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Plain language summary 

An explainable AI system for Helicobacter pylori with good diagnostic performance

Helicobacter pylori (H. pylori) is the main risk factor for gastric cancer (GC), and changes 
in gastric mucosa caused by H. pylori infection affect the observation of early GC under 
endoscopy. Therefore, it is necessary to identify H. pylori infection under endoscopy. 
Although previous research showed that computer-aided diagnosis (CAD) systems have 
great potential in H. pylori infection diagnosis, their generalization and explainability are 
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Abstract
Background: Changes in gastric mucosa caused by Helicobacter pylori (H. pylori) infection 
affect the observation of early gastric cancer under endoscopy. Although previous researches 
reported that computer-aided diagnosis (CAD) systems have great potential in the diagnosis of 
H. pylori infection, their explainability remains a challenge.
Objective: We aim to develop an explainable artificial intelligence system for diagnosing  
H. pylori infection (EADHI) and giving diagnostic basis under endoscopy.
Design: A case–control study.
Methods: We retrospectively obtained 47,239 images from 1826 patients between 1 June 
2020 and 31 July 2021 at Renmin Hospital of Wuhan University for the development of 
EADHI. EADHI was developed based on feature extraction combining ResNet-50 and long 
short-term memory networks. Nine endoscopic features were used for H. pylori infection. 
EADHI’s performance was evaluated and compared to that of endoscopists. An external test 
was conducted in Wenzhou Central Hospital to evaluate its robustness. A gradient-boosting 
decision tree model was used to examine the contributions of different mucosal features for 
diagnosing H. pylori infection.
Results: The system extracted mucosal features for diagnosing H. pylori infection with an 
overall accuracy of 78.3% [95% confidence interval (CI): 76.2–80.3]. The accuracy of EADHI for 
diagnosing H. pylori infection (91.1%, 95% CI: 85.7–94.6) was significantly higher than that of 
endoscopists (by 15.5%, 95% CI: 9.7–21.3) in internal test. And it showed a good accuracy of 
91.9% (95% CI: 85.6–95.7) in external test. Mucosal edema was the most important diagnostic 
feature for H. pylori positive, while regular arrangement of collecting venules was the most 
important H. pylori negative feature.
Conclusion: The EADHI discerns H. pylori gastritis with high accuracy and good explainability, 
which may improve the trust and acceptability of endoscopists on CADs.
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still a challenge. Herein, we constructed an explainable artificial intelligence system for 
diagnosing H. pylori infection (EADHI) using images by case. In this study, we integrated 
ResNet-50 and long short-term memory (LSTM) networks into the system. Among them, 
ResNet50 is used for feature extraction, LSTM is used to classify H. pylori infection status 
based on these features. Furthermore, we added the information of mucosal features 
in each case when training the system so that EADHI could identify and output which 
mucosal features are contained in a case. In our study, EADHI achieved good diagnostic 
performance with an accuracy of 91.1% [95% confidence interval (CI): 85.7–94.6], which 
was significantly higher than that of endoscopists (by 15.5%, 95% CI: 9.7–21.3%) in 
internal test. In addition, it showed a good diagnostic accuracy of 91.9% (95% CI: 85.6–
95.7) in external tests. The EADHI discerns H. pylori gastritis with high accuracy and good 
explainability, which may improve the trust and acceptability of endoscopists on CADs. 
However, we only used data from a single center to develop EADHI, and it was not effective 
in identifying past H. pylori infection. Future, multicenter, prospective studies are needed 
to demonstrate the clinical applicability of CADs.

Keywords:  explainable artificial intelligence, Helicobacter pylori, long short-term memory 
network, ResNet-50
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Introduction
Gastric cancer (GC) is one of the most common 
malignancies, accounting for over 1,000,000 new 
cases and an estimated 783,000 deaths in 2018.1 
Helicobacter pylori (H. pylori) is the leading risk 
factor for GC, which induces atrophic gastritis 
and intestinal metaplasia, ultimately leading to 
the development of GC.2–6 Furthermore, H. pylori 
eradication improves gastric mucosal atrophy and 
inhibits the development of intestinal metapla-
sia.3,7 Therefore, early detection and eradication 
of H. pylori infection are essential to avoid the 
development of GC.

The most important tool for early GC (EGC) 
screening is white light endoscopy (WLE).8 
However, the risk stratification of EGC is related to 
endoscopic findings of H. pylori infection status. 
Atrophy, intestinal metaplasia, nodularity, etc., in 
H. pylori-positive patients are related to the risk of 
EGC, whereas atrophy plays a more important role 
in H. pylori-negative patients.9 In addition, depressed 
macroscopic EGC lesions are more common in the 
infected cases than in the uninfected cases,10 
whereas flat elevated lesions are more common in 
uninfected cases than in the infected cases.11 The 
mucosal hyperemia, edema, and redness caused by 
H. pylori infection make the surface and edges of 
EGC more difficult to observe.12 Thus, recognizing 

H. pylori infection under endoscopy is critical for the 
diagnosis of EGC. H. pylori infection does not pro-
duce detectable specific lesions, making it difficult 
to diagnose using endoscopy.13 In addition, the 
accuracy of endoscopists in diagnosing H. pylori 
gastritis based on previous experience was approxi-
mately 70% under WLE.14,15 Fortunately, an 
increasing number of H. pylori infection-related 
mucosal features has been identified, allowing the 
diagnosis of H. pylori gastritis using WLE.16–19 
However, this approach requires advanced skills 
and knowledge.20,21

Recent studies have shown that artificial intelli-
gence (AI) uses deep learning to achieve feature 
expression.22 Furthermore, it plays a vital role in 
identifying upper gastrointestinal diseases, includ-
ing esophageal cancer and EGC.23,24 Researchers 
have made great efforts with the help of AI to 
diagnose H. pylori infection using WLE. Shichijo 
et al. collected 32,208 images from 1750 patients 
for convolutional neural network (CNN) model 
development and achieved an accuracy of 88.9%, 
which was higher than that of endoscopists.25 
Zheng et al.26 developed the CNN model using 
11,729 images with an accuracy of 81.4% for a 
single image per patient, and 93.8% for multiple 
images (8.3 ± 3.3) per patient, suggesting that 
CNN using multiple gastric images achieved 
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higher diagnostic accuracy for the evaluation of 
H. pylori infection. However, previous diagnosis 
systems return a final decision result without 
explanation, making it difficult for endoscopists 
to learn from the models.27 The poor explainabil-
ity of these black-box models undermines the 
physicians’ trust and puts patients at risk, severely 
limiting AI systems’ clinical applications.28,29 
Therefore, improving the explainability of AI sys-
tems is necessary for their applications.

In this study, we developed an explainable AI sys-
tem for diagnosing H. pylori infection (EADHI) 
based on feature extraction using ResNet-50 and 
long short-term memory network (LSTM). The 
performance of EADHI under WLE was evalu-
ated in internal and external test sets and further 
compared with endoscopists of different levels. 
To the best of our knowledge, this is the first 
study to concretize abstract diagnostic theories 
through feature extraction, providing diagnostic 
results and a diagnostic basis for endoscopists.

Methods

Patients and esophagogastroduodenoscopy 
protocol
We retrospectively reviewed patients undergoing 
esophagogastroduodenoscopy (EGD) with gas-
tric biopsies or H. pylori breath test at Renmin 

Hospital of Wuhan University (RHWU) between 
June 2020 and July 2021. We included 1826 
patients (881 H. pylori positive and 945 H. pylori 
negative) for the development of EADHI. Table 
1 shows the patient characteristics. Exclusion cri-
teria include (1) patients with a history of GC, 
peptic ulcer, gastric surgery, or submucosal tumor 
and (2) patients who received H. pylori eradica-
tion or administered antibiotics within a month or 
proton pump inhibitor within 2 weeks of H. pylori 
breath test.

EGD was performed using a standard endoscope 
(GIF-HQ290, GIF-H260; Olympus, Tokyo, 
Japan; EG-L590ZW; Fujifilm, Tokyo, Japan) 
and the images were captured during high-defini-
tion, white-light examination of the antrum, 
angularis (retroflex), body (forward and retro-
flex), and fundus (retroflex). Gastric biopsies 
were performed in the antrum and body at the 
endoscopist’s discretion.

Establishment of diagnostic feature for  
H. pylori infection with prior knowledge
Atrophy, intestinal metaplasia, nodularity, diffuse 
redness, spotty redness, mucosal swelling, 
enlarged folds, and sticky mucus are positive 
endoscopic findings for H. pylori. At the same 
time, regular arrangement of collecting venules 
(RAC), fundic gland polyp (FGP), red streak, 

Table 1.  Baseline characteristics according to dataset.

Development dataset Internal test dataset External test dataset p Value

No. of patients 1826 168 124 –

No. of images per endoscopy (mean ± SD) 25.87 ± 9.98 24.27 ± 8.01 41.18 ± 17.55 0.000

Age, years 46.55 ± 13.65 46.46 ± 12.69 48.73 ± 12.60 0.215

Sex, n (%) 0.591

  Female 973 (53.29) 95 (56.55) 70 (56.45)  

  Male 853 (46.71) 73 (43.45) 54 (43.55)  

H. pylori status, No. (%) 0.857

  Positive 881 (48.25) 84 (50.00) 62 (50.00)  

  Diagnosed by histological biopsy alone 91 (10.33) 10 (11.90) 0 (0)  

Negative 945 (51.75) 84 (50.00) 62 (50.00)  

SD, standard deviation.
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and hematin are predictive features for H. pylori 
negative.16–19 These endoscopic features in the 
patients’ images were evaluated by two experts, 
who had performed more than 5000 examina-
tions. Before evaluating the images, the two 
experts were educated on the Kyoto classification 
of gastritis16 using PowerPoint presentation. This 
pre-study training was conducted to avoid inter-
observer variance, making the endoscopist labels 
more objective and accurate. The two experts 
were blinded to the results of patients’ H. pylori 
infection and were asked to evaluate the same 
images independently. We included those in 
which they both agreed and had distinct mucosal 
features. Mucosal swelling, enlarged folds, and 
sticky mucus frequently appear in the same 
images, and these features were collectively 
referred to as mucosal edema. Because spot red-
ness and diffuse redness are similar and the back-
ground of spotty redness is mostly diffuse 
redness,16 the two features were classified as 
mucosal redness. Supplemental Table S1 shows 
the results of the endoscopic findings in patients. 
A logistic regression model30 was employed to 
evaluate the predictive capabilities of each endo-
scopic feature (Supplemental Table S2). 
According to the similarity between endoscopic 
features and their performance, nine features 

were finally included. Figure 1 shows the typical 
images.

Datasets and data preprocessing
Figure 2 shows the study’s workflow. EGD 
images retrospectively obtained from RHWU 
were used for the development and internal test 
of EADHI. Meanwhile, to verify the robustness 
of the system, EGD images were collected from 
Wenzhou Central Hospital for the external test.

Two gastroenterology doctoral students who had 
mastered the basic operation and diagnosis 
knowledge of EGD removed images of duode-
num and esophagus, poor quality, non-white light 
images, and those with active bleeding. Finally, 
47,239 images from 1826 patients were used for 
the development of EADHI. Two experts inde-
pendently screened 5780 images with distinct 
mucosal features for developing a model to 
enhance its ability to identify mucosal features. 
The images were randomly allocated to the train-
ing validation and testing dataset at a ratio of 
8:1:1. Random projective transformations such as 
scaling, shearing, zooming, and horizontal flip-
ping were applied to selected images. Furthermore, 
in AI model, training projective transformation is 

Figure 1.  Evaluated endoscopic features: (a) atrophy, (b–c) intestinal metaplasia, (d) nodularity, (e–f) mucosal 
redness, (g–h) mucosal edema, (i) RAC, (j) FGP, (k) red streak, and (l) hematin.
FGP, fundic gland polyp; RAC, regular arrangement of collecting venules.
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a commonly used data augmentation technique 
that can increase the robustness, stability, and 
generalization of the model.24,31

The prepared endoscopic images (about 26 
images per case) of 881 H. pylori-positive patients 
and 945-negative patients (Table 1) were used for 
the development of model 2 to detect H. pylori 
infection based on identified mucosal features.

Internal testing dataset
A separate testing dataset was developed to evalu-
ate the diagnostic accuracy of EADHI, and com-
pare it with endoscopists. In August 2021, the 

EGD images (about 24 images per case) of 168 
patients (84 H. pylori positive and 84 H. pylori neg-
ative) were included as the testing dataset and 71 
patients were excluded using the exclusion criteria 
(Figure 3). Table 1 shows the patient demograph-
ics, and there was no overlap between the testing 
and the development datasets. In all, 10 
endoscopists, trained on the Kyoto classification of 
gastritis16 before assessing cases using PowerPoint 
presentation, of varying experience blinded to the 
patients’ H. pylori infection status were indepen-
dently asked whether a patient was H. pylori posi-
tive or H. pylori negative. Four of the 10 
endoscopists were classified as follows: ‘expert 
group’, with EGDs > 5000. The other endoscopists 

2581 patients receiving EGD with gastric biopsies or H. pylori breath test screened for

eligibility at Renmin Hospital of Wuhan University

5780 images with H. pylori-positive or H. pylori negative

mucosal features were selected by endoscopists

� 1120 images with atrophy

� 504 images with intestinal metaplasia

� 164 images with nodularity

� 604 images with mucosal redness
� 2966 images with mucosal edema
� 422 images with H. pylori negative mucosal features

Development and testing of model 1 for mucosal

features recognition
development of model 2 for classificationH.

pylori infection status

Internal test (4077 images from 168 patients)

84 H. pylori-positive, and 84-negative

External test (5106 images from 124 patients)

62 H. pylori-positive, and 62-negative

man-machine contest with endoscopists in

internal test

47239 images from1826 patients (881 H. pylori-positive and

945-negative) were included

Excluded n=755

� completed H. pylori eradication n=346

� unknown H. pylori infection status n=115

� with gastric cancer, peptic ulcer, gastric surgery or

submucosal tumor n=187

� had antibiotics within a month or proton pump

inhibitor within 2 weeks of endoscopy n=67

� others n=40

Images of duodenum

and esophagus, poor

quality, non-white light

images (WLI), and

those with active

bleeding were excluded.

Figure 2.  Workflow chart for the development and evaluation of EADHI.
EADHI, explainable artificial intelligence system for diagnosing H. pylori infection.
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were further classified as the ‘relatively experienced 
group’, EGDs > 1000 (n = 3); and the ‘beginner 
group’, EGDs < 1000 (n = 3). All 10 endoscopists 
were not involved in the selection of the data.

External testing dataset
Images from the patients diagnosed with H. pylori 
positive or H. pylori negative (62 H. pylori positive 
and 62 H. pylori negative) were obtained from 
Wenzhou Central Hospital as an external testing 
dataset to evaluate the robustness of the EADHI 
(Table 1).

Gold standard of H. pylori infection
Patients who tested positive for H. pylori using 
histological examination of biopsy specimen or 
breath test were classified as H. pylori positive. 
However, only 9.8% (101/1027) of H. pylori-pos-
itive cases were diagnosed using histological 
examination of biopsy specimen alone (Table 1). 
Moreover, patients who tested negative on  
H. pylori breath test in the absence of eradiation 
treatment were classified as H. pylori negative.

Construction of the explainable AI system
The EADHI developed in the study contained 
two models, model 1 developed with ResNet-50 
to extract mucosal features, and model 2 devel-
oped by combining model 1 with an LSTM 
network to detect H. pylori infection.

Model 1 was developed with ResNet-50 using six 
types of EGD images. Figure 4 shows a typical 
ResNet-50 architecture with these layers, includ-
ing convolution layers, max-pooling Layers, 16 
residual blocks, average pooling, and fully con-
nected layers. High-level features obtained from 
the average pooling layer of trained ResNet-50 
are fed into fully connected layers for classifica-
tion. We further attempted to understand how 
model 1 recognized the input images by applying 
a Gradient-weighted Class Activation Map 
(Grad-CAM)32 to determine which area of the 
images was most essential to the classification 
result. We developed heatmap images from the 
location map data. Supplemental Table S3 and 
Supplemental Figure S1 show the performance of 
model 1.

Model 2 was developed by combining ResNet-50 
and LSTM networks, which were developed by the 
Keras deep learning framework (TensorFlow back-
end).33 In model 2, ResNet-50, which incorporated 
all layers of model 1 except fully connected layers, 
was used for feature extraction, while LSTM was 
used to classify H. pylori infection status based on 
identified features. And the proposed model 2 
developed in the study contains two phases, in 
phase one, ResNet-50 extracts all the mucosal fea-
tures in a case from input case-based EGD images 
and generates feature vectors, whereas in phase 
two, LSTM receives the feature vectors to extract 
time information, which is then passed to the dense 
layer for classification (Figure 5).

239 patients receiving EGD at Renmin Hospital of Wuhan University in August 2021

Excluded n=71

� completed H. pylori eradication n=32

� unknown H. pylori infection status n=10

� with gastric cancer, peptic ulcer, gastric surgery, or

submucosal tumor n=18

� had antibiotics within a month or proton pump inhibitor

within 2 weeks of endoscopy n=6

� others n=5

Evaluated

n=168

Figure 3.  Flow chart for the enrolled patients.
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To make the diagnosis of the system more spe-
cific, we added the information about mucosal 
features when training model 2, and trained each 
feature separately. Supplemental Table S4 shows 
their performance in the validation dataset. As 
shown in Figure 6, EADHI could identify and 
output which mucosal features were present in a 
case, and then output the final result based on the 
identified mucosal features and their weights cal-
culated using a gradient-boosting decision tree.34 
The sensitivity was plotted against the false-posi-
tive rate (i.e. 1-specificity) for all thresholds in the 
range [0, 1]. In addition, the receiver operating 
characteristic (ROC) curves were obtained.

Sample size
Sample size calculations were performed accord-
ing to Exact Clopper–Pearson, with assumptions 
that EADHI has a sensitivity of 90% and a speci-
ficity of 90% for detecting H. pylori infection. A 
prevalence of 44% was estimated, based on recent 
demographic meta-analysis for China.35 A sample 
size of 79 patients was calculated using a two-sided 
95% confidence interval (CI) with a width of 0.1.

Ethics
We de-identified all patient information before 
data analysis to keep patients anonymous. Patient 

details were not accessible to any of the 
endoscopists involved in the study. The report-
ing of this study adheres to the Strengthening 
the Reporting of Observational Studies in 
Epidemiology statement.36

Statistical analysis
Demographic data were expressed as mean with 
standard deviation (SD). The performance of 
EADHI was evaluated using the following met-
rics: accuracy, specificity, sensitivity, positive pre-
dictive value, negative predictive value, and area 
under the curve (AUC) using ROC. Optimal cut-
off values to obtain the highest AUC were calcu-
lated using the Youden index. The performance 
of the EADHI and endoscopists were compared 
using a two-tailed unpaired heteroscedastic 
Student’s t test. Two-sided p < 0.05 was consid-
ered statistically significant.

Results

Performance of EADHI for mucosal features
Table 2 shows that EADHI identified various 
mucosal features with an overall accuracy of 
78.3% (95% CI: 76.2–80.3%), and the accu-
racy for atrophy, intestinal metaplasia, nodular-
ity, mucosal redness, mucosal edema, RAC, 

Figure 4.  A typical architecture of model 1.
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FGP, red streak, and hematin were 78.6% 
(95% CI: 71.7–84.1%), 81.6% (95% CI: 75.0–
86.7%), 91.7% (95% CI: 86.4–95.1%), 83.3% 
(95% CI: 76.9–88.3%), 85.7% (95% CI: 79.6–
90.3%), 82.7% (95% CI: 76.3–87.8%), 69.6% 

(95% CI: 62.3–76.1%), 72.6% (95% CI: 65.4–
78.8%), and 58.9% (95% CI: 51.4–66.1%). 
The AUC of EADHI for each mucosal feature 
ranged from 0.66 to 0.95 (Figure 7(a)). And 
the corresponding weights of each mucosal 

Figure 6.  A schematic illustration of how EADHI diagnoses H. pylori infection in images by case. The ResNet-50 could identify and 
output mucosal features in a case, and the LSTM could diagnose H. pylori infection status based on identified mucosal features.
EADHI, explainable artificial intelligence system for diagnosing H. pylori infection; LSTM, long short-term memory.

Figure 5.  A typical architecture of model 2.
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feature were 0.109, 0.019, 0.024, 0.163, 0.386, 
0.275, 0.012, 0.006, and 0.007, respectively 
(Figure 7(b)).

Performance of EADHI for H. pylori infection on 
the internal test set in patients
Figure 7(c) shows the AUC of EADHI for  
H. pylori infection was 0.96, and at the optimal 
threshold of 0.26, the accuracy, sensitivity, and 
specificity were 91.1% (95% CI: 85.7–94.6%), 
92.9% (95% CI: 85.0–97.0%), and 89.3% (95% 
CI: 80.7–94.5%) in the internal test set, respec-
tively (Table 3).

In the internal test set, 94.0% (158/168) cases 
were diagnosed by H. pylori breath test. EADHI 
achieved an accuracy of 92.4% (95% CI: 87.1–
95.7%), a sensitivity of 93.2% (95% CI: 84.8–
97.4%), and a specificity of 91.7% (95% CI: 
83.5–96.2%) in these cases (Table 3).

Comparison between EADHI and endoscopists
Table 3 shows the results of H. pylori infection 
evaluation of the internal test data by the 10 
endoscopists. The overall accuracy, sensitivity, 
and specificity for the diagnosis of H. pylori infec-
tion were 75.6% (SD 8.1%), 78.7% (12.7%), and 
72.4% (15.5%). The expert group was found to 
have significantly higher accuracy (83.6% versus 

73.2%, p < 0.01) than the relatively experienced 
group. Similarly, a significant difference in the 
accuracy was observed between the expert group 
and the beginner group (83.6% versus 67.3%, 
p < 0.01). However, there was no statistical dif-
ference in the accuracy between the relatively 
experienced group and the beginner group 
(73.2% versus 67.3%, p = 0.618).

In addition, the EADHI was found to have a sig-
nificantly higher accuracy (by 15.5%; 95% CI: 
9.7–21.3%), sensitivity (by 14.2%; 95% CI: 5.1–
23.3%), and specificity (by 16.9%; 95% CI: 5.8–
28.0%) than the endoscopists. When compared 
with the expert group, the EADHI had higher 
accuracy (by 7.5%; 95% CI: 2.5–12.4%), 
although their sensitivity and specificity were 
comparable. The comparison results are summa-
rized in Figure 7(c) and Table 3.

Performance of EADHI for H. pylori infection on 
the external test set in patients
To verify the robustness of the EADHI, we exam-
ined its performance on an external test set. It 
achieved an accuracy of 91.9% (95% CI: 85.6–
95.7%), a sensitivity of 90.3% (95% CI: 80.1–
95.8%), and a specificity of 93.6% (95% CI: 
84.1–97.9%), respectively. And the AUC value of 
0.96 was achieved at the optimal threshold 
(Figure 7(c)).

Table 2.  The performance of EADHI for mucosal features.

Mucosal features Accuracy % (95% CI) Sensitivity % (95% CI) Specificity % (95% CI) PPV % (95% CI) NPV % (95% CI)

Atrophy 78.6 (71.7–84.1) 82.3 (72.3–89.3) 75.3 (65.3–83.1) 74.7 (64.6–82.7) 82.7 (72.9–89.5)

Intestinal metaplasia 81.6 (75.0–86.7) 100 (71.8–100) 80.1 (73.1–85.7) 27.9 (16.6–42.8) 100 (96.4–100)

Nodularity 91.7 (86.4–95.1) 71.4 (35.2–92.4) 92.6 (87.3–95.8) 29.4 (13.0–53.4) 98.7 (95.0–99.9)

Mucosal redness 83.3 (76.9–88.3) 79.0 (63.4–89.2) 84.6 (77.4–89.9) 60.0 (46.2–72.4) 93.2 (87.0–96.7)

Mucosal edema 85.7 (79.6–90.3) 87.7 (78.0–93.6) 84.2 (75.5–90.3) 81.0 (70.9–88.3) 89.9 (81.7–94.8)

RAC 82.7 (76.3–87.8) 75.8 (58.8–87.4) 84.4 (77.3–89.7) 54.4 (40.2–67.9) 93.4 (87.4–96.8)

FGP 69.6 (62.3–76.1) 73.3 (47.6–89.5) 69.3 (61.6–76.1) 19.0 (10.8–31.0) 96.4 (90.7–98.9)

Red streak 72.6 (65.4–78.8) 100 (51.1–100) 71.8 (64.4–78.1) 9.8 (3.8–21.4) 100 (96.2–100)

Hematin 58.9 (51.4–66.1) 75.4 (63.2–84.6) 49.5 (40.2–58.9) 46.0 (36.6–55.7) 77.9 (66.6–86.3)

Total 78.3 (76.2–80.3) 81.4 (76.8–85.3) 77.5 (75.0–79.8) 49.5 (45.3–53.8) 93.9 (92.2–95.2)

CI, confidence interval; EADHI, explainable artificial intelligence system for diagnosing H. pylori infection; FGP, fundic gland polyp; NPV, negative 
predictive value; PPV, positive predictive value; RAC, regular arrangement of collecting venules.
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Discussion
We developed an explainable AI system, EADHI, 
for auto-identification of H. pylori infection by 

identifying multiple mucosal features. We com-
pared EADHI’s diagnostic ability with endoscopists 
by examining its internal and external test data 

Figure 7.  The corresponding weights of each mucosal feature, the ROC curves of EADHI, and the performance 
of endoscopists. (a) ROC curves of various mucosal features. (b) The corresponding weights of each feature. 
The ROC curve for H. pylori infection in internal testing dataset. (c) The ROC curve for H. pylori infection in 
internal and external testing dataset, and the performance of endoscopists.
EADHI, explainable artificial intelligence system for diagnosing H. pylori infection; ROC, receiver operating characteristic.

Table 3.  Diagnostic accuracy in internal test data: EADHI versus endoscopists.

Index (%) EADHI Endoscopists (SD)

Cases diagnosed by  
H. pylori breath test

All cases Expert (n = 4) Relatively 
experienced (n = 3)

Beginner 
(n = 3)

Total (n = 10)

Accuracy 92.4 91.1 83.6 (3.1)** 73.2 (2.1) 67.3 (5.7) 75.6 (8.1)

Sensitivity 93.2 92.9 82.9 (8.5) 84.3 (15.4) 67.4 (10.7) 78.7 (12.7)

Specificity 91.7 89.3 84.3 (9.9)* 61.9 (11.7) 67.1 (17.5) 72.4 (15.5)

PPV 90.8 89.7 85.4 (8.2)** 69.8 (3.2) 69.2 (9.6) 75.9 (10.6)

NPV 93.9 92.6 83.5 (6.2) 82.6 (14.1) 66.9 (5.1) 78.2 (11.2)

Comparison between other groups and experts, *indicates p < 0.05, **indicates p < 0.01.
EADHI, explainable artificial intelligence system for diagnosing H. pylori infection; NPV, negative predictive value; PPV, positive predictive value;  
SD, standard deviation.
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performance, and EADHI performed better than 
that endoscopists and showed good robustness.

In recent years, AI has remarkable improved in 
diagnosing H. pylori infection based on CNN.25,26 
However, because CNN models were developed 
with a few endoscopic images per patient, mucosal 
features associated with H. pylori infection status 
may have been missed. In addition, there have 
been concerns about the black-box nature and 
lack of explainability of AI models, which greatly 
limits their clinical application.27 In this study, 
two models were integrated into the system to 
make a diagnosis of EADHI more specific and 
comprehensive. Model 1 was first constructed 
with ResNet-50 to enhance its ability to identify 
mucosal features. In addition, we confirmed 
which parts of the images model 1 focuses on 
using heatmaps. Model 2 was developed by com-
bining ResNet-50 and LSTM networks using 
case-based images (about 26 images per case). 
Furthermore, ResNet-50 in model 2 incorporated 
all layers of model 1 except the fully connected 
layer to maximize the ability of model 2 to recog-
nize mucosal features. In addition, the informa-
tion on mucosal features in the cases was added 
during the training to strengthen further the abil-
ity of the system to identify mucosal features.

Previous studies show that an estimated 40–50% 
of the global population is infected with H. pylori, 
which is the main risk factor for GC.2,37,38 In 
addition, H. pylori infection affects the morphol-
ogy of EGC and makes it difficult to diagnose.10–12 
Therefore, early detection of H. pylori infection 
using endoscopy is crucial. As more endoscopic 
findings associated with H. pylori infection status 
are identified, WLE may be used to diagnose  
H. pylori gastritis.16–19 However, this approach 
requires advanced skills and knowledge, and the 
diagnostic process is highly subjective.20,21 In con-
trast, an AI-aided diagnosis system could provide 
an objective second opinion and help endoscopists 
avoid over-reliance on prior experience in the 
diagnosis process.39 Herein, the EADHI devel-
oped by us could effectively identify mucosal fea-
tures and comprehensively detect H. pylori 
infection based on identified features. Our results 
indicate its potential to assist endoscopists in 
screening H. pylori infection in real clinical work.

Nodularity is considered to be the strongest evi-
dence to support current H. pylori infection, with 
extremely high specificity (95.8–98.8%).40–42 A 

recent study reported that the diagnostic odds 
ratios (DOR) of diffuse redness, mucosal swell-
ing, sticky mucus, and enlarged serpentine for 
judging H. pylori positive were 26.8, 13.3, 10.2, 
and 8.6, respectively.42 Moreover, most patients 
with atrophic gastritis have evidence of H. pylori 
infection.43,44 In addition, Zhao et al. reported 
that when the positive signs were combined, the 
ROC/AUC of two or more features had the high-
est value (0.723).40 Among these negative 
mucosal features, the DOR of RAC, FGP, and 
red streak were 32.2, 7.7, and 4.7, respectively.42 
Furthermore, when these negative features were 
combined, one or more had the highest ROC/
AUC (0.701).40 These mucosal features make the 
diagnosis of H. pylori infection status easier than 
before using WLE, but endoscopists’ skill levels 
vary significantly.22,40 In our study, the expert 
group performed significantly better than the 
other groups. Therefore, an effective method for 
identifying various mucosal features is required. 
Model 1 was developed in EADHI to improve its 
ability to identify mucosal features, and it achieved 
good diagnostic performance.

The EADHI for detecting H. pylori infection 
combines ResNet-50 and LSTM networks, with 
ResNet-50 being used for feature extraction and 
LSTM to classify H. pylori infection based on 
these features. The feature extraction network 
(ResNet-50) is a residual deep learning network 
(with 50 layers) which attempts to address the 
problem of vanishing gradients that occur during 
back-propagation of CNN to effectively extract 
and recognize the local and global features of 
images.45 Furthermore, a recent study reported 
that ResNet-50 using image generation tech-
niques based on an 80% training set resulted in 
nearly perfect multi-class prediction accuracy 
(98.99%) in a 20% validation set.46 The LSTM 
network is capable of learning from imperative 
experiences with long-term states by introducing 
gate functions into the cell structure. In the case 
of LSTM, nodes are connected from a directed 
graph along a time series that is treated as an 
input with a specific order.47 Hence, ResNet-50 
and LSTM layout feature combination effectively 
extracted and integrated mucosal features from 
about 26 endoscopy images per patient, signifi-
cantly improving the classification.

There are some limitations to this study. First, we 
invited two doctoral students and two experts to 
preprocess the data to obtain high-quality labeled 
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data at a low cost. However, it would be better if 
more endoscopists participated in data preproc-
essing. Second, the EADHI was developed using 
data collected retrospectively from a single center 
and was not prospectively validated. However, we 
examined EADHI performance in the external 
testing dataset and found it accurate. Third, we 
excluded patients with a history of H. pylori eradi-
cation from the study. Further research should be 
conducted to identify previous infections. Finally, 
H. pylori infection status was confirmed in most 
patients using one test. However, H. pylori breath 
test, which has high sensitivity (>95%) and speci-
ficity (95%) for the diagnosis of H. pylori infec-
tion, was used to diagnose >90% of the positive 
cases and all the negative cases in this study.48 
Furthermore, we excluded patients who received 
H. pylori eradication or had antibiotics within a 
month or proton pump inhibitor within 2 weeks 
of H. pylori breath test. Thus, the possibility of a 
false positive or negative H. pylori diagnosis was 
considered insignificant.

In conclusion, the explainable AI system, EADHI, 
outperformed the endoscopists in diagnostic 
accuracy. Furthermore, its diagnostic logic is sim-
ilar to that of endoscopists, which may increase 
endoscopists’ trust and acceptability. It has a high 
potential for assisting endoscopists in screening 
for H. pylori infection in clinical settings. Further 
research should be conducted to validate and 
globally apply the AI-based diagnostic system.
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