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Abstract: In this work, high-temperature pyrolysis was used to prepare both the core and shell of
lantha-nide-doped UCNPs with lithium yttrium tetrafluoride (LiYF4) to enhance the green lumines-
cence. Merocyanine 540 (MC540)-grafted magnetic nanoparticles were incorporated in the PD-L1
pep-tide-imprinted poly(ethylene-co-vinyl alcohol) particles, which were formed by precipitation
in a non-solvent. UCNPs in the non-solvent bath were thus entrapped in the imprinted particles to
generate composite nanoparticles for the targeting and photodynamic therapy of PD-L1 in tumor
cells. Finally, the in vitro cytotoxicity of the nanoparticles in HepG2 human liver cancer cells was
evaluated with the continuous administration of MC540/MNPs@MIPs/UCNPs under irradiation by
an NIR laser. To understand the delivery of the UCNP-embedded molecularly imprinted pol-ymers,
the intrinsic and extrinsic pathways were also investigated.

Keywords: upconversion nanoparticles; peptide-imprinted polymer; composite particles; photody-
namic therapy

1. Introduction

Upconversion nanoparticles (UCNPs) show great promise for photodynamic ther-
apy, as they permit the use of deeply penetrating near-infrared (NIR) light to activate
photosensitizer (PS) molecules that require the energy of a visible photon to produce sin-
glet oxygen. Liang and Liu have reviewed the non-invasive treatment of cancers using
photodynamic therapy (PDT) and upconversion nanoparticles [1]. UCNPs can also be
employed in imaging-guided combined photothermal and photodynamic therapy with
surface modification by a targeting protein [2]. A recent review of the use of lanthanide-
doped UCNPs for drug and gene delivery found that these UCNPs could emit visible
light and even UV when irradiated by NIR; the resulting photochemical reactions could
deliver drugs/genes more efficiently and safely than could be achieved with conven-
tional free drugs [3]. Our earlier work demonstrated the synthesis of lanthanide-doped
core/shell UCNPs of LiYF4:Yb3+/Er3+/Ho3+/Tm3+@LiYF4:Yb3+, and showed that the
photoluminescence (PL) spectra of these tetragonal-phase nanoparticles could be tuned
by varying the doping ratio of the lanthanide ions (Er3+, Ho3+, Tm3+). Photolumines-
cence intensities were increased by the addition of a shell layer [4]. UCNPs have been
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simultaneously loaded with chlorin e6, a photosensitizer, and imiquimod (R837), which
is a toll-like receptor 7 agonist, for promoting strong antitumor immune responses [5].
Dual stimuli-responsive block copolymers have been used to encapsulate the UCNPs of
LiYF4:Yb3+

0.25,Tm3+
0.01@LiYF4:Yb3+

0.2 and Nile red, with the trigger of controlled release
by NIR [6].

Molecularly imprinted polymers (MIPs) were initially developed about half a century
ago, and are used in biomedical delivery [7–10] and sensing [11–13]. MIPs have been
combined with UCNPs to make fluorescent sensors, for example, for the specific recognition
of sterigmatocystin [14]. MIPs combined with silica-coated UCNPs have been synthesized
for the detection of ochratoxin A in corn, rice, and feed [15]. Our previous work showed
that the in situ polymerization of MIP nanocomposites with UCNPs could be used for the
recognition of cysteine, albumin, and hemoglobin [16]. Epitope imprinting has recently
been used for larger targets, especially proteins and cells; a thorough review, with a focus
on applications of the imprinted polymers in imaging, drug delivery, diagnostics, and
tissue engineering, has been published by Piletsky et al. [17]. Recently, dual-template MIPs
(doxorubicin and an epitope of CD59 protein), with fluorescent silica nanoparticles at the
core and encapsulating gadolinium-doped silicon quantum dots and photosensitizers (Ce6),
were designed for cellular targeting, treatment, and imaging [18]. Similarly, fluorescent
calcium peroxide has been encapsulated as an imaging probe and a source of H2O2 [19]; in
that work, the exposed peptide in the CD47 extracellular region was used as a template,
with copper acrylate as one of the functional monomers and N,N‘-bisacrylylcystamine as a
crosslinker. Our recent work demonstrated that photosensitizers could be immobilized on
the surface of magnetic nanoparticles, which could then be coated with MIPs imprinted
with one peptide sequence from the programmed death-ligand 1 protein (PD-L1), for use
in combined photodynamic therapy and immunotherapy [20].

In the present work, lanthanide-doped upconversion core/shell nanoparticles were
synthesized and then embedded into MIPs formed by phase transfer imprinting of the
PD-L1 peptide, to produce MC540/MNPs@MIPs/UCNP composite imprinted particles.
All composite particles were then characterized by transmission electron microscopy (SEM),
X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and photolumines-
cence (PL). Finally, the in vitro cytotoxicity of a combination of PDT and immunotherapy
with UCNP composite particles was studied in HepG2 cells, as well as the activation of
genes of the apoptosis pathway.

2. Materials and Methods
2.1. Reagents

Yttrium (III) oxide (Y2O3 99.99%), ytterbium (III) oxide (Yb2O3, 99.99%), and
holmium (III) oxide (Ho2O3 99.99%), trifluoroacetic acid (TFA, 99.99%), oleic acid (90%),
and 1-octadecene (90%) were from Alfa Aesar (Ward Hill, MA, USA). The peptide
EDLKVQHSSYRQRA from the sequence of programmed death-ligand 1 (PD-L1) was or-
dered from Yao-Hong Biotechnology Inc. (HPLC-grade, New Taipei City, Taiwan). Lithium
carbonate (Li2CO3, 98%), poly(ethylene-co-vinyl alcohol), EVAL, with ethylene 38 mol%,
3-triethoxysilylpropylamine (APTES), merocyanine 540 (MC540) and RT-PCR primers
(Table 1), were from Sigma-Aldrich Co. (St. Louis, MO, USA). Dimethyl sulfoxide (DMSO),
from Panreac (Barcelona, Spain), was used as the solvent to dissolve EVAL polymer parti-
cles at a concentration of 1 wt%. Absolute ethyl alcohol and 95% ethanol were from J. T.
Baker (ACS grade, NJ, USA) and ECHO Chemical Co. (Miaoli, Taiwan), respectively.

2.2. Synthesis of Core/Shell UCNPs

The synthesis of the core/shell LiYF4:Yb3+
0.25/Ho3+

0.01@LiYF4:Yb3+
0.2 was modified

from our previous work [16]; briefly, (1) Li2CO3 (1.48 mmol), Y2O3 (0.74 mmol), Yb2O3
(0.2 mmol), and Ho2O3 (0.02 mmol) were dissolved in 50% trifluoroacetic acid 10 mL at
90 ◦C in a three-necked flask for 30 min. (2) This solution was evaporated to dryness
under an argon gas purge, and then equal volumes of oleic acid and 1-octadecene 15 mL
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were added, and heated to 120 ◦C at 2 ◦C/min in 30 min. (3) This light-yellow solution
was further heated to 300 ◦C at 30 ◦C/min under argon gas, which was kept at 300 ◦C
under vigorous stirring for another 1 h. (4) This mixture was cooled to room temperature
(ca. 25 ◦C) and precipitated with ethanol. (5) The solid was collected by centrifugation
at 8000 rpm for 10 min, and then dispersed/reprecipitated from ethanol twice to obtain
the oleate-capped LiYF4:Yb0.25

3+/Ho0.01
3+ core nanoparticles. For the coating shell layer, a

similar approach was taken to the synthesis of the core particles, but without the addition
of Ho2O3 in step (1), and the core LiYF4:Yb3+

0.25/Ho3+
0.01 UCNPs was added to the equal

volumes of oleic acid and 1-octadecene in step (2) just before heating to 120 ◦C at 2 ◦C/min
in 30 min.

2.3. Formation of Peptide-Imprinted Composite Nanoparticles

The synthesis of MC540-grafted MNPs in the UCNP-embedded peptide-imprinted
composite nanoparticles included the following steps: (1) The magnetic nanoparticles
were synthesized by co-precipitation of a mixture of iron (III) chloride 6-hydrate and
iron (II) sulfate 7-hydrate by sodium hydroxide, and then were repeatedly washed while
adsorbed on a magnetic plate [21]. (2) Twenty milligrams of MNPs was grafted with
180 µL APTES and 50 mL 95% ethanol, and this mixture was stirred in a water bath at
90 ◦C for 2 h. The ATPES-grafted MNPs were rinsed three time with 95% ethanol and
kept in 10 mL 95% ethanol. (3) Five milliliters of 0.5 mg/mL MC540 was added to 2 mg
of ATPES-grafted MNPs and reacted for 1 h at 60 ◦C. (4) The peptide was dissolved in
DMSO at a concentration of 100 µg/mL, and 250 µL EVAL/DMSO solution was added
into the same volume of peptide solution to form a clear EVAL solution, and 10 mg
of the MC540/MNPs were then added. EVAL was precipitated by dispersing 0.5 mL
EVAL solution into 10 mL of deionized water with 1.0 mg/mL of UCNPs; then, the
template was removed by washing in 10 mL deionized water 15 min (3×), separating the
MC540/MNPs@MIPs/UCNPs using a magnetic field (or centrifugation at 8000 rpm, if no
magnetic nanoparticles were added) for 10 min after each wash. The UCNP-embedded non-
imprinted polymer-coated MC540/MNPs@NIPs/UCNPs were prepared identically, but
without peptide addition. The coating of the EVAL, however, may reduce the cytotoxicity
of the composite nanoparticles [22].

2.4. Characterization of Core/Shell UCNPs and Peptide-Imprinted Composite Nanoparticles

Wide-angle X-ray diffractograms (WAXD) were obtained with a Bruker D8 ADVANCE
diffractometer, using Cu Ka radiation with a step size of 0.05◦ and a scanning speed of
4◦/min. Transmission electron microscopy (TEM) images were obtained using a JEOL
JEM1230 transmission electron microscope. Photoluminescence (PL) spectra were recorded
on a Hitachi F-7000 fluorescence spectrophotometer (Japan). Scanning electron microscopy
(SEM) images were obtained using a Hitachi S4800 scanning electron microscope. Fourier-
transform infrared spectroscopy (FTIR) spectra were recorded using a Spectrum GX FTIR
spectrometer (PerkinElmer, Inc. Waltham, MA, USA). The transmission spectra of the KBr
sample pellets were collected at a resolution of 4 cm−1, acquiring a total of 16 scans in the
wavenumber region of 400–4000 cm−1. Ultraviolet-visible (UV-vis) spectroscopic analysis
(SP-8001, Shishin Technology Co., Ltd., Taipei, Taiwan) was performed to evaluate the
binding of the PD-L1 peptide to the imprinted or non-imprinted particles. One milligram
of composite nanoparticles was added into 10 mL of peptide E solution (20 µg/mL) and
allowed to bind for 10 to 60 min. After magnetically removing the particles, the peptide E
concentration was assayed using the absorption at 295 nm.

2.5. Cytotoxicity Test and Photodynamic Therapy of HepG2 Cells with
MC540/MNPs@MIPs/UCNPs

HepG2 (Human hepatoblastoma cells, BCRC #60364) cells were cultured in 90% of a
1:1 ratio mixture of Dulbecco’s modified Eagle’s medium (DMEM) and Ham’s F12 medium
with 10% heat-inactivated FBS (fetal bovine serum), supplemented with 0.4 mg/mL
G418 (Geneticin) at 37 ◦C and 5% CO2. For the cytotoxicity experiments, 10 µL of
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10.0 × 104 HepG2 cells and 190 µL of culture medium per well (1.0 × 104 HepG2 cells per
well) were seeded in 96-well culture plates and then incubated at 37 ◦C in 5% CO2 for
24 h. Various concentrations of nanoparticles were added to each well for another 24 h.
The well plate was exposed to photodynamic light irradiation using a SDL980-LM-5000T
laser diode (980 nm, 3 W/cm2) obtained from Shanghai Dream Lasers Technology Co., Ltd.
(Shanghai, China) for 5 min. The distance between the NIR device and the cell plate was
1.5 cm. Then, 20 µL MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide,
a yellow tetrazole) solution in phosphate-buffered saline (PBS) was added to each well
after 24 h, and then incubated in 5% CO2 for 3 h at 37 ◦C. The solution was removed from
each well. Then, 100 µL dimethyl sulfoxide (DMSO) was added to each well and incubated
at 37 ◦C for 30 min in the dark, until the cells had lysed and the purple crystals were
dissolved. The absorption intensities were measured by an ELISA reader (CLARIOstar,
BMG Labtech, Offenburg, Germany) at 450 nm (I450), and the reference absorption (Iref, to
account for turbidity and scattering) was obtained at 650 nm. The cellular viability (%) was
then calculated from the ratio of effective absorption (I450-Iref) to controls. For the repeated
assessment of cell viability, MC540/MNPs@MIPs/UCNPs and MC540/MNPs@MIPs/
UCNPs 1.0 mg/mL were added to HepG2 cells. Four hours after PDT, particles were
removed from wells, 500 µL of CCK-8 (Sigma Aldrich, Kumamoto, Japan) solution was
added, and the absorption intensity was measured by an ELISA reader. The preparation
and administration of PD-L1 peptide-imprinted composite nanoparticle are shown in
Scheme 1.
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The following procedure was used for nuclear staining with DAPI (4′,6-diamidino-2-
phenylindole dihydrochloride): HepG2 cells were washed 3 times using 250 µL PBS; then,
350 µL of 3.7% formaldehyde was added into each well and incubated for 15 min at room
temperature. The formaldehyde solution was removed and then the cells were washed
3 times with PBS, and 250 µL of 1 µg/mL DAPI stain solution was added and incubated
for 15 min at room temperature while protected from light. Finally, the DAPI stain solution
was removed and cells were washed 3 times with 250 µL PBS. Imaging was performed
after 5 min.
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2.6. Gene Expression of HepG2 Cells Treated with MC540/MNPs@MIPs/UCNPs and PDT

The sequences (5′-3′) of primers for GAPDH, Caspase 8, Caspase 3, Caspase 9, Cy-
tochrome C (CYCS), Bax, Bid, and Bcl-2 are listed in Table 1. The total RNA extraction
from the HepG2 cells cultured one day after NIR irradiation was performed using the
KingFisher Total RNA Kit and the KingFisher mL magnetic particle processors, both from
Thermo Scientific (Vantaa, Finland). Complementary DNA was obtained following a
Deoxy+ real-time 2× SYBR green RT-PCR kit (Yeastern Biotech Co., Ltd., New Taipei
City, Taiwan) protocol. The real-time PCR analysis was then performed in a PikoReal
real-time PCR system (Thermo Scientific, Vantaa, Finland). Relative gene expression was
determined using the ∆∆Cq method [23] and normalized to a reference gene (GAPDH)
and to a control (HepG2).

Table 1. The sequence of primers used in this work, including GAPDH, Casp8, Casp3, Casp9, CYCS,
Bax, Bid, and Bcl-2.

Primer
Sequence

Forward Reverse

GAPDH ACAGTTGCCATGTAGACC TTTTTGGTTGAGCACAGG
Casp8 CTACAGGGTCATGCTCTATC ATTTGGAGATTTCCTCTTGC
Casp3 AAAGCACTGGAATGACATC CGCATCAATTCCACAATTTC
Casp9 CTCTACTTTCCCAGGTTTTG TTTCACCGAAACAGCATTAG
CYCS AAGAACAAAGGCATCATCTG GCTATTAAGTCTGCCCTTTC
Bax AACTGGACAGTAACATGGAG TTGCTGGCAAAGTAGAAAAG
Bid CTTAGCCAGAAATGGGATG AGTCACAGCTATCTTCCAG

Bcl-2 GATTGTGGCCTTCCTTTGAG GTTCCACAAAGGCATCC

2.7. Data Analysis

All experiments were carried out in triplicate and data are expressed as the
mean ± standard deviation. The cellular viability and gene expression data were ana-
lyzed with Student’s t-test. Statistical significance was set at a p-value of less 0.05, with
high significance at p < 0.001 and dramatically significant at p < 0.0001.

3. Results and Discussion

Figure 1 presents the morphology and crystal structures of the synthesized UCNPs.
The TEM images in Figure 1a,b reveal that the nanoparticles have a tetragonal crystal
structure with an octahedral morphology. The dimensions of the LiYF4:Yb0.25

3+/Ho0.01
3+@

LiYF4:Yb0.20
3+ core/shell nanoparticles were approximately 180 ± 40 and 100 ± 15 nm

along the long and short axes, respectively. In Figure 1c, high-resolution transmission
electron microscopy (HRTEM) images show the well-resolved d-spacings of LiYF4:Yb0.25

3+/
Ho0.01

3+@ LiYF4:Yb0.20
3+ core/shell nanoparticles that match closely the distance between

the (202) planes in lithium yttrium tetrafluoride (LiYF4) with a single-crystalline structure.
The selected area electron diffraction patterns in Figure 1d consist of many spots that are
indexed to the corresponding (hkl) planes, according to the Joint Committee on Powder
Diffraction standards (JCPDs) #17-0874, indicating that the UCNPs have a single-crystal
tetragonal phase structure [16].
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Figure 1. (a,b) Transmission electron microscopy (TEM) images, (c) electron diffraction, and
(d) high-resolution transmission electron microscopy (HRTEM) image of LiYF4:Yb3+

0.25/Ho3+
0.01@

LiYF4:Yb3+
0.2 UCNPs.

Figure 2 displays the characteristics of the UCNPs LiYF4:Yb0.25
3+/Ho0.01

3+@LiYF4:
Yb0.20

3+, including the XRD, photoluminescence, and adsorption of target molecules. The
major peaks in the XRD diffraction patterns at 2θ values of 18, 40, 47, and 49 degrees were
attributed to the (101), (112), (202), (105), and (123) planes of the tetragonal LiYF4 crystal.
The WAXD results reveal that the relative intensities and positions of all of the diffraction
peaks closely match the JCPDs #17-0874. After the LiYF4:Yb3+ shell was coated, the XRD
patterns of the core/shell nanoparticles included peaks similar to those of the core nanopar-
ticles, consistent with our previous work on LiYF4:Yb0.25

3+/Ho0.01
3+/Tm0.01

3+/Er0.01
3+@

LiYF4:Yb0.20
3+ UCNPs [16]. Figure 2b,c show the photoluminescence of core, core/shell

UCNPs, and MC540/MNP@MIPs/UCNPs. Interestingly, as shown in Figure 2b, the emis-
sion of UCNPs at a wavelength of 540 nm was enhanced by about 20% by coating with
LiYF4:Yb0.20

3+. The emission was quenched by about 15% when MC540 was grafted on
the UCNPs. When UCNPs were embedded in MIPs or non-imprinted polymer particles
(NIPs), the emission at 540 nm was further reduced (Figure 2c), perhaps because of the
absorption of NIR by polymers/copolymers [24]. Figure 2d shows an SEM image of the
MIPs/UCNPs; and their sizes varied from around 100 to 500 nm. FTIR measurements
on the peptide, NIPs, and MIPs (Figure 2e) revealed O-H and N-H bonds around 3416
and 3351 cm−1 in the EVAL and peptide, respectively. The absence of the C=O, C=C,
and C=N bond vibrations between 500 and 1750 cm−1 and of C-N around 1250 cm−1

showed that the template peptides had been removed from MIPs; Non-imprinted polymer
(NIP) particles also lacked these vibrations, of course. Figure 2f shows the adsorption
of the template (target) molecules/peptides onto the UCNPs-embedded MIPs or NIPs
composite particles. The adsorption reached equilibrium at around 10 min. The adsorption
capacities of the MIPs and NIPs were approximately 28.70 ± 1.08 and 16.30 ± 0.61 mg per
gram, respectively.
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Figure 2. (a) X-ray diffraction and (b) photoluminescence of LiYF4:Yb3+0.25/Ho3+0.01 and LiYF4:Yb3+0.25/Ho3+0.01@ LiYF4:Yb3+0.2 
UCNPs. (c) Photoluminescence of MC540-grafted MNPs at UCNPs-embedded peptide-imprinted polymer. (d) SEM image 
of the UCNP-embedded peptide-imprinted polymers. (e) FTIR and (f) binding kinetics of MC540-grafted MNPs in UCNP-
embedded non- and peptide-imprinted polymers. 
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Figure 2. (a) X-ray diffraction and (b) photoluminescence of LiYF4:Yb3+
0.25/Ho3+

0.01 and LiYF4:Yb3+
0.25/Ho3+

0.01@
LiYF4:Yb3+

0.2 UCNPs. (c) Photoluminescence of MC540-grafted MNPs at UCNPs-embedded peptide-imprinted polymer.
(d) SEM image of the UCNP-embedded peptide-imprinted polymers. (e) FTIR and (f) binding kinetics of MC540-grafted
MNPs in UCNP-embedded non- and peptide-imprinted polymers.
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Figure 3a,b show the viabilities of HepG2 cells that were incubated with various
concentrations of MC540/MNPs@NIPs/UCNPs (non-imprinted composite particles) and
MC540/MNPs@MIPs/UCNPs (imprinted composite particles), and irradiated with 980 nm
NIR for 5 min (protocols can be found in Section 2.4). Both imprinted and non-imprinted
particles had only slight toxicity at the higher concentrations tested, with viabilities above
90% of that of controls. Upon irradiation with NIR, the non-imprinted particles, without a
ligand for the recognition of PD-L1 on the surface of HepG2 cells, had significantly lower
cytotoxicity than the imprinted particles, with viabilities about 85% of controls, even at a
high particle dose. In contrast, the imprinted particles at a concentration of 1.0 mg/mL
induced apoptosis in about half of the cells. The reductions in viability were highly statis-
tically significant for MC540/MNPs@NIPs/UCNPs and MC540/MNPs@MIPs/UCNPs
concentrations higher than 250 or 50 µg/mL, respectively. Since, aside from imprinting,
these particles are otherwise identical, the increased efficacy of the imprinted particles must
be attributed to their increased cellular binding. Figure 3c,d compare the effects of continu-
ous administration of imprinted vs. non-imprinted composite particles on HepG2 cells. In
the “continuous administration” protocol, cells were continuously incubated with particles
in the culture medium, with medium replaced every day. After 1, 2, or 3 days, the cells
were exposed to light for 5 min and the viability was then measured with the CCK8 kit.
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Figure 3. Cellular toxicity of HepG2 cells incubated with various concentrations of (a) NIPs and (b) MIPs with and without
NIR irradiation (* p < 0.05, ** p < 0.001, *** p < 0.0001). Continuous cellular viability measurements of HepG2 cells incubated
with 1.0 mg/mL of (c) NIPs and (d) PIPs/MC540 with and without irradiation (* p < 0.05, ** p < 0.001, *** p < 0.0001).
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Figure 3c shows that the viability of cells treated with continuous administration of
NPs was around 10% lower than that of the controls. Surprisingly, as shown in Figure 3d,
the HepG2 cells were stimulated by the NIR and grew continuously for the first three days.
The MC540/MNPs@NIPs/UCNP-treated cells had almost the same viability with and
without irradiation, but compared to the irradiated controls, they grew more poorly. How-
ever, the MC540/MNPs@MIPs/UCNP-treated cells had dramatically lower viabilities than
both the irradiated controls (without NPs) and the cells treated with NIPs and irradiated.
These viability changes (compared with controls) were highly and dramatically significant,
respectively. Figure 4 displays the cellular images of HepG2 cells that were treated with
MC540/MNPs@MIPs/UCNPs. Figure 4a,b are images of cells in control experiments with-
out and with NIR irradiation, respectively. The number of cells in Figure 4b exceeds that in
Figure 4a, which agreed with the results presented in Figure 3. Figure 4c,d show HepG2
cells treated with MC540/MNPs@MIPs/UCNPs without and with NIR irradiation; many
fewer cells were found compared the controls or unirradiated (particle-treated) samples.
The cell counts were 703, 774, 678, and 386, from the top to the bottom of Figure 4.
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Figure 4. Optical, DAPI-stained, and merged images (from left to right columns) of (a,b) HepG2 cells (c,d) with MIPs under
(b,d) irradiation or (a,c) not.

Finally, Figure 5 presents the gene expression levels for the intrinsic and extrinsic
pathways of apoptosis. Interestingly, the major cytotoxic pathway of HepG2 cells with



Biomedicines 2021, 9, 1923 10 of 12

MC540/MNPs@MIPs/UCNPs is the extrinsic pathway, as shown in Figure 5a. The ex-
trinsic pathway involves an increase in the expression of caspase 8 (CASP8) and then
caspase 3 (CASP3), as shown in Figure 5b. The relatively higher expression of these mark-
ers on HepG2 cells treated with MC540/MNPs@MIPs/UCNPs under NIR irradiation
(compared to cells without irradiation) suggests that the extrinsic apoptosis pathway has
been activated.
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Bcl-2, Cycs) of HepG2 cells treated with MIPs under irradiation or not (* p < 0.05, ** p < 0.001).

4. Discussion

Precision, targeted medicine is important to reducing drug dosage and thus in min-
imizing side-effects in healthy cells. In this work, luminescent nanocomposite MC540/
MNPs@MIPs/UCNPs were fabricated for the study of photodynamic therapy, PDT. First,
green-emitting UCNPs, LiYF4:Yb3+/Ho3+@LiYF4:Yb3+, were synthesized by thermal de-
composition. Then, the photosensitizer MC540 was loaded onto magnetic nanoparticles
(MNPs), and the MNPs and UCNP were both encapsulated in MIPs synthesized to target
tumors. This composite particle allows cytotoxic PDT to be employed to specifically and
precisely kill tumor cells. Luminescence resonance energy transfer (LRET) from the UCNPs
excites the MC540, which then catalyzes the generation of reactive oxygen species (ROS)
that result in cell toxicity. The blocking the ligand of PD-L1 can also directly assist by
preventing the PD-1/PD-L1 immune blockade in immunotherapy [20]. The results here
show that these composite particles are effective at enhancing the efficacy of PDT and
showed that the extrinsic apoptosis pathway could be activated.

We observed slight but statistically significant toxicity from the prepared composite
nanoparticles, even in the absence of illumination. It may be possible to mitigate such effects
using surface modification of the as-prepared composite nanoparticles. Indeed, surface
modification plays a crucial role in nanomedicine, and modification with polymers, small
organic molecules, or inorganic materials has been studied [25,26]. Such modifications
could enhance the utility of composite MIP nanoparticles for in vivo therapy.
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