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The application of artificial intelligence (AI) technology to medical imaging has resulted in

great breakthroughs. Given the unique position of ultrasound (US) in prenatal screening,

the research on AI in prenatal US has practical significance with its application to

prenatal US diagnosis improving work efficiency, providing quantitative assessments,

standardizing measurements, improving diagnostic accuracy, and automating image

quality control. This review provides an overview of recent studies that have applied

AI technology to prenatal US diagnosis and explains the challenges encountered in

these applications.
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INTRODUCTION

Ultrasonography is convenient, low-cost, real-time, and non-invasive, and it has been the most
largely used imaging modality. Antenatal ultrasound (US) examination, as the most important
imaging method used during pregnancy, can assess the growth condition and birth defects of
a fetus, helping the fetus to receive timely and effective treatment before or after delivery. For
malformations with a poor prognosis, timely termination of a pregnancy could reduce the rate
of births with severe birth defects. However, this time-consuming process depends to a large extent
on doctor’s experience and the available equipment. Moreover, it involves great work intensity
in practice.

Artificial intelligence (AI) (1) refers to the ability to interpret external data and learning for
specific purposes through flexible adaptation. Machine learning (ML), a field gaining considerable
attention in AI, is a powerful set of computational tools that trains models on descriptive patterns
obtained from human inference rules. However, a major problem facing ML is that feature
selection relies heavily on statistical insights and domain knowledge, a limitation that initiated the
development of deep learning. As a branch of ML, deep learning takes advantage of convolutional
neural networks, one of the most powerful methods associated with images, which can realize
high performance with limited training samples and even permit more abstract feature definitions.
Consequently, it is often used for image pattern recognition and classification.

There has been much research on radiology with AI (2–5), and AI-assisted diagnosis has also
become a research hotspot in the US field. Some experts have gained success in the intelligent US
diagnosis of liver, thyroid, and breast diseases (6–9). However, AI in prenatal US diagnosis is still in
its infancy, though there have been breakthroughs in measurement, imaging, and diagnosis. Such
applications are of great significance; not only they improve efficiency, but they alsomake up for the
inexperience and skill deficiency of some examiners. In this review, we introduce recent literature
on the application of AI in prenatal US diagnosis (Figure 1).
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FIGURE 1 | A schematic diagram of this review AI, artificial intelligence; ML, machine learning; DL, deep learning; US, ultrasound; GS, gestational sac; NT, nuchal

translucency; HC, head circumference; AC, abdominal circumference; FL, femur length; HL, humerus length; FINE, fetal intelligent navigation echocardiography.

AI IN THE FIRST TRIMESTER US

Gestational Sac
GS is the first important structure observed by US in pregnancy.
The mean gestational sac diameter can roughly estimate the
gestational age (GA). Zhang et al. (10) designed an automatic
solution to select the standardized biometric plane of the GS
and perform measurements during routine US examinations.
The quantitative and qualitative analysis results showed the
robustness, efficiency, and accuracy of the proposed method.
Although this study is restricted to normal gestation within
7 weeks, it is expected to facilitate the clinical workflow with
further extension and validation. Yang et al. (11) established
a fully automatic framework that could simultaneously affect
the semantic segmentation of multiple anatomical structures
including the fetus, GS, and placenta in prenatal volumetric
US. Extensively verified on large in-house datasets, the method
demonstrates superior segmentation results, good agreement
with expert measurements, and high consistency against
scanning variations.

Abbreviations: AC, Abdominal circumference; AI, Artificial intelligence; CAD,
Computer-aided diagnosis; CHD, Congenital heart disease; FFSP, Fetal facial
standard plane; FINE, Fetal intelligent navigation echocardiography; FLM, Fetal
lung maturity; GA, Gestational age; GS, Gestational sac; HC, Head circumference;
NRM, Neonatal respiratory morbidity; NT, Nuchal translucency; ML, Machine
learning; 2D, Two-dimensional; 2DUS, Two-dimensional ultrasound; 3D, Three-
dimensional; 3DUS, Three-dimensional ultrasound; US, Ultrasound.

Fetal Biometry Assessment
The automation of image-based assessments of fetal anatomies
in the initial trimester remains a rarely studied and arduous
challenge. Ryou et al. (12) developed an intelligent image analysis
method to visualize the key fetal anatomy and automate biometry
in the first trimester. With this approach, all sonographers
needed to do was acquire a three-dimensional US (3DUS) scan
following a simple standard acquisition guideline. Next, the
method could perform semantic segmentation of the whole fetus
and extract the biometric planes of the head, abdomen, and limbs
for anatomical assessment. However, it exhibited relatively low
qualitative analysis results of the limbs due to a low detection rate.

Nuchal Translucency
NT is a fluid-filled region under the skin of the posterior neck of
a fetus, which appears sonographically as an anechogenic area. A
fetus with increased NT thickness has a higher risk of congenital
heart disease, chromosomal abnormalities, and intrauterine fetal
death. The NTmeasurement has proven to be a crucial parameter
in prenatal screening.

NT thickness needs to be measured in the fetal standard
medium sagittal plane. On account of the low signal-to-noise
ratio of ultrasonic data, the relatively short fetal crown-rump
lengths and activity in early pregnancy, the section is hard to
obtain, making its intelligent measurement a challenge. In recent
years, with the joint efforts of multidisciplinary experts, many
breakthroughs have been made (Table 1).
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TABLE 1 | Summary of studies about intelligent measurements of NT.

References Technologies Tasks Performances

Lee et al. (13) Coherence-enhancing diffusion filter, Dynamic

programming

Automatic measurement of NT with manual

ROI

Correlation ca,m: 0.99

Catanzariti et al. (14) Dynamic programming Automatic measurement of NT with manual

ROI

No quantitative analysis and perform

better than Lee et al. (13)

Deng et al. (15) SVM classifier, Gaussian pyramids Automatic detection of the NT region in the

standard mid-sagittal plane

Accuracy: 93.1%

Park et al. (16) Dijkstra’s shortest path, Oriented gradient

filters, Graph Cut segmentation, Hierarchical

Detection Network

Automatic segmentation and measurement of

NT in the standard mid-sagittal plane

The detection results are accurate for

most cases

Siqing et al. (17) Dynamic programming, Hessian plate filter,

Deep belief network

Automatic identification the mid-sagittal plane,

detection, and measurement of NT

σ = 0.40, dNTlen = 0.28, dborder =

0.27

Sciortino et al. (18) Wavelet, Multi resolution analysis Automatic identification the mid-sagittal plane,

detection, and measurement of NT

Sensitivity: 99.95%

NT, nuchal translucency; ROI, region of interest; Correlation ca,m, defined as correlation between semi-automatic and manual measurements for the maximum NT thickness; SVM,

support vector machine; σ , the variance of NT thickness among the dataset; dNTlen is the error of the automatic measurement of NT thickness comparing with the manual measurement;

dborder is the average error of the automatic detected borders and manually drawn ones.

Initially, the thickness of NT could be measured by manual
selection of the region of interest (13, 14), and semi-automatic
approaches were proven to produce reliable measurements
compared to traditional manual methods. Later, experts made
attempts to automatically identify and measure NT in mid-
sagittal section images (15, 16), and the NT detection results
were accurate in most cases. Following studies of the automatic
detection of the fetal sagittal plane in US (19, 20), researchers
developed sufficiently accurate (17, 18) methods for the
automatic recognition of the standard NT plane as well as
measurements of its thickness.

AI IN THE SECOND AND THIRD
TRIMESTER US

It is in the mid-trimester that sonographers can evaluate
fetal growth and find dysplasia with greater sensitivity. The
second trimester scan associated with third trimester checks
can better detect congenital abnormalities and even predict
postnatal outcomes.

Biometric Measurement
Standardized measurements are an indispensable part of prenatal
US, which play a role in dating pregnancies and detecting
potential abnormalities, but the process remains a highly
repetitive one. Automation assists in reducing the time needed
for routine tasks, allowing more time to analyze additional scan
planes for diagnosis. Moreover, automatic measurements can
reduce operator bias and contribute to improved quality control.

Fetal Head
A number of AI-based methods have been developed for head
circumference (HC) measurement (21–28), the studies of which
are summarized in Table 2.

Fetal factors—such as abnormalities, low contrast, speckle
noise, boundary occlusion, or other artifacts—may affect
intelligent detection and measurement; such conditions having

been accounted for in the studies (22, 24, 26, 28). Approaches
with plane verification may obtain more accurate results. As
Kim et al. (26) assessed the transthalamic plane on the basis of
the cavum septum pellucidum, the V-shaped ambient cistern,
and the cerebellum. Van den Heuvel et al. (25) combined their
intelligent method with the Hadlock curve, allowing the GA to
be determined automatically from the measurements. However,
the determination was unreliable for the third trimester.

Some medical devices have been successfully equipped with
software for intelligent processing (29–31). With such computer
assistance, basic planes can be extracted and biometries related
to the fetal head can be obtained automatically from the 3DUS.
And the computer-assisted systems have proven to be reliable
in measuring HC. With further optimization, such tools suggest
great promise in improving workflow efficiency.

Fetal Abdomen
The low contrast between the fetal abdomen and the surrounding
environment, its irregular shape, and the high variability of
images all serve to make intelligent study of the abdominal
circumference (AC) a difficult task. Several original studies (32–
34) published on the subject are summarized in Table 3.

The novelty of a method introduced by Kim et al. (34)
was the use of the spine position as a navigation marker to
determine the final plane for AC measurement. In this way, the
influence of interference—such as a regional lack of amniotic
fluid, acoustic shadows, or certain anatomical structures—could
be reduced. Moreover, the checking process of the standard plane
further raises the stability and accuracy of AC measurements.
This intelligent approach significantly outperforms conventional
studies (33), and the multiple learning framework is desirable to
integrated into a single framework.

Fetal Long Bone
The position and posture of a fetus varies, which limits
such studies about fetal long bone. There has been some
progress regarding the segmentation and measurement of the
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TABLE 2 | Summary of studies about intelligent measurements of HC.

References Task Data used

for learning

GA (for

training and

application)

Total number of

images (total number

of pregnant)

Number of

testing

images

Methods Dice

Foi et al. (21) Segmentation + Measurement 2D 21, 28, and 33

weeks

90 Nelder - Mead 0.96

Zhang et al. (22) Detection + Segmentation +

Measurement

2D 20–35 weeks 41 (41) 21 Supervised texton + RF 0.97

Li et al. (23) Detection + Measurement 2D 18–33 weeks 669 145 RF + Ellifit 0.97

Sinclair et al. (24) Detection + Measurement 2D 18–22 weeks 2,703 (2724) 539 CNN 0.98

Vandenheuvel

et al. (25)

Detection + Measurement +

Gestation

2D All trimesters 1,334 (551) 333 CNN + U-net 0.97

Kim et al. (26) Detection + Measurement +

Checking

2D 172 70 U-Net + CNNs + Ellifit 0.95

Sobhaninia et al.

(27)

Segmentation + Measurement 2D All trimesters 999 250 CNN + U-net 0.97

Li et al. (28) Segmentation + Measurement 2D All trimesters 1,334 (551) 335 CNN 0.97

HC, head circumference; GA, gestational age; Dice, a parameter describing the similarity between the performance of proposed method and the ground truth; 2D, two dimensional;

RF, random forests; CNN, convolutional neural network.

TABLE 3 | Summary of studies about intelligent measurements of AC.

References Task Technologies Sample GA of data used Results

Wang et al. (32) Detection+Measurement HT+local phase 590 18–39 weeks Measurement: MSD 0.42%;

SD 2.91%; P value 0.16.

Jang et al. (33) Classification+Measurement+Checking CNN+HT 88 Measurement: Dice 0.85;

check: accuracy 80.9%.

Kim et al. (34) Detection+Measurement+Checking CNN+U-net 174 Measurement: Dice 0.93;

check: accuracy 87.1%.

AC, abdominal circumference; GA, gestational age; HT, Hough transform; MSD, mean sign difference; SD, standard deviation; P value, help to further assess the statistical evidence;

CNN, convolutional neural network; Dice, a parameter describing the similarity between the performance of proposed method and the ground truth.

fetal femur (22, 35–37) (Table 4). Most of the methods can
be divided into several parts including the determination of
regions of interest, image processing, identification of femoral
features, and measurement of lengths or volumes. Moreover,
the models can obtain similar accuracy as that obtained via
manual measurements.

Hur et al. (36) conducted a prospective study to evaluate
the performance of a 3DUS system, five-dimensional long bone
(5DLB), in detecting the lower limb long bone. They found
this intelligent tool to be reproducible and comparable with
conventional two-dimensional (2D) and manual 3D techniques
for fetal long bone measurements. As the study demonstrates, the
new technique streamlines the process of reconstructing lower
limb long bone images and performing fetal biometry.

Multiple Structures
With the advances in ML, professionals were not satisfied by
focusing on a single anatomical structure alone and started
exploring measurements of multiple structures. Carneiro et al.
(38, 39) proposed a novel method for the rapid detection
and measurement of fetal anatomical structures. The system
was, on average, close to the accuracy of experts in terms
of the segmentation and obstetric measurements of HC, AC,

femur length, etc. The approach dealt with humerus length
and crown-rump length measurements for the first time.
Moreover, the framework was further optimized for an intelligent
application—that is, syngo Auto OB measurements algorithm—
and demonstrated acceptable performance when integrated with
the clinical workflow (40).

Intelligent Imaging
Accurate acquisition of fetal standard planes with key anatomical
structures is crucial for obstetric examination and diagnosis.
However, the standard plane acquisition is a labor-intensive task
and requires an operator equipped with a thorough knowledge of
fetal anatomy. Therefore, automatic methods are in high demand
to alleviate the workload and boost examination efficiency.

The fetal face is one of the key points of a prenatal US
scan, and conventional 2DUS is still the gold standard for the
examination. Automatic solutions (41, 42) for the recognition of
the fetal facial standard plane (FFSP) have been presented using
different models. They can classify input images into the axial
plane, coronal plane, sagittal plane, and non-FFSP. Lei et al. (41)
used manual annotated features from consecutive US images to
train their intelligent system. In the literature (42), method have
been proposed that learn feature representations from raw data
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TABLE 4 | Summary of studies about intelligent measurements of FL.

References Task Technologies Data used GA of data used Samples Results

Yaqub et al. (35) Segmentation RF 3D 13–25 weeks 51 Segmentation: precision 87.0%; recall

82.0%; Dice 0.83

Hur et al. (36) Reconstruction +

Measurements

3D 26–32 weeks 39 Measurement: successful rates for

femur, tibia and fibula length are 96.1,

80.7, and 76.9%

Zhang et al. (22) Segmentation +

Measurement

Supervised

texton + RF

2D 20, 21, 28, 34, 35 weeks 30 Measurement: accuracy 99.8%;

precision 77.6%; recall 95.2%;

specificity 99.8%; Dice 0.86

Luo et al. (37) Segmentation +

Measurement

Frangi filter 2D 18–27 weeks 70 Measurement: precision 57.5%; recall

85.3%; specificity 99.8%; Dice 0.73

FL, femur length; GA, gestational age; RF, random forests; 2D, two dimensional; 3D, three dimensional; Dice, a parameter describing the similarity between the performance of the

proposed method and the ground truth.

for recognition without any manually designed features via deep
convolutional neural network architectures. Representations
discovered by deep convolutional neural networks are more
robust and sophisticated than standard hand-crafted features,
facilitating better classified results.

Assessment of the fetal cerebellar volume is important
for evaluating fetal growth or diagnosing nervous system
deformities. However, the irregular shape of the cerebellum and
strong ultrasound image artifacts complicate the task without
manual intervention. AI in prenatal US examination has realized
the automatic localization (43), and segmentation (44) of the fetal
cerebellum in 3DUS with reasonable accuracy.

Owing to the development of computer technology, the
emergence of medical AI tools make it possible to automatically
detect the genital organ (45) and kidney (46) with an accuracy
of more than 80%. Moreover, the intelligent imaging of multiple
different fetal structures has also become a reality based on
CNNs. Chen et al. (47) presented a general framework for
the automatic identification of four fetal standard planes—
including the abdominal, face axial, and four-chamber view
standard plane—from US videos. Extensive experiments have
been conducted to corroborate the efficacy of the framework on
the standard plane detection problem. Baumgartner et al. (48)
proposed a novel method to automatically detect thirteen fetal
standard views including the brain, lips, kidneys, etc. Moreover,
it could provide the localization of the target structures via
a bounding box. Evidence in the experimental data suggested
that the proposed network could achieve excellent results for
real-time annotation of 2DUS frames. While Sridar et al. (49)
introduced and assessed a method to automatically classify
fourteen different fetal structures using 2DUS images. After
verification, there was good agreement between the ground
truth and the proposed method. The architecture was capable
of predicting images without US scanner overlays with a mean
accuracy of 92%. Although these studies focused only on
pregnant woman of 18–22 weeks GA, they initiated new ideas for
prenatal US studies.

Assisted Diagnosis
Diagnosis of fetal abnormalities in US is a highly subjective
process. Consequently, the research into computer-aided

diagnosis (CAD) tools will help doctors make more objective
and quantitative decisions. However, the ML of abnormal
cases is a complex study in itself and needs sufficient training
data—currently, there are but a few studies.

Central Nervous System Abnormalities of Fetus
Sahli et al. (50) proposed a learning framework for the automatic
diagnosis of microcephaly and dolichocephaly using intelligent
measurements of fetal head. Test results showed that this
method could detect and diagnose such abnormalities quickly
and accurately, but it focused only on size and shape, excluding
internal structures.

Based on previous experts’ research, Xie et al. (51)
added specific abnormal cases to the exploration of CAD.
The study included a total of 29 419 images from 12,780
pregnancies, containing cases of common central nervous
system abnormalities confirmed by follow-up care such as,
ventriculomegaly, microcephalus, holoprosencephaly, etc. In
addition to recognize and classify normal and abnormal US
images of the fetal brain, their method could also visualize
lesions and interpret results using heat maps. After testing, the
overall accuracy for classification reached 96.31%; the probability
of heat map location being 86.27%. This study confirmed the
feasibility of the CAD of encephalic abnormities. It also laid the
foundation for further study of the diagnosis and differential
diagnosis of fetal intracranial malformations. Xie et al. (52)
proposed a similar CAD approach for the differential diagnosis
of five common fetal brain abnormalities. The algorithms,
however, need further refinement for diagnosis assistance and the
reduction of false negatives.

Fetal Lung Maturation
Neonatal respiratory morbidity (NRM) is the leading cause of
mortality and morbidity associated with prematurity, and it
can be assessed through the fetal lung maturity (FLM) process.
Traditional clinical options for FLM estimation are either the
use of GA directly as a proxy FLM estimator or through
amniocentesis, an invasive laboratory test. In recent years, the
feasibility of evaluating the degree of fetal lung maturation from
US images has been preliminarily validated (53, 54). Moreover
specialists have made attempts to quantitatively analyze FLM by
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means ofML (55, 56). Such automated and non-invasivemethods
can predict NRM with a performance similar to that reported for
tests based on amniotic fluid analysis and much greater than that
of GA alone. The intelligent evaluation technique needs further
studying and is a promising technique to assist clinical diagnosis
in the future.

Placenta
US classification of placental maturity is a key part of placental
function evaluation. At present, determining the placenta stage
depends mainly on observation and the empirical analysis of
clinicians. The emergence of automatic detection provides an
alternative for the evaluation which would reduce the differences
in subjective evaluations improving and verifying the diagnoses.

With the development of computer techniques, some
intelligent grading methods have been developed (57, 58), but
analysis results are insufficiently good for practical application
owing to fewer discriminative features, sample methods for
classification, etc. The approach of Lin (59) included several
algorithms for extracting different characteristics and a process
for selecting multiple relevant characteristics. The performances
of different methods for feature extraction were compared in the
article and confirmed that their method outperformed previous
studies, providing more accurate staging results. Consequently,
it exhibited better clinical value. In other studies (60, 61), the
use of dense sampling contributes to better discriminability
as more placental image samples are captured. They share
the same classifier and descriptor but have different encoding
methods. And Lei et al. (61) achieved obvious superiority in
encoding accuracy. Intelligent evaluation methods could be
further optimized by adding more advanced algorithms or
synthesizing other information such as blood flow.

AI IN FETAL ECHOCARDIOGRAPHY

Congenital heart disease (CHD) is one of the most common
birth defects. Fetal echocardiography, as the preferred choice
for diagnostic screening and prognosis evaluation, is getting
increased attention. However, this examination is resource
limited, and the diagnostic accuracy depends on the skills of
the screening operators. According to a multicenter study done
in China, despite the specificity of fetal echocardiography being
99.8%, the sensitivity was just 33.9% (62). AI research is expected
to improve the detection rate of fetal heart abnormalities with US.

There have been intelligent studies that focused on the
heart rate (63), heart segmentation (64, 65), and congenital
heart disease diagnosis (66) of fetus. Yeo et al. have been
studying fetal intelligent navigation echocardiography (FINE)
for many years. FINE is a novel method for visualization of
the standard fetal echocardiography views and application of
“intelligent navigation” technology (67, 68). It can obtain nine
standard fetal echocardiography views—that is, four chamber,
aortic arch, three vessels and trachea, etc—in normal hearts (67)
and display abnormal anatomy and doppler flow characteristics
(69), and detect complex CHD (70–72). Other researchers have
also performed several studies related to FINE (73–77). The
results have shown their potential value in fetal heart evaluations
and usefulness in the congenital defect screening process, such

as double-outlet right ventricle and the D-transposition of large
arteries. Moreover, FINE has been integrated into the commercial
application 5D Heart (78, 79), which is considered to be a
promising tool for cardiac screening and diagnostics in a clinical
setting. The exploration of FINE aims to simplify the examination
of fetal hearts, reduce operator dependency, and improve the
index of suspicion of CHD.

DISCUSSION

AI is expected to change medical practices in ways we
remain unaware of. The latest ultrasound machines are already
equipped with intelligent applications. It can realize intelligent
measurement based on the standard section obtained by
the sonographers. Some ultrasound instruments can realize
intelligent imaging of the fetal face. Intelligentized antenatal
US could improve work efficiency, provide more consistent
and quantitative results, contribute to effective malformation
diagnoses. Moreover, AI-based prenatal US promises to improve
the quality control of clinical work and the imbalance of medical
resources, shortening the training cycle of young doctors.

While CAD in prenatal US is just beginning, the irregular
movement of a fetus and the complexity of fetal malformations
does pose a significant challenge. To date, most research has
been conducted with 2DUS, focused primarily on algorithmic
performance rather than clinical utility, with fewer studies
exploring intelligent imaging and diagnosis compared to
biological measurements.

In terms of diagnosis, comprehensivemodels need to integrate
diagnostic imaging and clinical data. However, in reality, not all
cases are easy to diagnosis with only one clear malformation
and some malformations may be too subtle. Single abnormal
images are too limited for recognition and diagnosis, with
data for training being unable to cover all fetus abnormities.
Moreover, data used usually come from the same centers, which
is insufficient for better robustness making experimental data too
limited for generalized clinical applications.

It should be clear that machine learning is a powerful
tool for clinical assistance, but it is not realistic to conduct
independent diagnosis without the supervision of sonographers.
At the same time, because the acquisition of raw data still needs
to rely on the sonographers, the sonographer’s mistake will also
affect the AI diagnosis results. In addition, how to perform
intelligent diagnosis integrated with traditional sonographic data
is another question that needs to be answered. Furthermore,
when designing or applying an algorithm, the false positive or
false negative rates need to be considered based on real-world
requirements. Finally, the ethical issues related to AI products
also need to be considered. All of the above need to be discussed
seriously by experts in various fields to pave the way to better
health care.

CONCLUSION

Multidisciplinary integration is a general trend. There are
high expectations of AI applications for innovative healthcare
solutions. In this article, we present this emerging technology in
the context of US in obstetrics. Despite the advances, there are
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still many study gaps in this field. AI will continue to be used to
optimize prenatal US scans and is expected to provide superior
antenatal service in the near future.
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