2 were purchased from Frontier Scientific Inc., USA, and used without further 

purification. Experimental data for the isolation as well as the spectroscopic data for compounds 3, 4, 7, 

8, and 9 have already been reported by Kamarulzaman [27], and compound 12 by Tan [28]. Compound 

13 was obtained from David Appleton (Centre for Natural Product Research and Drug Discovery 

(CENAR), Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 

Malaysia). The identity and purity of the compounds were confirmed using high resolution mass 

spectrometry (HRMS) before use. Compound 13 (aquatic samples) had been previously identified by 

Harris et al. [29]. 

Compounds 5 and 6 were semi-synthesized from compound 12. Briefly, compound 12 was 

dissolved in N,N′-dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP) in dry 

dichloromethane (DCM), and subsequently reacted with a mixture of H-Asp-(OtBu)(OtBu) and excess 

diisopropylethylamine (DIPEA) in dry dichloromethane for 3 h at room temperature. A mixture of 

compound 6 and unreacted compound 12 were purified using preparative thin layer chromatography 
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(PTLC) in 7:3 hexane:acetone solvent system. The major band at Rf = 0.73 was isolated, re-dissolved 

with cold acetonitrile, filtered and dried to yield compound 6. The protecting group of compound 6 

was removed by stirring with 1:1 ratio of DCM and trifluoroacetic acid (TFA), followed by 

partitioning with equal amounts of water and DCM. The organic layer was collected and dried using 

rotary evaporator to yield compound 5. The identity of compound 12 as the starting material was 

confirmed by LCMS and UV-vis absorbance data. The structure of compound 5 was confirmed by  
1H-NMR, HRMS and UV-vis absorbance data. The structure of compound 6 which was obtained 

following removal of the protecting group (OtBu) (OtBu) of compound 5 was confirmed by HRMS 

and UV-vis absorbance data. 

Compounds 10, 11 and 14 were isolated from a methanolic extract of the leaves of Leonurus sibiricus. 

The methanolic crude extract was purified using silica gel column chromatography, eluting with 

increasing amounts of acetone (0–100%) in hexane and finally with 100% methanol. Fractions 34 and 40 

which were eluted at 100% acetone were combined and further purified using PTLC in 20% acetone in 

hexane to yield compound 11 (Rf = 0.36). The band corresponding to Rf = 0.55 was isolated and 

treated with 8:2 TFA:H2O to yield compound 10. Fraction 12 which was eluted at 6:4 hexane:acetone 

was subjected to further purification by PTLC using 75:25 hexane:acetone to yield compound 14  

(Rf = 0.48). The structure of compound 10 was confirmed by HRMS and UV-vis absorbance data 

whereas the identity of compounds 11 and 14 was confirmed by 1H-NMR, HRMS and UV-vis 

absorbance data. The spectroscopic data of compounds 10, 11 and 14 were in agreement with the 

literature data [30–32]. 

Compounds 15, 16 and 17 were semi-synthesized in a similar way as compounds 5 and 6, but with 

the addition of H-Lys-(OtBu)(Boc) in the reaction, instead of H-Asp-(OtBu)(OtBu). Following 

purification using PTLC (60:40 hexane:acetone), the major band at Rf = 0.15 was isolated, re-dissolved 

with cold acetonitrile, filtered and dried to yield compound 15. The protecting group of compound 15 

was removed by stirring with 1:1 ratio of DCM and TFA, followed by partitioning with equal amounts 

of water and DCM. The organic layer was collected and dried using rotary evaporator to yield 

compound 16, which was further purified using Sephadex column chromatography and 100% methanol. 

A second PTLC band at Rf = 0.63 was isolated and treated with 1:1 DCM:TFA to yield compound 17. 

The structure of compound 15 was confirmed by 1H-NMR, HRMS and UV-vis absorbance data. The 

structures of compound 16, following the removal of the protecting group (OtBu)(Boc), and compound 17 

were confirmed by HRMS and UV-vis absorbance data. 

For the synthesis of compound 18, pheophorbide-a was dissolved in a solution containing DCC  

and DMAP in dry dichloromethane. This mixture was then reacted with another mixture of  

H-Asp-(OtBu)(OtBu) and excess DIPEA in dichloromethane. The reaction mixture was washed, dried, 

and subjected to purification using silica gel column chromatography using hexane:acetone solvent 

system. After the major brown band was eluted from the column, the solvent was evaporated and the 

solid was dissolved in 100% cold acetonitrile, filtered and dried. Removal of the protecting group was 

performed by stirring the compound with 1:1 ratio of DCM:TFA. Following partitioning with equal 

amounts of water and DCM, the organic layer was collected and dried using rotary evaporator to 

obtain compound 18. The structure of compound 18 was confirmed by 1H-NMR, HRMS and UV-vis 

absorbance data. 
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Compounds 19 and 20 were semi-synthesized in a similar way as compounds 18 but with the 

addition of H-Lys-(OtBu)(Boc) in the reaction, instead of H-Asp-(OtBu)(OtBu). Following 

purification with silica gel column chromatography using hexane-acetone solvent system, the fraction 

corresponding to Rf = 0.46 in 60:40 hexane:acetone was collected, further purified by PTLC  

(60:40 hexane:acetone), and subsequently treated with 1:1 DCM:TFA to yield compound 19. Another 

fraction corresponding to Rf = 0.42 in 60:40 hexane:acetone was collected, further purified by PTLC 

(60:40 hexane:acetone) and subsequently treated with 1:1 DCM:TFA to yield compound 20. The 

structures of compounds 19 and 20 were confirmed by HRMS and UV-vis absorbance data. 

3.5. Determination of Photocytotoxicity of Compounds in External Test Set by MTT  

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium hydrobromide) Assay 

Leukemic cell line HL-60 in phenol red-free RPMI medium containing 5% fetal bovine serum were 

seeded in 96-well plate at the density of 15,000 cells/well. Photosensitizers, dissolved in the same 

medium were added at concentrations ranging from 0.01 to 10 μM. Following 2 h incubation, the cells 

were irradiated for 10 min with a broad spectrum light source at light dose of 5.6 J/cm2. The cells were 

further incubated for 24 h. At the end of the incubation, 20 μL of MTT solution (5 mg/mL) was added 

into each well and incubated for 4 h. The plate was then subjected to centrifugation at 2000 rpm for 10 min. 

100 μL of medium was carefully removed and replaced with 100 μL of DMSO to dissolve the purple 

formazan formed. Absorbance was read at 570 nm using an OpsysMR microplate spectrometer 

(Thermo-Labsystems, Chantilly, VA, USA). The half maximal inhibitory concentrations (IC50) of the 

photosensitizers were then determined. Duplicate of the experiment was performed without irradiation 

to assess the dark toxicity of the photosensitizers. Compounds 1–20 showed negligible toxicity in the dark. 

4. Conclusions 

The QSAR model has been successfully developed with a good correlative and predictive ability for 

predicting PDT activity. This QSAR model exhibiting a high degree of accuracy was then validated by 

predicting the PDT activity of experimental compounds in the external test set. The PDT activity is 

predominantly influenced by a set of descriptors which appeared in the QSAR model such as 

electrostatic and steric properties. The developed QSAR model was able to discover and confirm the 

PDT activities of five compounds as potential active photosensitizers. 
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