
CMash: fast, multi-resolution estimation of k-mer-based

Jaccard and containment indices

Shaopeng Liu1 and David Koslicki1,2,3,*

1Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA, 2Department of Computer Science and

Engineering, Pennsylvania State University, State College, PA 16801, USA and 3Department of Biology, Pennsylvania State University,

State College, PA 16801, USA

*To whom correspondence should be addressed.

Abstract

Motivation: K-mer-based methods are used ubiquitously in the field of computational biology. However, determin-
ing the optimal value of k for a specific application often remains heuristic. Simply reconstructing a new k-mer set
with another k-mer size is computationally expensive, especially in metagenomic analysis where datasets are large.
Here, we introduce a hashing-based technique that leverages a kind of bottom-m sketch as well as a k-mer ternary
search tree (KTST) to obtain k-mer-based similarity estimates for a range of k values. By truncating k-mers stored in
a pre-built KTST with a large k ¼ kmax value, we can simultaneously obtain k-mer-based estimates for all k values up
to kmax. This truncation approach circumvents the reconstruction of new k-mer sets when changing k values, making
analysis more time and space-efficient.

Results: We derived the theoretical expression of the bias factor due to truncation. And we showed that the biases
are negligible in practice: when using a KTST to estimate the containment index between a RefSeq-based microbial
reference database and simulated metagenome data for 10 values of k, the running time was close to 10� faster
compared to a classic MinHash approach while using less than one-fifth the space to store the data structure.

Availability and implementation: A python implementation of this method, CMash, is available at https://github.
com/dkoslicki/CMash. The reproduction of all experiments presented herein can be accessed via https://github.com/
KoslickiLab/CMASH-reproducibles.

Contact: dmk333@psu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

K-mers, contiguous strings of DNA or RNA of length k, are fre-
quently utilized in computational biology for a variety of purposes
including in genome assembly (Koren et al., 2017; Liu et al., 2012;
Luo et al., 2012), metagenomic sequences classification (Dilthey
et al., 2019; Ondov et al., 2016; Wood and Salzberg, 2014), motif
discovery (Fletez-Brant et al., 2013; Zhang et al., 2017a) and large-
scale genomic comparisons (Ondov et al., 2019; Solomon and
Kingsford, 2017). A number of hashing-based techniques such as
MinHash (Broder, 1997), Bloom filter (Bloom, 1970) and Count-
Min Sketch (Cormode and Muthukrishnan, 2005) have been devel-
oped or adopted for efficient computation of k-mer-based similarity
methods. In each such application, the first step is to collect a set of
k-mers from input sequences. Importantly, it has been found that al-
gorithm performance depends critically on the choice of size k.
Indeed, various heuristic and empirical strategies have been intro-
duced to find optimal k-mer sizes that increase performance in cer-
tain application areas (Chikhi and Medvedev, 2014; Schulz et al.,
2014; Zhang et al., 2017b). However, whenever a new k size is
selected, each computational technique requires reconstructing the
k-mer-based data structure and rerunning the analytical pipeline,
leading to computational inefficiencies.

In particular, hashing-based k-mer methods that compute meas-
ures of similarity of genomic and metagenomic data (such as the
Jaccard and containment indices) have been demonstrated to extract
valuable insight from metagenomic data (Besta et al., 2020; Ondov
et al., 2016; Pierce et al., 2019). Multiple hashing-based techniques
involving the estimation of Jaccard index and/or other k-mer deriva-
tives have been developed. For example, Mash (Ondov et al., 2019),
Sourmash (Pierce et al., 2019) and Skmer (Sarmashghi et al., 2019).
Several efforts have been made to improve the efficiency for single k
value hashing method, such as b-bit wise MinHash (Li and König,
2011) and Dashing with HyperLogLog sketches (Baker and
Langmead, 2019). In these cases too, however, each time a new k
size is utilized, the entire computational processes needs to be
repeated.

1.1 Motivation
In situations where reference databases can exceed several hundred
gigabytes, such as in metagenomics, indexing or sketching the data-
base multiple times for different k-mer sizes is computationally ex-
pensive and may become an analysis bottleneck. Nevertheless,
adjusting k-mer sizes plays a valuable role such as in metagenomics,
where selection of k-mer size can impact performance of

VC The Author(s) 2022. Published by Oxford University Press. i28

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38, 2022, i28–i35

https://doi.org/10.1093/bioinformatics/btac237

ISCB/ISMB 2022

https://github.com/dkoslicki/CMash
https://github.com/dkoslicki/CMash
https://github.com/KoslickiLab/CMASH-reproducibles
https://github.com/KoslickiLab/CMASH-reproducibles
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac237#supplementary-data
https://academic.oup.com/

downstream methods (such as sensitivity or specificity of taxonomic
profiling algorithms). To circumvent this, some subfields of applica-
tion have proposed heuristic approaches to estimating optimal
k-mer size. For example, KmerGenie (Chikhi and Medvedev, 2014)
is a heuristic method to determine the optimal k value for genome
assembly. Additionally, it has been recognized that it is non-trivial
to find the ‘right’ k-mer size in practice (Marchet et al., 2020; Pierce
et al., 2019; Song et al., 2014).

Besides, the choice of k is usually purpose-specific based on the
compromise between sensitivity and specificity. In practice, Mash
set defaults k to 21 for the purpose of controlling the probability q
of observing a random k-mer under some cutoff (e.g. k¼19 is corre-
sponding to q¼0.01 with genomes of �3 GB size). On the other
hand, utilizing a low k value grants the tool the power to deal with
variances in the real data (Ondov et al., 2019). However, the cutoffs
and tolerances are dynamic: Kraken, a k-mer-based metagenomic
classification tool, set the default k value to 31 for better discrimin-
atory power on lower taxonomic ranks (Wood and Salzberg, 2014).
In our previous work, k¼61 was found to be empirically optimal to
reflect metagenomic composition via alignment (LaPierre et al.,
2020). In many computational works, the default or optimal k val-
ues are obtained through benchmarking analysis and these tools usu-
ally relax the freedom of choosing arbitrary k values by the user to
fit various aims based on the datasets.

While our research is mainly about metagenomics, flexibility in
different taxonomic levels is crucial. Being able to adjust k values
grants us one more dimension of freedom than the similarity cutoffs:
a small k value (e.g. 21) is feasible to search against the whole meta-
genomic database for similar matches while a large k value can dis-
criminate the sub-structures within genus and even species. While
we have observed that the rate of decrease of the Jaccard index as a
function of k recapitulates the evolutionary relatedness (Koslicki
and Falush, 2016), a tool that can efficiently handle the computa-
tional challenges of multiple k values can be helpful to further the
exploration of metagenomic studies.

1.2 Outcome
To address this problem, we combine a modified MinHash tech-
nique (ArgMinHash) and a data structure called a k-mer ternary
search tree (KTST), which allows Jaccard and containment indices
to be computed at multiple k-mer sizes efficiently and simultaneous-
ly. In Figure 1, we provide a high-level description of how we ac-
complish this: first, we randomly subsample k-mers based on a large
k size kmax (Fig. 1b) to build k-mer sketches. The sketch elements
(i.e. kmax-mers) are then inserted into a KTST (Fig. 1c), which allows
for efficient prefix lookups. A prefix lookup in the KTST effectively
truncates a kmax-mer resulting in a smaller k-mer (Fig. 1d). This
allows us to efficiently compute k-mer sketches for every k � kmax

(Fig. 1e). This truncation step avoids the needs to reprocessing the
whole reference database for sketches with a different k size, making
CMash much more efficient when handling large reference database.
Combined with the containment MinHash approach (Koslicki and
Zabeti, 2019), we can estimate the Jaccard and containment indices
for all k < kmax without requiring explicit re-computation of each
single k value. More details about CMash workflow and the data
processing can be found in Supplementary Figure S1.

This truncation-based method turns out to be a biased estimator
of the k-mer-based similarities. However, in our empirical analysis,
we find that the CMash estimate of the Jaccard and containment
index does not deviate significantly from the ground truth, indicat-
ing that this approach can give fast and reliable results with minimal
bias. Compared to our previous MinHash-based approximation to
the containment index (Koslicki and Zabeti, 2019), we find that the
CMash estimate for ten k values is approximately ten times faster
and requires only one-fifth of space to store the reference database.

Importantly, this approach can be generalized to more than
similarity computation: many sketching, k-mer or shingling-based
approach may adopt our method to avoid the need to re-compute k-
mer sets when changing the k size. As such, this probabilistic data
analysis approach should find application outside of metagenomics

(the application we focus on) to genomics more broadly, as well as
other applications that utilize a k-mer or shingling approach.

In summary, we demonstrate how this CMash technique can be
applied to several widely utilized tools (e.g. Mash Screen (Ondov
et al., 2016), Sourmash (Pierce et al., 2019)) and will help to speed

up k-mer-based computation when multiple k sizes are needed. A
proof of concept implementation of the algorithm and data structure

is freely available at https://github.com/dkoslicki/CMash.

2 Materials and methods

Here, we describe our algorithmic approach, but first we recall a
few necessary definitions.

2.1 Preliminaries
2.1.1 Jaccard and containment index

In computational biology, k-mers are consecutive substrings of
length k of nucleotides A ¼ fA;C;G;Tg. The similarity between

genomic data can be measured by the similarity of their respective k-
mer sets: the collection of all distinct k-mers appearing as contiguous

substrings in the data. If A is a collection of strings on the alphabet
A, then Ak is defined to be the set of all unique k-mers in A. In this
entire section, most of the definitions given apply to arbitrary sets,

but with the genomic application area in mind, we often suppress
the superscript and write A instead of Ak for simplicity, with the im-

plicit understanding that a set of k-mers depends on the k value
chosen.

The Jaccard index (JI) measures the similarity of two sets by

comparing the relative size of the intersection over the union
(Broder, 1997). For two non-empty finite sets A and B, the Jaccard

index is defined as JðA;BÞ ¼ jA\Bj
jA[Bj. Hence, 0 � JðA;BÞ � 1 with

larger values indicating more overlap. Similarly, the containment
index (CI) of A in B (with A non-empty) measures the relative size

of the intersection over the size of A: CðA;BÞ ¼ jA\Bj
jAj . So 0 �

CðA;BÞ � 1 with larger values indicating that more content of A
resides in B. If the cardinality of both A and B are known, the
Jaccard index and containment index are interchangeable:

JðA;BÞ ¼ jAj � CðA;BÞ
jAj þ jBj � jAj � CðA;BÞ : (1)

When applied to sets of k-mers, we call out the dependence on k
with the following definitions:

JkðA;BÞ ¼
jAk \ Bkj
jAk [Bkj and CkðA;BÞ ¼

jAk \ Bkj
jAkj : (2)

2.1.2 Classic MinHash algorithm for the Jaccard index

For very large sets A and B (such as k-mer sets for moderate to large

k derived from genomic data), computing the Jaccard index directly
can be computationally taxing. To circumvent this, Broder proposed
MinHash to efficiently estimate the Jaccard index for large sets

(Broder, 1997). MinHash uses a random sampling process: first, we
fix a constant m 2 Z

þ (m is usually called sketch size) and select a

family of m min-wise independent hash functions H ¼
fh1; h2; . . . ;hmg whose domains contain jA [Bj. Then, we define
the MinHash sketch of a set A as the element (ties can be solved by

lexicographic order) in A that cause some hi to have the minimum
value on A. More formally, define hmin

i ðAÞ ¼ argmina2A hiðaÞ: Next,
define m random variables X ¼ fX1;X2; . . . ;Xmg, such that:

Xi ¼ 1 hmin
i ðAÞ ¼ hmin

i ðBÞ
0 otherwise:

�
(3)

The probability of a MinHash collision (i.e. hmin
i ðAÞ ¼ hmin

i ðBÞ)
is an unbiased estimate of J(A, B):

CMash: fast, multi-resolution estimation of k-mer-based Jaccard and containment indices i29

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac237#supplementary-data
https://github.com/dkoslicki/CMash

P

�
hmin

i ðAÞ ¼ hmin
i ðBÞ

�
¼ EðXiÞ ¼

jA \ Bj
jA [Bj ¼ JðA;BÞ: (4)

In practice, a ‘bottom sketch’ strategy, originally proposed by
Broder (1997), is commonly used to implement the MinHash

algorithm. Instead of using m hash functions, all k-mers from a
given set A are passed through a single hash function and the small-
est m hash values (instead of elements) are stored in a sorted sketch
SbðAÞ of size m. The probability that sketch SbðAÞ; SbðBÞ share a
hash value represents the probability of random sampling a shared

Fig. 1. Overview of the CMash algorithm. (a) The input to CMash are genomes or sequencing reads. (b) Random samples of k-mers using a modified bottom m sketch can also

be used for the classic MinHash algorithm. (c) For some large k value kmax, one and only one k-mer sketch of the reference data will be constructed and inserted into a KTST.

(d) All k-mer sketches corresponding to a smaller k value will be obtained by a prefix lookup in the KTST. (e) For k < kmax, k-mers from the query data are streamed through

the KTST resulting in (f) reliable estimates for a range of k-mer sizes with greater computational efficiency

i30 S.Liu and D.Koslicki

element from the union of set A and B. So, the resemblance of set A,
B can be quickly estimated by counting the matched values between
SbðAÞ and SbðBÞ.

This efficient approach has found use in, e.g. metagenomics
where hundreds of thousands of microbial genomes may under con-
sideration. For example, both Sourmash (Pierce et al., 2019) and
Mash Screen (Ondov et al., 2016) maintain hash value sketches of
all input genomes for comparison. However, k-mer information is
lost during if one only considers hash values, instead of elements
leading to minimal hash values. Herein, we will show how we can
benefit from using a k-mer sketch instead of a hash value sketch in
similarity analysis.

We now define a bottom m k-mer sketch. Let Ak be the set of all
k-mers derived from a set of sequences/string A and define
MINmðAkÞ as the set of the m elements corresponding to the m
smallest hash values in set fhðaÞ : a 2 Akg. Namely, for m a given
sketch size and k the k-mer size, the k-mer MinHash sketch of A is
defined to be

Sm
k ðAÞ ¼MINmðAkÞ: (5)

We may suppress m and k for notational simplicity.

2.2 Containment MinHash
Though the MinHash approach gives an unbiased estimation of the
Jaccard index, its performance may degrade considerably when A
and B are of significantly different sizes (Koslicki and Zabeti, 2019).
More robust estimation of J(A, B) can be obtained through C(A, B),
the containment index of A in B. This strategy is called ‘containment
MinHash’ (Koslicki and Zabeti, 2019). We detail this procedure
now. Given a fixed k-mer size and two nonempty distinct sets of
strings A and B on the alphabet A such that jAkj � jBkj, we first
compute Sm

k ðAÞ, the bottom sketch of the smaller set. Next, we can
stream all elements in the set B over Sm

k ðAÞ to estimate C(A, B).
Since Sm

k ðAÞ is a uniform random sample from set A, the proportion
of elements in Sm

k ðAÞ that are found in set B is an unbiased estimator
of the containment index. Namely,

CkðA;BÞ �
jSm

k ðAÞ \ Bkj
jSm

k ðAÞj
: (6)

To be noted, this streaming method is an efficient algorithm for
the estimation of the containment index in metagenomic settings
and is utilized by Mash Screen (Ondov et al., 2016), Metalign
(LaPierre et al., 2020), etc. Finally, we can take advantage of
Equation (1) to compute JkðA;BÞ based on the containment index
and the cardinalities of set A and B (which can be quickly approxi-
mated by fast cardinality estimation such as Hyperloglog (Flajolet
et al., 2007)). In CMash, we use this contaiment MinHash approach
for JI estimation considering its metagenomic analysis setting.

2.3 CMash
The approach we call CMash consists of two main components: first
is the aforementioned k-mer MinHash sketches, and second a trad-
itional ternary search tree applied to sets of k-mers.

2.3.1 ArgMinHash

We now detail the first half of the CMash approach: a data structure
we call ‘ArgMinHash’ that utilizes k-mer MinHash sketches. In par-
ticular, there is an important but subtle difference between the
aforementioned MinHash bottom m sketches and the k-mer
MinHash sketches utilized by CMash. In particular, the definition in
Equation (5) shows that the bottom m sketch utilized by the contain-
ment MinHash (or even MinHash itself) are comprised of the small-
est m hash values. In contrast, the sketches utilized by CMash are
comprised of elements of a set that hash to small values. This differ-
ence is key to allowing a truncation-based approach. Indeed, if we
used a sketch comprised of hash values of k-mers, truncating these
hash values would have no relationship at all to the hash values
obtained from truncated k-mers.

More formally, let Ak be the set of all k-mers derived from a set
of sequences/strings A. A hash function h with domain containing
Ak induces an order on Ak. If collisions are present, we can impose
an additional ordering (say, lexicographic) to break ties. Then we
define ARGMINh

mðAkÞ as the set of m smallest, according to the
ordering imposed by h, elements of the set Ak. Then for m a given
sketch size and k the k-mer size, the ‘argmin-bottom’ sketch of A is
defined to be

AMHm
k ðAÞ ¼ ARGMINh

mðAkÞ; (7)

where AMH is an abbreviation for ‘ArgMinHash’.

2.3.2 K-mer ternary search tree

Given a set of collections of sequences D ¼ fA1; . . . ;ANg, here
thought of as genomes of N different (micro)organisms, we populate
a single ternary search tree KTST with the sketches
AMHm

kmax
ðAiÞ; i ¼ 1 . . . N for a fixed sketch size m and a fixed (large)

kmax. Recall that a ternary search tree is a data structure that allows
fast (average Oðlog nÞ) lookup of prefixes so that every root to leaf
path (equivalently, node) represents a k-mer. Furthermore, nodes in
KTST can be labeled with which elements of D contain the prefix
defined by that node. We further associated a sequence of counters
c1

i ; . . . ; ckmax

i to each Ai in D. We further accelerate prefix queries by
populating a bloom filter with every k-mer defined by nodes in the
KTST.

Note that by inserting the sketches AMHm
kmax
ðAiÞ into the KTST,

we have effectively computed proxies to AMHm
k ðAiÞ for each

k � kmax. Indeed, we obtain new sketches for a smaller k-mer size k
by truncating the KTST to a depth of k (Fig. 1d).

We can then approximate the containment index of each refer-
ence Ai in some other set of sequences B (thinking of B as a large
genomic dataset) in the following way: the k-mers of B for each k ¼
1; 2; . . . kmax are streamed through the KTST similar to the afore-
mentioned Mash Screen (see Fig. 1e). When a k-mer is found to cor-
respond to a node in the KTST, each of the counters ck

i is
incremented for each Ai associated with that node/k-mer. After the
streaming is complete, we will have that

CkðAi;BÞ �
ck

i

m
: (8)

In doing so, in a single stream over the input data B, we are able
to approximate CkðAi;BÞ for each Ai and each k ¼ 1; . . . ;kmax. If
during the construction of the sketches AMHm

k ðAiÞ, we also store
the cardinality of Ak

i , we can obtain the Jaccard indices JkðAi;BÞ as
well.

The ability to estimate Jaccard or contaiment indices for multiple
k-mer sizes (up to some maximum kmax-mer size) motivates the
multi-resolution nature of CMash. Indices can be calculated for
both small k-mer sizes (low resolution), and large k-mer sizes (high
resolution) utilizing a single data structure.

2.3.3 Biased nature of the estimate

There is no reason to think that the estimate in Equation (8) will be
unbiased. Indeed, while Si :¼ AMHm

kmax
ðAiÞ is truly a random sample

of m elements from the set Akmax

i and so the estimate given in
Equation (8) corresponds exactly to MinHashing with k ¼ kmax,
truncating the elements of Si to k-length prefixes will not be a
random sample of m elements from Ak

i due to duplicated prefixes.
Consider A ¼ fAATAAGg with kmax ¼ 3 and m¼1: every one of
the four 3-mers AAT, ATA, TAA, AAG has equal probability of
being selected. As such, truncating these to 2-mers results in AA
appearing with expected probability of 50% in the truncated
3-mers. In contrast, the frequency of AA in A2 is only 25% as four
distinct 2-mers A2 ¼ fAA, AT, TA, AGg. Though the truncation
step will inevitably introduce some bias in the estimation, the gain in
speed overwhelms the small sacrifice to accuracy, which we empiric-
ally verify in the next sections.

CMash: fast, multi-resolution estimation of k-mer-based Jaccard and containment indices i31

2.4 Theoretical analysis of CMash
Theoretically and practically, a truncation-based estimate of the
Jaccard similarity will introduce data-dependent bias. Consider an
arbitrary sequence data A and let Ak denote the set of all distinct k-

mers of length k in A. Obviously, A1 ¼ fA;C;G;Tg. Similarly,
AkþL denote the set of all distinct ðkþ LÞ-mers in A. Let ðAkþLÞ1...k

denote the distinct k-mers obtained by directly truncating all ele-
ments in AkþL from length ðkþ LÞ to k. In an ideal situation where
no two elements share the same prefix of length k, the truncated k-

mer set ðAkþLÞ1...k is exactly Ak. Unfortunately, this will not happen
in most cases where duplicate prefixes will be introduced during the

truncation, leading to estimation deviance. In this section, we will
show how this truncation-introduced bias correlates with the trun-
cation length L as well as the input data themselves.

2.4.1 Bias in truncation-based Jaccard index

First we define a prefix relationship between two k-mers of different

lengths. For k-mer MkþL of length kþL and Nk of length k, if Nk is
a prefix of MkþL, we can truncate MkþL by length L to get Nk,

which is written as Nk ¼ ðMkþLÞ1...k. We may suppress the length
subscript for notational simplicity. Namely: N ¼M1...k.

We then define right extensions: for a given k-mer X of length k,
and L 2 N, we use REL

AkþL ðXÞ to denote all ðkþ LÞ-mers in the set
AkþL that have X as prefix. That is to say,

REL
AkþL ðXÞ ¼ jfw 2 AkþL s:t:w1;...;k ¼ Xgj (9)

Now, we can quantitatively describe the bias in the truncation-
based method. Let H be a family of suitable hash functions (e.g.

min-wise independent) and hmin
i ðAÞ be the element in the set A that

minimize the hash values: hmin
i ðAÞ ¼ argmina2A hiðaÞ: Given two ar-

bitrary non-empty genome/sequence files A and B (and the k-mer

sets AkþL and BkþL for any arbitrary positive integers k, L), if we
truncate all k-mers from length kþL to k, the truncation-based

Jaccard index truncated from kþL to k, denoted by
JIðA;BÞtruncðkþL!kÞ can be computed in the following:

JIðA;BÞtruncðkþL!kÞ (10)

¼ P
h2H
ðhminðAkþLÞ1...k ¼ hminðBkþLÞ1...kÞ (11)

¼
X

x2Ak[Bk

P
h�H
ðhminðAkþLÞ1...k ¼ x; hminðBkþLÞ1...k ¼ xÞ (12)

¼
X

x2Ak[Bk

P
h�H
ðhminðAkþL [BkþLÞ1...k ¼ xÞ � 1x2Ak\Bk (13)

¼ 1

jAkþL [BkþLj �
X

x2Ak[Bk

REL
AkþL[BkþL ðxÞ � 1x2Ak\Bk (14)

¼
P

x2Ak\Bk REL
AkþL[BkþL ðxÞ

jAkþL [BkþLj (15)

¼
P

x2Ak\Bk REL
AkþL[BkþL ðxÞP

x2Ak[Bk REL
AkþL[BkþL ðxÞ

(16)

¼ jA
k \ Bkj
jAk [Bkj �

1
jAk\Bk j �

P
x2Ak\Bk REL

AkþL[BkþL ðxÞ
1

jAk[Bk j �
P

x2Ak[Bk REL
AkþL[BkþL ðxÞ

(17)

¼ JIðA;BÞk �
Ex2Ak\Bk ðREL

AkþL[BkþL ðxÞÞ
Ex2Ak[Bk ðREL

AkþL[BkþL ðxÞÞ
: (18)

Note that we must truncate larger k-mer values instead of
extending smaller k-mer values as the latter would require an add-
itional pass over the input data. However, after JIðA;BÞk is

computed in a top-down fashion from a large k value, the k can be
freely set to any value smaller than the initial large input k size.

Briefly, the truncation-based estimation of Jaccard index utilized
by CMash will bring a multiplicative bias factor upon the classic
MinHash estimation of the Jaccard index as shown in Equation
(18). This bias factor reflects the imbalance of prefixes (i.e. trun-
cated k-mers) distributions between the intersection and the union
of the original k-mer sets (before truncation). The bias factor implies
that CMash will be more reliable when there are few duplication
after truncation (in this case, expected number of right extension of
any prefix tends to be 1) or when A and B have relative high similar-
ity (namely, the intersection well represents the union). In other
words, the truncation-based method might be limited when either k
or true JI values are small. Furthermore, as a multiplicative bias is
introduced during truncation, the further a truncated k is from the
larger kþL used to construct the KTST, the bias will also increase.
This can be seen in Supplementary Figure S4.

To demonstrate that CMash is reliable when using large k values
or running with closely related data, we applied this approach to 31
genomes within the genus Brucella with multiple k values (Fig. 2)
and showed that CMash can robustly function to estimate Jaccard
indices for multiple k values simultaneously. Considering the un-
avoidable variance due to random sampling in MinHash algorithm,
the bias in CMash may not be an obstacle empirically.

2.4.2 Bias in truncation-based containment index

Similar to Mash Screen (Ondov et al., 2016), when computing the
containment index (CI) of Bk in the set Ak, it is practically more con-
venient to form only a sketch SðAkÞ of Ak and then stream the ele-
ments of Bk over it, looking for matches. Hence, truncation of
elements of Bk is not necessary. We can then connect this streaming,
truncation-based estimate of the containment index to the classic
MinHash algorithm directly. To that end, let m be the given sketch
size, and compute:

CIðA;BÞtruncðkþL!kÞ (19)

¼ P
h2H
ðhminðAkþLÞ1...k 2 BkÞ (20)

¼ jSðA
kþLÞ1...k \ Bkj
jSðAkþLÞ1...kj

(21)

¼ jSðA
kÞ \ Bkj
jSðAkÞj � jSðAkÞj

jSðAkÞ \ Bkj �
jSðAkþLÞ1...k \ Bkj
jSðAkþLÞ1...kj

(22)

¼ CIðA;BÞk �
jSðAkÞj

jSðAkþLÞ1...kj
� jSðA

kþLÞ1...k \ Bkj
jSðAkÞ \ Bkj (23)

¼ CIðA;BÞk �
m

m� a
� jSðA

kÞ \ Bkj � b

jSðAkÞ \ Bkj (24)

where a ¼ jSðAkÞj � jSðAkþLÞ1...kj refers to the number of duplicate
k-mers (prefixes) generated during truncating the k-mer sketches of
A; and b ¼ jSðAkÞ \ Bkj � jSðAkþLÞ1...k \ Bkj refers to the difference
of cardinality of overlapping elements between the untruncated
sketch and truncated sketch with B. Although the truncated sketch
is not exact the same as the bottom sketch SðAkÞ, the differences are
negligible in practice due to the uniformity of the hash function(s),
as we note below in Section 3.

Similar to the truncated Jaccard index, the CMash estimate of
the containment index will lead to a data-dependent bias factor that
relies on the original k-mer length, the truncation length as well as
the k-mer distribution in the input data themselves. The bias factor
can be minimized when there are few duplicate prefixes (i.e. using
large k values). Besides, a larger sketch size m can overwhelm the
value of a and b, making the bias negligible in practice. The per-
formance of CMash on truncated CI is examined in Figure 3a,

i32 S.Liu and D.Koslicki

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac237#supplementary-data

showing reliable estimation while being more efficient in metage-
nomic settings.

3 Results

Here, we compare the results from CMash using the truncation-
based method to both the classic MinHash estimation as well as the
ground truth (brute force) calculation on real and simulated data.
For a proof-of-concept purpose, we coded both CMash and the clas-
sic MinHash (which has been adopted by many existing tools) via
Python to perform a fair comparison. The comparison of CMash to
Sourmash and Mash can be found in Supplementary Figure S3.

3.1 CMash accurately estimates the Jaccard index
Considering the metagenomic setting where researchers are less
interested in distal relationships, we benchmarked the efficacy of
CMash on a collection of organisms all belonging to the same genus:
we selected the genus Brucella. A total of 31 complete or scaffold
genomes were found in the NCBI GenBank database (Benson et al.,
2018) and all were downloaded, except for a single genome belong-
ing to the species Brucella intermedia which was discarded due to its
large evolutionary distance to the remaining 30 Brucella genomes.
To assess the ability of CMash to estimate the Jaccard index, we
computed all pairwise Jaccard indices for this set of genomes and
compared them to the ground truth Jaccard indices which were com-
puted in a brute force fashion. Figure 2 contains the results where
the k-mer size ranged from 15 to 60 in steps of 5, for a kmax value of
kmax ¼ 60. The sketch size for CMash was m¼2000 by default (es-
timation variance decreases exponentially with increased sketch size
while the computation becomes less time-/space-efficient (Koslicki
and Zabeti, 2019)). We use canonical k-mers throughout: the lexico-
graphic minimum of the k-mer and its reverse complement.

As expected, Figure 2a shows that the Jaccard index between
pairs of genomes decreases as k increases. Indeed, for a k-mer size
equal to an input genome’s length, the Jaccard index at this k-mer
size is equivalent to exact string matching. As an aside, the rate of

decrease of the Jaccard index as a function of k recapitulates the
evolutionary relatedness first observed in Koslicki and Falush
(2016), which motivated the investigation contained in this article.

The differences between the CMash estimate when compared
with the ground truth are explained by two components: the vari-
ance introduced by the sampling-based approach of the
ArgMinHash component of CMash, and the bias introduced by
truncating the KTST. As seen in Figure 2b and c, neither of these
biases are significant when estimating the Jaccard index with
CMash when comparing pairs of genomes with medium or high
Jaccard similarity. The higher relative error in Figure 2c for large k
size is due to the decrease in the ground truth Jaccard index values
as shown in Figure 2a. CMash and the MinHash estimate exactly
agree at k ¼ kmax, so the performance characteristics are already
well studied in this setting (e.g. Koslicki and Zabeti, 2019). Indeed,
Figure 2b shows that the absolute differences are tightly distributed
around zero. Figure 2d and e depicts the performance of the classic
MinHash method for comparison. The lower variance of CMash es-
timation is achieved through the containment MinHash method in
Section 2.2 (Koslicki and Zabeti, 2019).

3.2 CMash is significantly more efficient than MinHash
The large size of microbial genome reference databases is a con-
straint in metagenomic analyses due to database size directly impact-
ing computational time. This is especially a concern when multiple k
values are required (Koslicki and Falush, 2016; Pierce et al., 2019;
Rana et al., 2016).

To examine the ability of CMash to ameliorate these concerns
with large reference databases, we analyzed simulated metagenomic
reads for the containment estimation of selected reference genomes.
Among all species with complete or scaffold genomes in the NCBI
GenBank database (Benson et al., 2018), we randomly selected
1000 of them spanning 26 phyla, 174 families and 313 genera to
serve as a reference database. Next, 200 of these 1000 genomes
were used to simulate metagenomic samples. We used BBTools
randomreads.sh (Bushnell, 2018) with the default metagenomic
setting to simulate these datasets. In total, ten metagenomic datasets

Fig. 2. Comparison of ground truth Jaccard indices to those estimated by CMash and MinHash on all pairs of 30 Brucella genomes. (a) The ground truth Jaccard indices as a

function of k-mer size from k¼15 to k¼ 60. (b) Boxplot of JI value differences between CMash and the ground truth. (c) Boxplot of relative errors of CMash compared to the

ground truth. (d) Boxplot of JI value differences between MinHash and the ground truth. (e) Boxplot of relative errors of MinHash compared to the ground truth

CMash: fast, multi-resolution estimation of k-mer-based Jaccard and containment indices i33

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac237#supplementary-data

with depths ranging from 2 million reads to 20 million reads were
simulated and then processed by CMash. We compared the CMash
truncation-based estimate to the classic MinHash algorithm in a dir-
ect comparison: both algorithms were coded in the same program-
ming language and using the same hash function. The choice of k
values was slightly different than before: k values ranging from 20
to 60 in steps of 5 were used and k¼15 was excluded because the
probability of sharing a 15-mer merely by chance is not negligible in
the metagenomic setting where the genome pool tends to be large.

We used the containment index (CI) in this experiment due to
the very different sizes of the input data: it has been established that
hashing approaches more accurately estimate the containment index
in this such situations (Koslicki and Zabeti, 2019), though recall
that Jaccard and containment indices can be computed from each
other when the cardinalities are known (see Equation (1)).
Considering that the major interests in metagenomic anlaysis are for
microbes which show up in the sample (usually with moderate or
high CI values) and k-mer matches from related or random genomes
is unavoidable, we compared absolute difference of CI values be-
tween CMash and the classic MinHash algorithm for all the 1000
reference genomes. While the performances from different depths
are similar, we only present the results for the depth of 10 million
reads. The results, in Figure 3a, show that most of the absolute CI
difference falls below 0.02, suggesting that CMash consistently
agrees with the classic MinHash algorithm for all k values consid-
ered. In this figure, we only compare CMash and classic MinHash
as the comparison to the ground truth is shown in Figure 2.

Given the comparable performance, the CMash results were
obtained more efficiently in terms of space and running time.
CMash requires only one reference database for the estimation of all
k � kmax while the classic MinHash requires space linear in the

number of k values (Fig. 3b). While CMash is currently a prototype
model, the classic MinHash method is not implemented in the most
memory efficient way (both hash values and k-mers are stored).

Though the cost of the classic MinHash method was overestimated,
the superiority of CMash in dealing with multiple k values is signifi-

cant. In this experiment that used 10 k values, CMash used a total
of 176 MB in space for the reference database while the classic
MinHash approach used 947 MB to store all of its sketches. In add-

ition, due to not needing to reconstruct new sketches for new k val-
ues, we observe in Figure 3c that the time needed for reference

construction by CMash was almost one-tenth compared to the clas-
sic MinHash. The estimation portion, depicted in Figure 3d, was
negligible in comparison to the database construction time, but here

too we found CMash to be more efficient than the MinHash
approach.

4 Conclusion

In this article, we introduced CMash: an algorithm and data structure
that can provide efficient multi-resolution estimation of k-mer-based
Jaccard and containment indices. It combines a bottom ‘argmin

sketch’ strategy and a prefix lookup in a KTST to avoid the recon-
struction of sketches for the entire reference databases each time the

k-mer size is changed. One advantage of using a KTST not explored
here is that a KTST can be represented as an on-disk database, thus
freeing memory for other purposes. Indeed, the minimum memory

needed is the size of one leaf node in the pre-built KTST. If needed,
the amount of memory utilized by a KTST can be adjusted for a

trade-off between speed and memory usage.

Fig. 3. Comparison of CMash with the classic MinHash approach to quantify containment indices, along with k size, database creation time and query time. The metagenomic

data was simulated from 200 randomly selected genomes; and then 1000 random genomes (including the 200 true members) were analyzed for the containment index for k

values ranging from 20 to 60. (a) Boxplot for absolute difference of CI value between CMash (kmax ¼ 60) and the classic MinHash algorithm under different k values. The x-

axis stands for different k values and y-axis stands for the absolute difference in CI. The majority of them are below 0.02. (b) Space usage for the two methods. (c) Time (per

CPU minute) needed by the two methods for data structure construction. (d) Query time (per CPU minute) needed by the two methods

i34 S.Liu and D.Koslicki

We showed that this truncation-based method can provide
results that well-approximate the ground truth in a more computa-
tionally efficient manner. We used CMash to analyze real microbial
data and simulated metagenomic data and found it to give consistent
and reliable estimates. While not an unbiased estimate for k-mer
sizes smaller than the input maximum kmax value, we observed that
the introduced bias was negligible for genomes with moderate and
high Jaccard indices.

The required space used by this approach is constant when we
fix the choice of kmax, regardless of the number of different k values
that we are interested to explore. In contrast, a classic MinHash
method requires space that is linear to the number of k values used.
Similarly, the time to construct reference database is significantly
improved compared to MinHash as CMash only needs to proceed
the data once; hence the total running time are effectively linearly
reduced with respect to the number of k-mer sizes when compared
with MinHash. This feature is extremely helpful in metagenomic
analysis where the reference database can be as large as hundreds
gigabytes and the querying cost can be overwhelmed by reference
construction cost.

Besides the algorithmic improvement on the MinHash algo-
rithm, CMash can take advantage of other k-mer sketching methods
in which truncated sketches (from prefix lookup) remain/are close to
a random sample which can be then used for containment MinHash
estimation (Koslicki and Zabeti, 2019). For example, spaced k-mers
can be used to replace contiguous k-mers as spaced k-mers show
potentials for improving metagenomic analysis (Boden et al., 2013;
B�rinda et al., 2015). When dealing with insertions and deletions,
Strobemer (Sahlin, 2021) can be adopted if we only truncate with a
length equal to the strobe length. However, care needs to be taken
when a truncation sketch is not (nearly) a random sample. CMash is
not capable of dealing with weighted Jaccard index and Order Min
Hash (Marçais et al., 2019) as the weight/ordinal information can-
not be inherited during truncation, leading to erroneous estimation.

In the future, further study of the bias factor may enhance the us-
ability of CMash. Inspired by the tight empirical distribution of the
bias factor in Supplementary Figure S4, we are interested in proving
some statistical error boundary for CMash estimation regarding the
bias based on assumptions of similarity level. This may explain why
the measured bias factor is so much better than the current theory
suggests. We believe this method will be useful in many metage-
nomic analyses where multi-resolution estimates can illuminate
evolutionary relationships. Beyond metagenomics, k-mer (or
shingling)-based methods are utilized extensively in computer and
data science, so the CMash approach should find application
beyond computational biology by essentially allowing
multi-resolution (in terms of k-mer/shingling size) queries with little
sacrifice to accuracy but greatly improved efficiency.

Funding

This material is based upon work supported by the National Science

Foundation under Grant No. 2029170.

Conflict of Interest: none declared.

References

Baker,D.N. and Langmead,B. (2019) Dashing: fast and accurate genomic dis-

tances with HyperLogLog. Genome Biol., 20, 265.

Benson,D.A. et al. (2018) Genbank. Nucleic Acids Res., 46, D41–D47.

Besta,M. et al. (2020) Communication-efficient jaccard similarity for

high-performance distributed genome comparisons. In: 2020 IEEE

International Parallel and Distributed Processing Symposium (IPDPS).

IEEE, pp. 1122–1132.

Bloom,B.H. (1970) Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13, 422–426.

Boden,M. et al. (2013) Alignment-free sequence comparison with spaced

k-mers. In: Beissbarth,T. et al. (eds.) German Conference on Bioinformatics

2013. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Leibniz,

Germany, pp. 24–34.

B�rinda,K. et al. (2015) Spaced seeds improve k-mer-based metagenomic classi-

fication. Bioinformatics, 31, 3584–3592.

Broder,A.Z. (1997) On the resemblance and containment of documents. In:

Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.

No. 97TB100171). IEEE, pp. 21–29.

Bushnell,B. Bbtools. BBMap, 2018.

Chikhi,R. and Medvedev,P. (2014) Informed and automated k-mer size selec-

tion for genome assembly. Bioinformatics, 30, 31–37.

Cormode,G. and Muthukrishnan,S. (2005) An improved data stream sum-

mary: the count-min sketch and its applications. J. Algorithms, 55,

58–75.

Dilthey,A.T. et al. (2019) Strain-level metagenomic assignment and com-

positional estimation for long reads with metamaps. Nat. Commun., 10,

1–12.

Flajolet,P. et al. (2007) Hyperloglog: the analysis of a near-optimal cardinality

estimation algorithm. In: Discrete Mathematics and Theoretical Computer

Science. Discrete Mathematics and Theoretical Computer Science, pp.

137–156.

Fletez-Brant,C. et al. (2013) kmer-SVM: a web server for identifying predictive

regulatory sequence features in genomic data sets. Nucleic Acids Res., 41,

W544–W556.

Koren,S. et al. (2017) Canu: scalable and accurate long-read assembly via

adaptive k-mer weighting and repeat separation. Genome Res., 27,

722–736.

Koslicki,D. and Falush,D. (2016) Metapalette: a k-mer painting approach for

metagenomic taxonomic profiling and quantification of novel strain vari-

ation. MSystems, 1, e00020-16.

Koslicki,D. and Zabeti,H. (2019) Improving minhash via the containment

index with applications to metagenomic analysis. Appl. Math. Comput.,

354, 206–215.

LaPierre,N. et al. (2020) Metalign: efficient alignment-based metagenomic

profiling via containment min hash. Genome Biol., 21, 1–15.

Li,P. and König,A.C. (2011) Theory and applications of b-bit minwise hash-

ing. Commun. ACM, 54, 101–109.

Liu,B. et al. (2012) Cope: an accurate k-mer-based pair-end reads connection

tool to facilitate genome assembly. Bioinformatics, 28, 2870–2874.

Luo,R. et al. (2012) Soapdenovo2: an empirically improved memory-efficient

short-read de novo assembler. Gigascience, 1, 2047–217X.

Marçais,G. et al. (2019) Locality-sensitive hashing for the edit distance.

Bioinformatics, 35, i127–i135.

Marchet,C. et al. (2020) Reindeer: efficient indexing of k-mer presence and

abundance in sequencing datasets. Bioinformatics, 36, i177–i185.

Ondov,B.D. et al. (2016) Mash: fast genome and metagenome distance estima-

tion using minhash. Genome Biol., 17, 1–14.

Ondov,B.D. et al. (2019) Mash Screen: high-throughput sequence contain-

ment estimation for genome discovery. Genome Biol., 20, 232.

Pierce,N.T. et al. (2019) Large-scale sequence comparisons with sourmash.

F1000Res., 8, 1006.

Rana,S.B. et al. (2016) Comparison of de novo transcriptome assemblers and

k-mer strategies using the killifish, fundulus heteroclitus. PLoS One, 11,

e0153104.

Sahlin,K. (2021) Effective sequence similarity detection with strobemers.

Genome Res., 31, 2080–2094.

Sarmashghi,S. et al. (2019) Skmer: assembly-free and alignment-free sample

identification using genome skims. Genome Biol., 20, 34.

Schulz,M.H. et al. (2014) Fiona: a parallel and automatic strategy for read

error correction. Bioinformatics, 30, i356–i363.

Solomon,B. and Kingsford,C. (2017) Improved search of large transcriptomic

sequencing databases using split sequence bloom trees. In: International

Conference on Research in Computational Molecular Biology. Springer, pp.

257–271.

Song,L. et al. (2014) Lighter: fast and memory-efficient sequencing error cor-

rection without counting. Genome Biol., 15, 509.

Wood,D.E. and Salzberg,S.L. (2014) Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol., 15, R46.

Zhang,H. et al. (2017a) WSMD: weakly-supervised motif discovery in tran-

scription factor ChIP-seq data. Sci. Rep., 7, 3217.

Zhang,Q. et al. (2017b) Viral phylogenomics using an alignment-free method:

a three-step approach to determine optimal length of k-mer. Sci. Rep., 7,

40712.

CMash: fast, multi-resolution estimation of k-mer-based Jaccard and containment indices i35

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac237#supplementary-data

