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Abstract

Skin is a highly plastic tissue that undergoes tissue turnover throughout life, but also in

response to injury. YAP and Hedgehog signalling play a central role in the control of epider-

mal stem/progenitor cells in the skin during embryonic development, in postnatal tissue

homeostasis and in skin carcinogenesis. However, the genetic contexts in which they act to

control tissue homeostasis remain mostly unresolved. We provide compelling evidence that

epidermal YAP and Hedgehog/GLI2 signalling undergo positive regulatory interactions in

the control of normal epidermal homeostasis and in basal cell carcinoma (BCC) develop-

ment, which in the large majority of cases is caused by aberrant Hedgehog signalling activ-

ity. We report increased nuclear YAP and GLI2 activity in the epidermis and BCCs of K14-

CreER/Rosa-SmoM2 transgenic mouse skin, accompanied with increased ROCK signalling

and ECM remodelling. Furthermore, we found that epidermal YAP activity drives GLI2

nuclear accumulation in the skin of YAP2-5SA-ΔC mice, which depends on epidermal β-

catenin activation. Lastly, we found prominent nuclear activity of GLI2, YAP and β-catenin,

concomitant with increased ROCK signalling and stromal fibrosis in human BCC. Our work

provides novel insights into the molecular mechanisms underlying the interplay between cell

signalling events and mechanical force in normal tissue homeostasis in vivo, that could

potentially be perturbed in BCC development.

Introduction

Basal cell carcinoma (BCC) is the most common form of human neoplasia and it accounts for

more than 70% of non-melanoma skin cancers (NMSC) cases [1]. BCCs originate from the

basal keratinocyte layer of the epidermis [2], and are typically caused by aberrant Hedgehog

(Hh) signalling activity [2–8].
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The Hedgehog (Hh) pathway is involved in the development of every major organ, includ-

ing the skin [9]. Mammalian Hedgehog signalling occurs via three homologous ligands; Sonic

(SHH), Desert (DHH) and Indian (IHH) Hedgehog [10–12], which bind transmembrane pro-

tein PTC1, a tumor suppressor, with similar affinity, but display tissue and temporal specific

expression patterns [13, 14]. Hedgehog interactions with the transmembrane protein PTC1

relieves the inhibition of Smoothened (SMO) and permits downstream signaling activity,

resulting in the activation of the effector protein GLI2. GLI2 then translocates to the nucleus

where it regulates the transcription of Hedgehog-pathway target genes including Gli1 and

Ptc1, and multiple cell cycle genes, including N-myc and E2F1 transcription factors, all of

which contribute to proliferation [15].

SHH signaling also controls epidermal development and homeostasis. SHH produced in

the dermal matrix signals to PTC1 in the dermal papilla to activate hair follicle development in

the fetal epidermis [16, 17]. Postnatally, Hedgehog signaling in the dermal papilla stimulates

bulge stem cells to proliferate and hair follicle down growth during anagen, the growth phase

of the hair follicle cycle [18–20]. In addition, Ptc1 is also expressed in the basal epidermis, and

overexpression of Shh, or conditional inactivation of Ptc1 in the basal epidermis or C-terminal

truncation of PTC1 result in a severe overgrowth phenotype of the epidermis resembling BCC

[21–24]. Furthermore, epidermal SHH has recently been shown to also control papillary fibro-

blast activity and dermal ECM remodelling [25]. These data demonstrate that Hedgehog sig-

nalling controls basal epidermal stem/progenitor cell proliferation both in the epidermal and

dermal compartments of the skin. However, the precise regulatory mechanisms of how Hedge-

hog signalling controls epidermal stem/progenitor proliferation remain unclear.

Hippo/YAP signalling is a master regulator of cell proliferation and organ size [26–29].

YAP is an oncoprotein and transcriptional co-activator, the overexpression and nuclear accu-

mulation of which have been detected in many human cancers [30–36]. Classically, the core

Hippo kinase cassette is known to control YAP activity [37, 38]. However, YAP has recently

been recognized as a mechanosensor that is activated in response to tissue stiffness irrespective

of Hippo kinase pathway activity [39, 40].

YAP plays a pivotal role in epidermal regeneration. It is expressed throughout the epider-

mis, including in the basal epidermal stem/progenitor cell populations [28, 41, 42]. Overex-

pression of hyperactive YAP protein mutants in the nuclei of basal keratinocytes drives β-

catenin activation and increased basal epidermal cell proliferation rates eventually resulting in

epidermal hyperplasia [28, 29, 41, 42]. In addition, transgenic epidermal transplants expressing

YAP develop into invasive squamous cell carcinoma (SCC)-like tumour masses in nude mice

[41], and YAP expression is strongly upregulated and nuclearly localized in keratinocytes of

invasive human non-melanoma skin tumours [42]. These data unequivocally establish that

tight regulation of YAP activity is essential for normal epidermal homeostasis, and that aber-

rant nuclear YAP activity results in tumour development in the epidermis. Nevertheless, the

genetic mechanisms controlled by YAP that regulate epidermal stem cell proliferation or cause

skin cancer development remain unknown.

Many reports have previously demonstrated crosstalk between the Hedgehog and YAP sig-

nalling in control of tissue regeneration and cancer development [34, 43–48]. In this report,

we investigated whether YAP and Hedgehog signalling undergo regulatory interactions in

control of normal epidermal homeostasis and in skin cancer development. We found

increased activity of pathway effectors YAP and GLI2 in the hyperplastic epidermis of mouse

models with activated Hedgehog signalling (K14-CreER/Rosa-SmoM2) or activated YAP

(YAP2-5SA-ΔC) in the basal epidermis, respectively. Furthermore, we found increased epider-

mal ROCK signalling, fibroblast activity and dermal fibrosis in the skin of K14-CreER/Rosa-

SmoM2 mice. We also found prominent nuclear activity of YAP and β-catenin, and increased

YAP and Hedgehog signalling in skin homeostasis and BCC development
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ROCK signalling and fibrosis in human BCC. These data strongly support the existence of pos-

itive regulatory interactions between YAP, Hedgehog and ROCK mechanosignalling in epi-

dermal homeostasis that may underpin BCC development.

Materials and methods

Human sections and mouse experimentation

Animal experimentation and human histological stainings were conducted under protocols

approved by the UNSW Australia’s Animal Care and UNSW Human Research Ethics Advi-

sory Panel, and in compliance with the National Health and Medical Research Council ‘Aus-

tralian code of practice (8th edition, 2013). We have previously described the generation of

YAP2-5SA-ΔC transgenic mice [28]. Mouse strains CtnnB1lox/lox (004152) [49], Rosa-SmoM2

(005130) [50] and K14-CreERT mice (005107) [51] were obtained from the Jackson Laborato-

ries. Conditional β-catenin alleles were excised by daily intraperitoneal injection of 75 mg/kg

Tamoxifen (TRC) for five consecutive days. Conditional SmoM2 alleles were excised in postna-

tal day 30 K14-CreER/Rosa-SmoM2 transgenic mice by topical application of Tamoxifen

(100ul of 200mg/ml in DMSO) for five consecutive days to a 1.5 x 1.5cm patch of shaved skin

on the right flank. Mice were euthanized 7–8 weeks later for tissue collection. Genotyping was

performed as previously described [28, 50–54].

Quantitative RNA expression analysis

Full thickness skin biopsies were homogenized in TRIzol1 reagent (Life Technologies), and

RNA and protein were prepared as recommended by the manufacturer [55]. Quantitative real-

time reverse transcriptase–PCR assays were carried out using Fast SYBR1 Green Master Mix

(Life Technologies 4385612) and Mx3000P qPCR System (Agilent Technologies), and were ana-

lysed by the comparative cycle time method, normalizing to 18S ribosomal RNA levels. Quantita-

tive real-time reverse transcriptase–PCR primers: Ctgf-F:5'- CCCTGCCCTAGCTGCCTACCG-
3', Ctgf-R:5'- GCTTCGCAGGGCCTGACCAT-3', Gli2-F: 5'-GCAGACTGCACCAAGGAGTA-
3', Gli2-R: 5'-CGTGGATGTGTTCATTGTTGA-3', Inhba-F: 5'- CGATGTCACCCAGCCGGT
GC-3', Inhba-R: 5'-TGTCTTCCTGGCTGTGCCTGACT-3',Thbs1-F: 5'- GCGTTGCCAGGC
TCCGAGTT-3',Thbs1-R: 5'- GGTGCGCAGGCCCTTCAGTT-3', 18S-F:5’-GATCCATTGG
AGGGCAAGTCT-3’and 18S-R:5’-CCAAGATCCAACTACGAGCTTTTT-3’.

Tissue processing and histological staining

Full thickness skin biopsies were processed for paraffin sectioning and histology staining using

routine methods. Antigen retrieval was performed using 10mM sodium citrate buffer (pH 6.0)

and a Milestone RHS-1 Microwave at 110˚C for 5 minutes. Sections were immunostained

using routine methods, and confocal images were captured using an Olympus FV1200 laser

scanning confocal microscope. Immuno-signal intensity was quantified in a semi-automated

fashion using ImageJ software. Immunohistochemical staining was performed on paraffin sec-

tions using DAB enhanced liquid substrate system (Sigma D3939) according to manufacturer’s

instructions (Sigma-Aldrich). Primary and secondary antibodies used for immunofluores-

cence and immunohistochemical stainings are listed in S1 Table.

Acquisition and analysis of SHG data from collagen

SHG signal from histological samples was captured using a 20x 1.0 NA objective on an upright

fixed-stage two-photon laser scanning microscope system (Zeiss) and analyzed as previously

described [56].

YAP and Hedgehog signalling in skin homeostasis and BCC development
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Statistical analysis

Unless indicated, statistical significance was determined by Student’s unpaired t-tests. Error

bars represent mean ± SEM. Asterisks indicate statistical significance, where P< 0.05 was

used as significance cut-off.

Results

YAP activation in the BCC skin of K14-CreER/Rosa-SmoM2 transgenic

mice

Cross-regulatory interactions between YAP and the SHH signalling pathway control stem cell

proliferation and tissue homeostasis [34, 43–48]. To investigate if regulatory interactions between

these pathways also exist in epidermal homeostasis, we first set out to investigate YAP activity lev-

els in the skin of K14-CreER/Rosa-SmoM2 transgenic mice, which express a constitutively active

Smoothened mutant protein SmoM2 in the basal keratinocytes upon tamoxifen treatment, result-

ing in ligand-independent activation of Hedgehog signalling [50]. The skin of mice expressing

SmoM2 in the epidermis displays epidermal hyperplasia and BCC-like tumours [57, 58].

K14-CreER/Rosa-SmoM2 transgenic littermate mice were topically treated with tamoxifen

or vehicle, and euthanized 7–8 weeks later. The skin of tamoxifen-treated K14-CreER/Rosa-

SmoM2 mice displayed hyperplasia and signs of BCC development (Fig 1A), as previously

reported [58]. To assess Hedgehog signalling activity, we performed immunofluorescence

assays to detect GLI2, the key mediator of SHH responses in skin [59]. These assays revealed an

increased percentage of GLI2 positive nuclei both in the epidermis and BCC tumour masses of

K14-CreER/Rosa-SmoM2 mouse skin (Fig 1B and 1D; P< 0.01, N = 3), confirming increased

Hedgehog signalling activity. This was accompanied by a significant increased percentage of

Fig 1. YAP activation in the skin of K14-CreER/Rosa-SmoM2 transgenic mice. H&E histological staining

(A) and Immunofluorescence (B) staining of dorsal skin sections of tamoxifen- and vehicle-treated K14-CreER/

Rosa-SmoM2 transgenic mice detecting GLI2 and YAP. Quantification of % GLI2-YAP co-positive (C), % GLI2

positive (D) and % YAP positive nuclei (E). (F) qPCR quantification of mRNA levels of Thbs, Ctgf, Inhba and

Gli2 genes relative to 18S in lysates extracted from the dorsal skin of tamoxifen (control) and vehicle-treated

K14-CreER/Rosa-SmoM2 transgenic mice. Basement membranes are demarcated with dashed lines. DAPI,

4, 6-diamidino-2-phenylindole. Scale bars = 20 μm.

https://doi.org/10.1371/journal.pone.0183178.g001
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YAP positive nuclei within the extending BCC masses of tamoxifen-treated compared to vehi-

cle-treated K14-CreER/Rosa-SmoM2 skin (Fig 1B and 1E; P< 0.01, N = 3). Furthermore, the

percentage of nuclei co-positive for YAP and GLI2 was also increased in the K14-CreER/Rosa-

SmoM2 epidermis (Fig 1B and 1C; P< 0.01, N = 3). In addition, quantitative real time PCR

assays showed increased expression of YAP direct target genes Thbs, Ctgf, Inhba and Gli2 [27,

34, 60, 61] in K14-CreER/Rosa-SmoM2 skin (Fig 1F). These findings show that YAP transcrip-

tional activity is increased in the epidermis of K14-CreER/Rosa-SmoM2 mice, and support the

hypothesis that Hedgehog signaling positively regulates YAP activity in normal epidermal

regeneration and in BCC development.

Activated ROCK-signalling and dermal fibrosis in the skin of K14-CreER/

Rosa-SmoM2 transgenic mice

A recent study revealed that epidermal Sonic Hedgehog (SHH) controls dermal fibroblast

activity and dermal composition [25]. Furthermore, ROCK, the effector of the RhoA GTPase,

also plays a key role in tissue homeostasis through controlling mechanoreciprocity, including

in the skin, and increased ROCK signalling and stromal stiffness are hallmarks of tumour pro-

gression [56, 62, 63]. Therefore, we next investigated stromal composition and ROCK signal-

ling activity in the hyperplastic skin and BCCs of K14-CreER/Rosa-SmoM2 mice.

Immunostaining assays and area coverage analysis detected a significant increase in expres-

sion of S100a4/fibroblast specific protein 1 (Fsp1) (Fig 2A & 2B; P < 0.01, N = 12) and Vimen-

tin expression (Fig 2C) in the dermis of tamoxifen-treated K14-CreER/Rosa-SmoM2 mice.

This was concomitant with a significant increase in dermal collagen density compared vehicle-

treated mice, as shown by Masson’s trichrome staining (Fig 2D), and by second harmonic gen-

eration analysis (SHG) (Fig 2E & 2F; P< 0.0001, N = 15). These data are in line with previously

reported [25]. Furthermore, the keratinocytes of the K14-CreER/Rosa-SmoM2 epidermis dis-

played high levels of actin (Fig 2G) and DIAPH3 expression (Fig 2H), suggesting increased

RhoA/ROCK signalling and actin remodelling. This was confirmed by increased phosphoryla-

tion of both ROCK substrate proteins the myosin-binding subunit of the Mlc Phosphatase

(MYPT1 phosphorylated at Thr696) (Fig 2I & 2J; P < 0.01, N = 3) and myosin regulatory light

chains (MLC2 phosphorylated at Thr18/Ser19) (Fig 2K & 2L; P< 0.05, N = 3) [64] in the epi-

dermis of tamoxifen-treated K14-CreER/Rosa-SmoM2 mice. Taken together, this suggests

that epidermal Hedgehog signalling activates ROCK signalling within keratinocytes, and der-

mal fibroblast activity and matrix remodelling in the mouse skin in vivo.

GLI2 activation in the skin of YAP2-5SA-ΔC transgenic mice

To investigate if epidermal YAP activation also modulates Hedgehog signalling activity similar

to previously reported in other biological contexts [46, 48], we investigated GLI2 activation in

the skin of the YAP2-5SA-ΔC mouse line. The YAP2-5SA-ΔC mouse line is a viable and fertile

transgenic mouse line that expresses a mildly activated YAP protein mutant YAP2-5SA-ΔC in

the nuclei of basal keratinocytes, and displays epidermal hyperplasia due to increased epider-

mal β-catenin activity and epidermal stem/progenitor cell proliferation [28, 29].

Immunofluorescence staining revealed relatively high levels of nuclear YAP in the hyper-

plastic epidermis of YAP2-5SA-ΔC skin (Fig 3A & 3D, P< 0.05, N = 3), as we previously

reported [29]. In addition, YAP2-5SA-ΔC keratinocytes showed a significantly increased per-

centage of GLI2 positive nuclei vs. total nuclei (Fig 3C, P< 0.01; N = 3), and an increased per-

centage of YAP-GLI2 co-positive nuclei (arrowheads-Fig 3A & 3B, P< 0.05; N = 3). Altogether,

this data shows that YAP activation in basal keratinocytes promotes nuclear localization of

GLI2 in the epidermis.

YAP and Hedgehog signalling in skin homeostasis and BCC development
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β-catenin activity mediates GLI2 activation in skin of YAP2-5SA-ΔC mice

We next wanted to better understand the underlying mechanism of GLI2 activation in the

epidermis of YAP2-5SA-ΔC mice. A recent report showed that epidermal β-catenin acti-

vates epidermal SHH to induce changes in the underlying dermal compartment that involve

promoting fibroblasts proliferation [25, 65]. Furthermore, we established that epidermal

Fig 2. Activated ROCK-signalling, increased dermal fibroblast numbers, and dermal fibrosis in the

skin of K14-CreER/Rosa-SmoM2 transgenic mice. (A-G) Immunofluorescence staining and area coverage

analysis of dorsal skin tamoxifen- and vehicle-treated K14-CreER/Rosa-SmoM2 transgenic littermate mice

detecting Fsp1 (A & B) and Vimentin (C), Phalloidin (G), DIAPH3 (H), Thr696-phosphorylated MYPT1 (I & J),

Thr18/Ser19-phosphorylated MLC2 (K & L). (D) Masson’s trichrome histological staining of sections through

the dorsal neck skin of tamoxifen- and vehicle-treated K14-CreER/Rosa-SmoM2 mice. (E & J) Dual two-

photon SHG and monochromatic transmission (Trans; grayscale in merge) images showing collagen (white in

single channel, magenta in merged) in tamoxifen- and vehicle-treated K14-CreER/Rosa-SmoM2 skin sections.

Area coverage analysis (5 fields/sample from three mice per genotype) of SHG is quantified. Basement

membranes and hair follicles are demarcated with dashed lines. DAPI, 4, 6-diamidino-2-phenylindole. Scale

bars = 20 μm.

https://doi.org/10.1371/journal.pone.0183178.g002
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PLOS ONE | https://doi.org/10.1371/journal.pone.0183178 August 18, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0183178.g002
https://doi.org/10.1371/journal.pone.0183178


YAP drives β-catenin activation [29]. Therefore, we next set out to understand if GLI2 acti-

vation in YAP2-5SA-ΔC skin depended on increased epidermal β-catenin activity.

We generated YAP2-5SA-ΔC/K14-creERT/CtnnB1lox/lox mice, and studied epidermal GLI2

activation in response to epidermal β-catenin inactivation by tamoxifen treatment. Correct

inactivation of the conditional CtnnB1 allele was confirmed by PCR genotyping (Fig 4B), and

by the reduced pan-β-catenin expression levels in the relatively thin epidermis of YAP2-5SA-

ΔC/K14-creERT/CtnnB-/- mice (Fig 4A), in line with our previous observations [29]. We

found that the percentages of YAP-positive keratinocyte nuclei in the epidermis were similar

in YAP2-5SA-ΔC/K14-creERT/CtnnB1-/- and YAP2-5SA-ΔC/K14-creERT/CtnnB1lox/lox skin

(Fig 4E), showing that expression of the transgene product did not depend on epidermal β-

catenin activity. Furthermore, we detected a significant decrease in the percentage of nuclear

GLI2 in the YAP2-5SA-ΔC/K14-creERT/CtnnB1-/- epidermis relative to YAP2-5SA-ΔC/

K14-creERT/CtnnB1lox/lox skin (Fig 4C and 4D, P < 0.05, N = 3), to levels more similar as

detected in wildtype skin (Fig 2C). These data suggest that YAP activity in basal keratinocytes

promotes epidermal GLI2 activation through β-catenin activation.

Human basal cell carcinomas (BCCs) exhibit nuclear YAP and β-catenin

in association with ROCK signalling activation and increased ECM

collagen deposition

We found evidence supporting the existence of positive reciprocal regulatory interactions

between YAP and Hedgehog signalling in epidermal homeostasis, and we established that

Hedgehog signalling also promoted ROCK signalling, dermal fibroblast activity and fibrosis.

Fig 3. GLI2 activation in the skin of YAP2-5SA-ΔC transgenic mice. (A) Immunofluorescence staining of

dorsal skin sections of YAP2-5SA-ΔC transgenic and wildtype mice detecting GLI2 (green) and YAP (red).

Quantification of % YAP-GLI2 co-positive (arrowheads—B), % GLI2 positive (C) and % YAP (D) positive nuclei

in the skin sections of YAP2-5SA-ΔC transgenic and wildtype mice. Basement membranes are demarcated

with dashed lines. DAPI, 4, 6-diamidino-2-phenylindole. Scale bars = 20 μm.

https://doi.org/10.1371/journal.pone.0183178.g003
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We next wanted to investigate if these regulatory interactions between Hedgehog, YAP, β-cate-

nin, and ROCK signalling could play a role in the etiology of human BCCs. We investigated a

panel of 7 human BCCs, and detected strong nuclear GLI2, YAP and β-catenin expression,

concomitant with increased phosphorylation of ROCK-substrate MYPT in cancer keratino-

cytes of all BCC patients (Fig 5A–5E and S1 Fig) compared to in wildtype skin. In addition, we

noted increased collagen deposition in the stroma surrounding all BCCs (Fig 5E and S1 Fig).

These findings support the hypothesis that in human BCCs, YAP and SHH signalling activa-

tion may indeed be closely linked to the concomitant activation of ROCK-dependent mechan-

osignalling events, dermal fibrosis and β-catenin activation.

Discussion

Here we investigated the existence of cross-regulatory interactions between YAP and Hedge-

hog signalling in the control of epidermal homeostasis. We report increased nuclear GLI2 and

YAP in the epidermis and BCCs of K14-CreER/Rosa-SmoM2 transgenic mouse skin and

increased expression of YAP direct target genes Ctgf,Gli2, Inhba and Thbs1, accompanied by

increased ROCK signalling and ECM remodelling (red arrows in Fig 6A). Furthermore, we

found that epidermal YAP activity drives GLI2 nuclear accumulation, which depends on epi-

dermal β-catenin activation (red arrows in Fig 6B). Lastly, we found increased nuclear activity

of GLI2, YAP and β-catenin, concomitant with increased ROCK signalling and fibrosis, in

human BCC. Together, these data are supportive of the existence of positive regulatory interac-

tions between YAP and Hedgehog signalling in control of epidermal homeostasis and in BCC

development.

The molecular basis of how Hedgehog signalling may activate YAP in the epidermis of

K14-CreER/Rosa-SmoM2 transgenic mice remains unknown. Conceivably, Hedgehog signal-

ling may promote YAP expression levels and activity analogous to in liver regeneration,

medulloblastoma, osteosarcoma and neural progenitor cells [34, 45, 47]. Conversely, we

observed increased collagen content in the dermis of tamoxifen-treated K14-CreER/Rosa-

Fig 4. β-catenin activity mediates GLI2 activation in skin of YAP2-5SA-ΔC mice. Immunofluorescence

stainings of dorsal neck skin sections of P50 of YAP2-5SA-ΔC/K14-creERT/CtnnB1lox/lox and YAP2-5SA-ΔC/

K14-creERT/CtnnB1-/- littermate mice detecting β-catenin (A, red), and GLI2 (C, green), and YAP (C, red). (B)

Genotypic characterization of P50 YAP2-5SA-ΔC/K14-creERT/CtnnB1lox/lox and YAP2-5SA-ΔC/K14-creERT/

CtnnB1-/- mutant littermate mice. Quantification of % GLI2 (D) and YAP (E) positive nuclei in the skin sections

of P50 of YAP2-5SA-ΔC/K14-creERT/CtnnB1lox/lox and YAP2-5SA-ΔC/K14-creERT/CtnnB1-/- littermate mice.

Basement membranes are demarcated with dashed lines. DAPI, 4, 6-diamidino-2-phenylindole. Scale

bars = 20 μm.

https://doi.org/10.1371/journal.pone.0183178.g004
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Fig 5. Human BCCs exhibit nuclear YAP and β-catenin in association with ROCK signalling activation

and increased ECM collagen deposition. Representative images of immunohistochemical staining (brown)

of Gli2 (A), YAP (B), Thr696-phosphorylated MYPT (C) and β-catenin (D) in normal and human BCCs skin

samples. (E) Masson’s trichrome histological staining. IHC, Immunohistochemistry. Scale bars = 20 μm.

https://doi.org/10.1371/journal.pone.0183178.g005

Fig 6. A model outlining the cross-regulatory interactions between epidermal YAP, ROCK, β-catenin

and Hh signalling. (A) Epidermal SmoM2 activates YAP, ROCK signalling and dermal fibroblasts in the

dorsal skin of K14-CreER/Rosa-SmoM2 transgenic mice (based on Figs 1 and 2). (B) Epidermal YAP

activates GLI2 mediated by β-catenin activation in the dorsal skin of YAP2-5SA-ΔC transgenic mice (based

on Figs 3 and 4). (C) A model outlining the proposed regulatory interactions between epidermal YAP,

Hedgehog and ROCK-dependent mechanosignalling to balance skin regeneration based on our findings (red

arrows) and on cited studies [25, 27, 29, 34, 39, 40, 45, 47, 48, 63, 64, 65, 66, 69].

https://doi.org/10.1371/journal.pone.0183178.g006
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SmoM2 mice, which may be caused by increased TGFβ signalling in response to SmoM2 in

line with previously reported [66]. Therefore, the mechanosensor YAP may also be activated

indirectly in response to the increased dermal stiffness [39, 40] due to epidermal Hedgehog

signalling activity (Fig 6C).

Our data also show increased ROCK activity, fibroblast numbers and fibrosis in the skin of

K14-CreER/Rosa-SmoM2 mice. This may be mediated by increased TGFβ signalling in

response to SmoM2, as previously reported [66]. Conversely, Smo was recently reported to

directly couple to heterotrimeric Gi proteins to activate ROCK signalling, cytoskeletal changes,

and fibroblast activity through a GLI2-independent ‘non-canonical’ Hedgehog signalling path-

way [67]. Therefore, epithelial SmoM2 overexpression in K14-CreER/Rosa-SmoM2 mice may

also activate epidermal ROCK signalling cell-autonomously through Gi proteins (Fig 6C) in

line with this study [67]. Conversely, papillary fibroblast activation and dermal remodelling in

the K14-CreER/Rosa-SmoM2 dermis may indirectly activate ROCK signalling through

mechanoreciprocity between the skin layers as previously reported [68]. These data are consis-

tent with the existence of ROCK-dependent mechanoreciprocity in the skin in response to epi-

dermal Hedgehog signalling activity.

Furthermore, we found increased nuclear GLI2 in the epidermis of YAP2-5SA-ΔC mice,

suggesting that YAP may also positively regulate Hedgehog signalling in the epidermis, analo-

gous to in other biological contexts [34, 48]. However, we have not been able to firmly establish

this, as our quantitative real time PCR experiments did not detect increased expression of

Hedgehog pathway target gene Ptc1 or Gli1 in the RNA extracted from skin biopsies of YAP2-

5SA-ΔC vs. wildtype mice (data not shown), an effect that may have been masked by the tran-

scriptomes of other cell types present in these skin biopsies. Nevertheless, we did establish that

the positive regulatory interaction between YAP and GLI2 depends on epidermal β-catenin.

We previously reported that YAP activity in basal keratinocytes drives β-catenin activation

to promote epidermal proliferation [29]. Therefore, GLI2 may be activated in response to

increased β-catenin transcriptional activity driven by epidermal YAP activity. Interestingly, a

previous report showed TCF/LEF binding sites in the human GLI2 promoter [69], suggesting

that this positive regulatory interaction may take place at the transcriptional level.

Interestingly however, we also detected a strong increase in keratinocyte nuclei positive for

both GLI2 and YAP (Fig 1C and Fig 3B), signifying that a cell-autonomous mechanism may

also underlie this interaction (Fig 6C). GLI2 is indeed a reported direct YAP/TEAD target

gene [27], so perhaps the YAP/TEAD transcriptional complex promotes GLI2 transcription in

the control of epidermal stem/progenitor cell proliferation, in line with reported for the regula-

tion of cerebellar neural progenitor cell proliferation [34, 48]. An alternative mechanism for

which there is no published precedence is that YAP/TEAD may form a transcriptional com-

plex with GLI2 to promote transcription of common target genes to activate epidermal stem/

progenitor cells.

Altogether, based on our and previously published work, a picture emerges of an intricate

reciprocal mechanosignalling network consisting of the YAP, Hedgehog and β-catenin signal-

ling pathways and ROCK mechanoreciprocity that all regulate each other’s activity cell autono-

mously or non-autonomously via dermal remodelling, to balance normal skin regeneration

(Fig 6C). Therefore, our findings have clinical implications and carry a promise for developing

new therapeutic approaches for treating human BCCs.

Supporting information

S1 Fig. BCCs of 7 human patients exhibit nuclear YAP and β-catenin in association with

ROCK signalling activation and increased ECM collagen deposition. Representative images
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of H&E and Masson Trichrome stained sections, and immunohistochemical staining (brown)

of Gli2, YAP, Thr696-phosphorylated MYPT and β-catenin of normal and human BCCs skin

samples. Scale bars = 20 μm.

(TIF)

S1 Table. List of primary and secondary antibodies.
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