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Immunometabolism explores how the intracellular metabolic pathways in immune cells

can regulate their function under different micro-environmental and (patho-)-physiological

conditions (Pearce, 2010; Buck et al., 2015; O’Neill and Pearce, 2016). In the last decade

great advances have been made in studying and manipulating metabolic programs in

immune cells. Immunometabolism has primarily focused on glycolysis, the TCA cycle and

oxidative phosphorylation (OXPHOS) as well as free fatty acid synthesis and oxidation.

These pathways are important for providing the energy needs of cell growth, membrane

rigidity, cytokine production and proliferation. In this review, we will however, highlight

the specific role of iron metabolism at the cellular and organismal level, as well as how

the bioavailability of this metal orchestrates complex metabolic programs in immune

cell homeostasis and inflammation. We will also discuss how dysregulation of iron

metabolism contributes to alterations in the immune system and how these novel

insights into iron regulation can be targeted to metabolically manipulate immune cell

function under pathophysiological conditions, providing new therapeutic opportunities

for autoimmunity and cancer.
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INTRODUCTION

Iron is one of the most abundant elements on Earth and essential to almost all organisms.
Iron exists in a wide range of oxidation states, −2 to +7. Chemically, the most common and
biologically relevant oxidation states of iron are +2 and +3, ferrous (Fe2+) and ferric (Fe3+)
iron. Ferrous (Fe2+) iron is more soluble and bioavailable than its ferric (Fe3+) form and that the
interchangeability of these two ionic forms of iron via oxidation/reduction are essential for the
function of many cellular proteins. Levels of iron in the body are strictly controlled through finely
tuned complex mechanisms, to prevent the cytotoxicity that is induced by accumulation of this
metal and to allow physiologically tolerable iron levels to serve as a critical catalytic component of
many proteins and enzymes, called metalloproteins.

Metalloproteins can directly bind iron or use iron-containing complexes such as heme or iron-
sulfur (Fe-S) clusters. Such proteins have diverse and essential processes within the cell, including
oxygen carrying (hemoglobin), oxygen storage (myoglobin), energy production (cytochrome-C),
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cellular metabolism (amino acid oxidases, fatty acid desaturases),
detoxification (cytochrome P450, catalase), and host defense
(myeloperoxidase, nitric oxide synthase, IDO, NAPH oxidase)
(Muckenthaler et al., 2017). Although the chemistry of iron
will not be discussed here in detail, Fenton/Haber-Weiss
chemistry is a very important reaction with widespread effects
on biological systems under normal and pathophysiological
conditions: ferrous (Fe2+) iron reacts with hydrogen peroxide to
form the hydroxyl ion (OH−), the hydroxyl radical (OH•) and
ferric (Fe3+) iron (Koskenkorva-Frank et al., 2013). The OH•

radical is a non-selective, highly toxic oxidant. As mitochondria
produce ATP by oxidative phosphorylation (OXPHOS), reactive
oxygen species (ROS) by-products such as superoxide are
generated from the electron transport chain (ETC). Superoxide
radicals can reduce and liberate Fe3+ from ferritin or liberate
Fe2+ from Fe-S clusters (see below). Biologically-available iron
not sequestered is thus a dangerous source of damaging
radicals (Breuer et al., 2008). It is important to note that
not all free radicals are detrimental and not all antioxidants
are beneficial. Normal physiology is a balance between the
two: antioxidants maintain levels of ROS that permit them to
perform useful biological functions, such as neutrophil-mediated
killing of phagocytosed bacteria or enhanced T cell proliferation
after TCR stimulation, while minimizing by-stander damage.
However, under pathophysiological conditions, such as enhanced
mitochondrial stress, this balance gets perturbed to the detriment
of the organism.

Iron is essential for many physiological processes in the body
including erythropoiesis, immune function and host defense,
as well as essential cellular activities such as DNA replication
and repair, mitochondrial function including OXPHOS and
enzymatic reactions which require iron as a cofactor. Extensive
research by many groups has unveiled the regulatory network
governing iron homeostasis in the body and inside the cell,
as well as the links between disturbances of iron homeostasis
and disease. Iron deficiency is the most common pathology of
iron homeostasis, eventually resulting in iron deficiency anemia,
the most frequent anemia worldwide (Camaschella, 2015).
The second most frequent anemia, anemia of inflammation
(also called anemia of chronic disease), largely results from
inflammation-driven retention of iron in certain immune
cells, resulting in iron-limited erythropoiesis (Weiss et al.,
2019). This latter pathology reflects the complex regulatory
interactions between iron and the immune system, which
emerged evolutionary from a strategy of the organism to
withhold nutrient iron from invading pathogens, a defense
mechanism known as nutritional immunity. Accordingly, iron
trafficking is controlled by cytokines and acute phase proteins,
whereas the metal itself promotes lymphocyte and macrophage
differentiation, anti-microbial immune effector function, and
immune cell metabolism, as we will discuss later (Ganz and
Nemeth, 2015; Soares and Weiss, 2015). Thus, imbalances in
iron homeostasis are prevalent in infections, cancer as well
as autoimmunity, and its pathophysiological or therapeutic
modulation impacts on the outcome of such diseases. Evolution
reveals its mastery in the way the body and immune cells strike a
balance between iron supply and demand with pathways tightly

regulating iron levels extra- and intra-cellularly, from its uptake,
use, storage, and export, collectively referred to as the iron cycle
(Figure 1, Table 1). In the next sections we will describe the
various stages of the iron cycle and give an overview of how iron
levels are monitored and regulated inside the cell. This cellular
regulation of iron is applicable to practically every cell in the
body, including all immune cells.

IRON CYCLE—DIETARY UPTAKE OF IRON

We absorb 1–2mg of iron daily through the duodenal intestinal
epithelium. Intestinal enterocytes are responsible for dietary
iron uptake in the form of heme iron and ionic iron. When
systemic iron levels in the blood stream are low, expression of
DMT1 (divalent metal transporter 1, also called NRAMP2 as
well as SLC11A2) and DcytB (duodenal membrane associated
cytochrome-b) ferrireductase increases on the surface of
intestinal enterocytes on the luminal side enabling the reduction
of Fe3+ into its ferrous form (Fe2+) which can then be taken up
by DMT1 (McKie et al., 2001). It has also been demonstrated
that heme-conjugated iron is absorbed by enterocytes in the
duodenum although this heme importer has not yet been
characterized (Gräsbeck et al., 1979). Once internalized heme is
degraded by HO-1 and HO-2 (heme-oxygenase 1/2) to produce
free Fe2+ (Maines, 1988). Inside the enterocyte, Fe2+ iron is
next chaperoned to the basolateral surface of the cell by PCBP2
(poly-(rC)-binding protein 2) where the iron is then released
into the circulation for systemic use (Yanatori et al., 2016). This
latter step is controlled by the iron exporter, ferroportin (FPN,
also called SLC40A1) followed by extracellular oxidation to ferric
iron by the copper enzyme hephaestin (HEPH) (Vulpe et al.,
1999; Muckenthaler et al., 2017). Ferric iron in the circulation is
then bound by transferrin (Tf) and carried to cells and tissues
(Muckenthaler et al., 2017). However, the major source of iron
for systemic needs, such as red blood cell (RBC) maturation,
are macrophages, which ingest senescent erythrocytes as well
as haptoglobin-bound free hemoglobin and heme/Fe complexes
released from lysed RBCs (Burger et al., 2012; Chow et al.,
2013). The iron taken up by macrophages is re-utilized by HO-1
and then shuttled to the circulation via FPN. This macrophage-
dependent process accounts for ∼90–95% of the daily needs
of iron, giving a clear example of the close link between iron
homeostasis and immunity (Crichton and Ward, 1998).

IRON CYCLE—CELLULAR UPTAKE OF
IRON

Transferrin (Tf) is a glycoprotein containing two high affinity
binding sites for ferric iron (Fe3+) (Aisen et al., 1978), which
captures Fe3+ in the circulation (Figure 1). This diferric Tf
conjugate (Tf-Fe3+) not only prevents free, non-transferrin
bound iron (NTBI), from engaging in Fenton chemistry to
produce dangerous hydroxyl radicals, but also deprives invading
pathogens of free iron to block their expansion and proliferation
(Barber and Elde, 2014). Tf-Fe3+ binds to the high-affinity
transferrin receptor (TFR1, CD71) on the surface of cells, and
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FIGURE 1 | Iron metabolism in the cell. Intracellular iron levels are strictly controlled as too little or too much can be detrimental to the health of the cell. Therefore,

(1)-iron uptake, (2)-utilization, (3)-storage and (4)-export need to be managed in a coordinated manner, as well as the conversion between the oxidation states of iron

(Fe2+ and Fe3+) in the cell. (1) Iron-bound transferrin (TF-Fe3+) and NTBI (non-transferrin-bound iron) are taken up into the cell by the iron importers DMT1 and ZIP14.

STEAP3 is a ferrireductase which reduces Fe3+ to Fe2+, which can then be imported. (2) Once inside the cell, the bioavailable and more soluble Fe2+ is used for

various biological processes– DNA replication, ROS production via Fenton/Haber-Weiss (F/H-W) chemistry, mitochondrial bioenergetics, Fe-S and heme biosynthesis,

as well as a plethora of proteins which utilize the metal to carry out their functions. (3) Excess Fe2+ iron is dangerous due to its role in ROS production. Therefore, it

needs to be stored but, at the same time, be readily available for use. This is achieved by a particular arrangement of ferritin proteins designated the “ferritin cage”

which stores the more inert, insoluble Fe3+ form of iron. When intracellular levels are low, this ferritin cage is signaled for destruction by NCOA4 thus releasing the

stored iron. (4) If intracellular iron levels are saturated, then the iron must be exported out of the cell. This is achieved by the iron exporter ferroportin (FPN). Once

outside the cell the Fe2+ iron is oxidized to Fe3+ (via CP, HEPH, HEPHL). (5) Finally, Fe3+ iron is then bound to transferrin (Tf-Fe3+) and enters the circulation to begin

the cycle again. Notably, hepcidin is an iron-controlling hormone produced by the liver. When systemic iron levels are high in the blood, hepcidin is produced and leads

to the degradation of FPN on cells thus preventing cellular release of iron into the blood. Conversely, when iron blood levels are low, hepcidin expression is reduced.

this complex is subsequently endocytosed (Harding et al., 1983).
Within the acidic environment of the early endosome, the ferric
iron is released from the Tf-TFR1 complex which itself is recycled
back to the membrane where TFR1 is reinserted and Tf is
released back to the circulation. The freed ferric iron is then
reduced to its bio-active ferrous form, Fe2+ by the ferrireductase
STEAP3 (six-transmembrane epithelial antigen of prostate 3) and
shuttled into the cytosol from the endosome by DMT1 (Fleming
et al., 1997; Gunshin et al., 1997; Ohgami et al., 2005; Figure 1).
The importance of iron uptake into cells is clearly evident
from genetic mouse studies where ablation of the Tfr1 gene
results in detrimental pathologies including cardiomyopathy,
muscle atrophy, dopaminergic neurodegeneration, and severe
anemia due to reduced erythrocyte development (Levy et al.,
1999; Barrientos et al., 2015; Xu et al., 2015; Matak et al.,

2016). Of note, humans mutations in the TFR1 gene have
been associated with severe combined immunodeficiency (Jabara
et al., 2015). These reports demonstrate how certain cell types
rely more heavily on TFR1-mediated iron uptake while other
cell types have adapted other mechanisms to import iron into
their cells. Notably, as we discuss later, iron not readily used
for metabolic purposes is stored by the protein ferritin and
ferritin-conjugated iron released from various cells is taken up
by Scara5 (Scavenger receptor class A member 5) or TIM-
2 (T Cell Immunoglobulin And Mucin Domain Containing
2) receptors (Chen et al., 2005). Furthermore, free heme and
hemoglobin released during red blood cell (RBC) lysis are bound
in the circulation by hemopexin and haptoglobin, respectively,
and these iron-containing complexes are then taken up by cells
expressing the CD91 and CD163 receptors (Nairz et al., 2017). In
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TABLE 1 | The major players of the Iron Cycle.

Process Protein Location Function

Iron intestinal uptake DcytB

DMT1

Gut lumen > enterocyte

Gut lumen > enterocyte

Ferrireductase (reduces Fe3+ to Fe2+)

iron transporter of Fe2+

Unidentified

HO1

HO2

Gut lumen > enterocyte

inside enterocyte

Heme-conjugated iron

Breaks down the heme to produce free Fe2+

PCBP2 Inside enterocyte Chaperones Fe2+ to basolateral side of enterocyte

Release of dietary iron to

circulation

FPN

Hephaestin

Enterocyte > circulation Fe2+ exporter from enterocyte

Ferroxidase (oxidizes Fe2+ to Fe3+)

In the circulation TF

NTBI

In the blood

In the blood

TF binds and transports Fe3+ (TF-Fe3+ complex)

Non-transferrin bound iron

Cellular iron uptake TFR1

Low pH

STEAP3

DMT1

Cell surface

Endosome

Endosome

Endosome > cytosol

Binds and endocytoses TF-Fe3+

Release of Fe3+ from TF-Fe3+ (TFR1 recycled to surface)

Ferrireductase (reduces Fe3+ to Fe2+)

Iron transporter of Fe2+

ZIP14

DMT1

Cell surface > cytosol

Cell surface > cytosol

Binds and uptakes NTBI into cell

Intracellular iron

storage/release

FTH1

FTL1

Cytosol/mitochondria Components of “ferritin cage”

NCOA4 Cytosol Targets ferritin for autosomal degradation to release iron

Iron cellular export FPN Cytosol > circulation Fe2+ exporter from the cell

CP

HEPH

HEPHL1

Outer cell surface Ferroxidase (oxidizes Fe2+ to Fe3+)

This table depicts the various stages of the iron cycle, the proteins involved at each stage as well as their function, and the location-of-action of these proteins.

the circulation there is also non-transferrin bound iron (NTBI)
which can be taken up into the cell by ZIP- (ZRT/IRT-like
protein)-14 or DMT1 (Ludwiczek et al., 2003; Liuzzi et al.,
2006; Pinilla-Tenas et al., 2011; Figure 1); the ferrireductase
activity of the prion protein (PRNP) as well as cellular reductants
released by the cell (such as ascorbate) reduces Fe3+ iron to
Fe2+ iron to facilitate this transport (Lane and Lawen, 2008;
Tripathi et al., 2015). After uptake and reduction, ferrous Fe2+

iron enters the cytosol where it is collectively referred to as the
“labile iron pool (LIP).” It is from this Fe2+-laden pool, that
iron homeostasis is strictly regulated according to the needs
of the cell, whether iron is utilized, stored for future use or
exported out of the cell to prevent iron overload and oxidative
damage (Figure 1).

IRON CYCLE—MITOCHONDRIAL
UTILIZATION OF IRON

Most of the LIP is trafficked to mitochondria, the energy
producing batteries of the cell. The mitoferrin transporters
(Mitoferrin1 and Mitoferrin2) are responsible for the
mitochondrial import of iron (Shaw et al., 2006; Troadec
et al., 2011; Chung et al., 2014). Once inside the organelle the
iron is incorporated into heme and iron-sulfur (Fe-S) clusters
by frataxin and GLRX5 (Glutaredoxin-related protein 5) (Lill,
2009; Braymer and Lill, 2017). Frataxin has been proposed to
provide the iron while GLRX5 acts not only as a scaffolding
protein but may also facilitate the transfer of Fe-S clusters to
target proteins (Yoon and Cowan, 2003; Ye et al., 2010). Heme is
essentially a conjugate complex of iron and porphyrin IX. These
heme complexes are then shuttled out of the mitochondria to

the cytosol by the Feline Leukemia Virus Subgroup Receptor 1
(FLVCR1) (Tailor et al., 1999) where hemoglobin in erythrocytes,
or other proteins known as hemoproteins, incorporate the heme
complex to confer functionality; the heme iron component
acts as a platform to receive or provide electrons during redox
chemistry while for transportation of oxygen in hemoglobin or
myoglobin, the gas binds to the heme iron (Milani et al., 2005).

Mitochondrial iron is also required for the synthesis of Fe-
S clusters and indeed their biogenesis is thought to be one

of the most important functions of the mitochondria—even

though some Fe-S assembly can occur in the cytosol and nucleus

(Tong, 2000; Tong et al., 2003; Tong and Rouault, 2006). Fe-S
clusters are ubiquitous, inorganic co-factors that contribute to

a wide range of cellular pathways from genome integrity and

gene regulation to energy production and immune responses,
and are required for numerous biological functions, particularly
enzymatic activity (Beinert, 2000; Johnson et al., 2005; Lee et al.,
2009; Fuss et al., 2015). Their assembly is highly conserved
throughout evolution from yeast and bacteria to human. The
sulfur is provided by NFS1, a cysteine desulfurase which removes
a sulfur moiety from L-cysteine (Biederbick et al., 2006). The
Fe source of the cluster is not yet known, although frataxin
(FXN) has been identified as an important iron regulator of
Fe-S biogenesis (Colin et al., 2013). Iron–sulfur clusters are
found in a variety of metalloproteins, such as the ferredoxins,
NADH dehydrogenase, and hydrogenases. Fe-S clusters are also
involved in electron transfer, made possible because iron can exist
stably in either the +2 (ferrous) or +3 (ferric) oxidation states.
Complexes I, II, and III of the electron transfer complex (ETC)
of OXPHOS in mitochondria require numerous Fe-S clusters
to function efficiently (Figure 1). It is therefore not surprising
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that mutations or dysfunctions of Fe-S cluster biogenesis have
been linked to multiple inherited disorders such as Friedreich’s
ataxia (caused by a disruptive guanine-adenine-adenine repeat
in the first intron of FXN) (Campuzano et al., 1996), infantile
complex II/III deficiency syndrome (a lethal autosomal recessive
disease caused by a point mutation in NFS1) (Farhan et al., 2014)
and multiple mitochondrial dysfunctions syndromes (MMDS1-
3, due to mutations in genes involved in Fe-S biogenesis
and characterized by severely reduced mitochondrial function)
(Wachnowsky et al., 2017). All these pathological conditions
affect multiple organs including the nervous system, muscles
and the immune system highlighting the importance of iron
regulation in mitochondria. Indeed, a recent article shows the
evolutionary conservation for the need of dietary iron for proper
mitochondrial function. Caenorhabditis elegans fed on a mutant
strain of Escherichia coli, which exhibits reduced iron uptake,
lead to diminished iron uptake by the worms resulting in
significantly impaired mitochondrial ETC function, enhanced
ROS production and developmental defects (Zhang et al., 2019).

IRON CYCLE—INTRACELLULAR
STORAGE OF IRON

Iron from the LIP which is not used for metabolic processes
is stored in the cytosol in the “ferritin nano-cage,” a cytosolic
heteropolymer composed of 24 subunits of heavy (FTH1) and
light (FTL1) ferritin chains (Lawson et al., 1991; Figure 1). The
multi-subunit caged ferritin can withstand high temperatures
and a wide range of pH levels for limited periods as is the
necessity to prevent free Fe2+ iron to engage in uncontrolled
ROS production. The ferritin nanocage stores iron in an insoluble
non-toxic state (Fe3+) in cells while keeping it bioavailable by
converting it to its soluble form (Fe2+) when required. The iron
in the central cavity is maintained as small crystalline particles
in its ferric Fe3+ form due to the ferroxidase activity of FTH1
(Hentze et al., 1986; Yang and Chasteen, 1999). There also exists
a mitochondrial form of ferritin (Levi et al., 2001) which may
both protect mitochondria against iron-mediated toxicity and
provide a quick and efficient source of iron in this organelle rather
than relying solely on the cytosolic ferritin. When intracellular
levels of iron are depleted, the ferritin-sequestered iron can be
made available through ferritin degradation. Lows levels of iron
signal to NCOA4 (nuclear receptor coactivator 4) to target the
ferritin complex for autolysosome degradation, a process termed
“ferritinophagy” (Santana-Codina and Mancias, 2018).

NCOA4 is a key regulator of ferritinophagy and intracellular
iron levels—NCOA4-null mice are unable to undergo
ferritinophagy and this increased retention of iron within
ferritin complexes results in reduced iron export from cells
and ultimately in iron-deficient anemia (Bellelli et al., 2014,
2016). Conversely, in iron-loaded cells the turnover of NCOA4
is greatly enhanced to block ferritin degradation and thus
increase iron storage (Mancias et al., 2014, 2015; Bellelli et al.,
2016; Santana-Codina and Mancias, 2018). Ferritin levels are
also regulated by inflammation and oxidative stress. NF-kB,
an important integrator transcription factor downstream
from multiple inflammatory signals, as well as NRF2 (nuclear

factor erythroid 2-related factor-2), the main stress-responsive
transcription factor, both increase ferritin transcription (Miller
et al., 1991; Pham et al., 2004). Furthermore, proinflammatory
cytokines, such as interleukin- (IL)-6 and IL-1, stimulate ferritin
translation (Rogers, 1996). These regulatory pathways ensure
that any free Fe2+ iron is stored away, inaccessible for bacteria or
other invading pathogens as well as from producing dangerous
radicals through Fenton/Haber-Weiss chemistry.

IRON CYCLE—IRON EXPORT FROM THE
CELL

When iron levels within a cell are at levels where it is being
effectively used and stored, then any excess iron will be exported
from the cell to prevent intracellular iron overload. The key iron
exporter is ferroportin (FPN, also called SLC40A1) which exports
Fe2+ iron (McKie et al., 2000). At the outer cell membrane iron
is oxidized to its ferric (Fe3+) form by three iron oxidases each
displaying distinct expression patterns—ceruloplasmin (CP)
(Miller and Cohen, 2001), hephaestin (HEPH) (Vulpe et al.,
1999), and zyklopen (HEPHL1) (Chen et al., 2010; Figure 1).
The importance of these oxidases for successful iron export into
the circulation has been demonstrated with gene-ablationmurine
models as well as identification of patients deficient in CP and
HEPH, presenting with iron-deficient anemia (Yoshida et al.,
1995; Hahn et al., 2004). Although FPN is ubiquitously expressed
by most cells in the body, it is abundantly expressed by those cell
types which contribute extensively to plasma iron levels; these
cells include intestinal enterocytes (to traffic dietary iron into
the circulation), macrophages (to re-circulate iron originating
from phagocytosis of damaged or aged red blood cells) as well
as hepatocytes.

The major need of iron in the body is for erythropoiesis,
the production of oxygen-transporting RBCs; however, iron
is also needed in muscle cells where it is incorporated into
myoglobin. As there exists no effective excretion mechanism
for iron surplus, iron is stored in parenchymal organs, mainly
the liver. Hepatic iron deposits can range from 300mg
to 1 g, but can reach up to 25–30 g in patients suffering
from genetic iron overload, a condition called hereditary
hemochromatosis (HH) (Janssen and Swinkels, 2009; Anderson
and Shah, 2013; Procaccini and Kowdley, 2017). Different forms
of hemochromatosis have been described which all have a
reduced production of the hormone, hepcidin (Pietrangelo, 2007;
Weiss, 2010; Figure 1). The expression of hepcidin in the liver
is transcriptionally controlled by bone morphogenic proteins
(BMP)- SMAD mediated signaling cascades which are regulated
by different factors such as iron deficiency, iron overload,
hypoxia, inflammation, infection, and hormones (Girelli et al.,
2016; Silvestri et al., 2019). Hepcidin then enters the circulation
and binds to the extracellular part of FPN targeting it for
degradation, thus preventing iron from being exported into the
circulation and instead being sequestered in the cell (Nemeth
et al., 2004). This results in an overall reduction of iron in
the bloodstream. Hepcidin overexpression leads to low plasma
iron levels (hypoferremia) and anemia (Weinstein et al., 2002;
Roy et al., 2007; Theurl et al., 2009; Altamura et al., 2014).
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Conversely, individuals with insufficient hepcidin production,
suffer from iron-overload in the blood, and hepatitis (Pietrangelo,
2004). The latter is due to the fact, that several co-factors
expressed on the hepatocyte cell membrane such as HFE,
hemojuvelin (HJV) or TfR2 impact on hepcidin expression via
the BMP-SMAD pathway (Babitt et al., 2006). Mutations in
these genes lead to impaired hepcidin formation and ultimately
to increased iron absorption which is then stored in the
liver causing organ damage over time. Hepcidin production
is also counter-regulated by developing red blood cells in the
marrow. Erythroferrone (ERFE) is produced by erythropoietin
(EPO)-stimulation of erythroid progenitors and blocks hepcidin
synthesis in the hepatocytes (Kautz et al., 2014). Indeed, EPO
itself can reduce hepcidin production via inhibition of the BMP-
SMAD pathway (Gammella et al., 2015) and several proteins
induced by hypoxia such as hypoxia inducible factor-1 (HIF-1)
or platelet derived growth factor BB (PDGF-BB) reduce hepcidin
expression, thereby enhancing iron delivery for erythropoiesis
(Peyssonnaux et al., 2007; Sonnweber et al., 2014).

Similar to systemic iron levels in the bloodstream, the
intracellular iron levels are tightly controlled. Imbalanced iron
levels in the cell can lead to dysfunctional mitochondria,
increased oxidative damage and increased toxicity (Richardson
et al., 2010; Volani et al., 2017). It is the job of the iron-regulating
proteins (IRPs), IRP1 and IRP2, in the cell to react to cytosolic
iron concentrations by controlling the translation of proteins
involved in iron uptake, use, storage and export. This mechanism
is important not only for normal iron homeostasis but also as a
host defense in macrophages infected with intracellular bacteria
such as Salmonella (Nairz et al., 2015). IRPs accomplish this by
binding to specific, non-coding sequences called iron-responsive
elements (IREs) in the mRNA of target genes (Recalcati et al.,
2010b; Figure 2). IREs are 30-nucleotide long RNA motifs that
form special stem-loop structures. IREs occur in either the 3′-
UTR (untranslated region) or 5′-UTR of a respective mRNA
(Figure 2). IRP1 in its non-IRE binding conformation acts as
a cytoplasmic aconitase which converts citrate to isocitrate in
the cytoplasm, allowing the cell to balance the amount of
NADPH (generated from isocitrate by isocitrate dehydrogenase),
with the amount of acetyl-CoA (generated from citrate by
citrate lyase) (Wilkinson and Pantopoulos, 2014). Fatty acid
synthesis requires both these products, NADPH and acetyl-
CoA, as do other metabolic processes. However, IRP1 only has
aconitase catalytic activity and performs these functions when
intracellular iron concentrations are sufficient in the cell. When
iron concentrations are low, IRP1 loses it Fe-S cluster and,
therefore, its catalytic abilities but instead can now bind to IREs
in the 5′ UTR of mRNAs such as ferritin-H and -L subunits
as well as the rate-limiting enzyme of heme biogenesis, ALAS
(aminolevulinic acid synthase) which results in inhibition of
their translation and thus reduced storage and utilization of the
metal (Figure 2). However, IRP1 binding to the 3′ UTR increases
the stability of the respective target mRNAs such as TFR and
DMT1, thereby promoting their expression and subsequently
enhancing iron uptake into the cell to replenish intracellular
iron levels. When iron levels normalize again, IRP1 regains its
Fe-S cluster and aconitase activity. This results in increased

ferritin translation and decreased TFR expression, resulting in
reduced Fe uptake (Li et al., 2004; Rouault, 2006; Leipuviene
and Theil, 2007; Sanchez et al., 2011; Figure 2). This clever
regulatory mechanism of IRP1 also links iron levels intimately
to intracellular metabolic programs via its aconitase activity and
levels of the key metabolites, NADPH and acetyl-CoA.

IRP2 is similar to IRP1 but does not have aconitase activity
and is therefore regulated by a different mechanism. Under
iron-loaded conditions, IRP2 interacts with FBXL5 (F-box
and leucine-rich repeat protein 5) which promotes IRP2
ubiquitination via the SKP1-CUL1-RBX1 E3 ubiquitin ligase
complex and subsequent degradation (Salahudeen et al.,
2009; Vashisht et al., 2009). However, when iron levels are
low, FBXL5 is itself degraded. This is due to a Fe-binding
N-terminal hemerythrin-like (Hr) iron-sensing domain in
FBXL5. The Hr domain undergoes a conformational change
when iron is not present—this structural change leads to
FBXL5 polyubiquitination and degradation resulting in IRP2
accumulation (Thompson et al., 2012). FBXL5 stability is
also affected by oxygen levels. Under low oxygen hypoxic
conditions, an allosteric-induced stabilizing interaction between
FBXL5 and the cytoplasmic Fe-S cluster biogenesis complex
CIA is disrupted leading to enhanced FBXL5 instability
and increased IRP2 levels, highlighting again the extensive
crosstalk between iron regulation and other important processes
such as oxygen sensing (Mayank et al., 2019). Indeed, IRP2
deficiency switches cellular metabolic pathways from oxidative
phosphorylation (OXPHOS) to aerobic glycolysis (Li et al.,
2019) through induction of hypoxia-inducible factors (HIF)-1α
and−2α which enhances glycolytic pathway proteins and, at
the same time, blocks mitochondrial Fe-S cluster biogenesis
and OXPHOS. This is further supported by the fact that iron
supplementation to cells, or dietary iron overload in mice,
affects citric acid cycle activity by modulating mitochondrial
aconitase translation (Kim et al., 1996), which also bears an IRE
within its 5′ UTR, and further highlights the interconnected
nature of the cellular metabolome, especially mitochondrial
function, oxidative phosphorylation, and cellular iron
consumption (Oexle et al., 1999; Volani et al., 2018).

The iron cycle is present in almost all cells of the
body, and so the regulatory networks described above
are also essential to the cells of the immune system. The
physiological importance of iron regulation is seen when
disturbances of iron metabolism affect immunity and,
conversely, how activation of the immune system lead to
alterations in iron balance. Both iron deficiency and iron
excess can influence both the innate and adaptive arms of the
immune system.

IMMUNE PATHOLOGIES ASSOCIATED
WITH IRON DYSREGULATION

Invading pathogens thrive on free iron in the bloodstream to
proliferate and advance their attack (Cassat and Skaar, 2013;
Figure 3). Hepcidin is an important gatekeeper which promotes
intracellular iron retention thus restricting its availability for
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FIGURE 2 | Regulation of iron metabolism by IRP1. When cellular iron levels are low, Fe-S biogenesis in the mitochondria is reduced and IRP1 loses its Fe-S cluster

component. This allows IRP1 to now bind to the IRE sequence in target mRNAs. IRP1 binds to the IREs at either the 3′ (for example transferrin mRNA) or 5′ (for

example ferroportin mRNA) untranslated region (UTR) of the targeted mRNA. Binding to the 5′ UTR blocks translation while binding to the 3′ UTR stabilizes the mRNA

against endonuclease cleavage. Thus, when iron levels are low (left panel), transferrin protein is enhanced while ferroportin protein is reduced resulting in increased iron

import and reduced export, to ultimately increase intracellular iron levels. When iron levels are high (right panel), this leads to reduced iron uptake and increased export.

pathogens in the circulation. However, iron trafficking during
infections is differently regulated, depending on the nature and
cellular localization, intra- vs. extra-cellular, of the pathogen
(Drakesmith and Prentice, 2012; Soares and Weiss, 2015). The
importance of “nutritional immunity” as it pertains to iron
is exemplified by the increased susceptibility to infection of
individuals with iron overload due to thalassemia or primary
hemochromatosis, two common genetic diseases in humans
(Nairz et al., 2014; Spottiswoode et al., 2014; Arezes et al., 2015).
On the other hand, mild iron deficiency is protective against
malaria-causing Plasmodium falciparum infection (Mabeza et al.,
1999; Gwamaka et al., 2012).

Certain intracellular microbes have developed specialized
techniques to hijack immune cells’ iron withholding network
to enhance their own survival by acquiring the metal from
the environment. For example, Mycobacterium tuberculosis and

Salmonella enterica reduce FPN expression and iron export
allowing more intracellular iron for the bacteria to thrive
(Leon-Sicairos et al., 2015). Neisseria gonorrhoeae expresses
proteins on their surface which recognize human transferrin-
Fe (Tf-Fe3+) complexes in the bloodstream leading to iron
uptake and transport into the bacterial cytoplasm (Ratledge and
Dover, 2000). Vibrio cholerae, a gram-negative bacterium, is
classified as “siderophilic” because its pathogenicity is enhanced
by excess iron. Such bacteria can acquire iron directly from
Tf-Fe3+ complexes in the bloodstream. In healthy individuals
Tf-Fe3+ concentrations are in the range of 20% but under
pathological conditions, as in the case of individuals with HH,
it can reach 100% for which V. cholerae shows enhanced
pathogenicity. A further example is that of Vibrio vulnificus
which causes sepsis with high mortality rates in individuals
with HH and other iron-overloading conditions while healthy
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FIGURE 3 | Essential role of iron for various cell types. Iron is needed by many different cell types to perform very distinct functions from oxygen carrying abilities of

red blood cells (RBCs) to oxygen storage in muscle cells. Moreover, iron dysregulation has been observed in the pathogenesis of many diseases such as the

neurodegenerative diseases Alzheimer’s and Parkinson’s. Importantly various immune cells regulate iron metabolism to induce their various effector functions. Notably,

as iron is so essential for cell division, one of the earliest tasks of invading pathogens is to capture host iron in the circulation to aid their own growth and expansion.

Therefore, restricting free iron is a first line of defense against invading pathogens.

individuals are relatively unaffected (Horseman and Surani,
2011). Many bacteria also employ high-affinity iron acquisition
pathways to sequester host iron (Skaar and Raffatellu, 2015).
Siderophores are low molecular weight iron-binding complexes
that are secreted by bacteria to compete with transferrin for
iron sequestration (Williams, 1988). However, such pathogenic
strategies can be counteracted by the host immune system. For
example, lipocalin-2 or neutrophil gelatinase-associated lipocalin
(NGAL), a protein secreted by neutrophils, macrophages and
epithelia in response to infection binds to siderophores, such
as enterobactin, and prevents bacterial iron acquisition by this
route. Mice lacking lipocalin-2 exhibit increased mortality from
infection with siderophore-expressing bacteria, such as E. coli,

demonstrating the anti-microbial relevance of this bacterial iron
withholding system (Flo et al., 2004; Nairz et al., 2015). However,
pathogens are constantly evolving and adapting to host responses
and have created modified siderophores, such as the heavily
glycoslyated siderophore, salmochelin, secreted by Salmonella
typhimurium, which is not recognized and targeted by lipocalin-
2 thus making these bacteria unresponsive to this host defense
strategy (Hantke et al., 2003).

A serious consequence of any infection, or indeed
inflammation, is the development of anemia of inflammation
(AI) also known as anemia of chronic disease (ACD) (Theurl
et al., 2009). The increase of hepcidin within hours of an
infection or inflammatory insult, results in a dramatic reduction
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of plasma iron levels. However, prolonged activation of this
defense mechanism can eventually restrict the availability of
iron not only to the invading pathogens, but also to developing
erythrocytes in the bone marrow, leading to the development of
AI (Kim et al., 2014; Weiss et al., 2019). Therefore, the availability
and restriction of systemic iron during times of infection and
inflammation represents an essential defense mechanism against
pathogens but under pathophysiological conditions can lead to
anemia and further severe pathologies resulting from reduced
RBC development. Regulation of systemic iron levels represents
an important first-line defense against infection. However, the
role of iron in the immune response does not stop there. In the
next section we will describe the essential, and often specific, role
iron plays in several immune cell subtypes.

NEUTROPHILS AND IRON

Neutrophils are the most numerous white blood cell in the body
and are often the “first-responders” at the scene of invading
pathogens or tissue damage. Neutrophils, as noted above, secrete
lipocalin-2 to interfere with bacteria scavenging host iron from
the bloodstream (Flo et al., 2004; Nairz et al., 2015). However,
their primary function in host defense when they encounter
microbes, is to ingest them into phagosomes, undergo a rapid
burst of oxygen consumption and release anti-microbial proteins
from granules into the phagosome to kill the microbes. The
enzyme complex responsible for the oxygen burst is the NADPH
oxidase (NOX)-2 complex at the plasma or phagolysomal
membranes which channels electrons from NADPH in the
cytosol to oxygen, generating superoxide (O2

−) radicals within
the phagosome (Vazquez-Torres et al., 2000). Superoxide radicals
can free up Fe2+ iron and this can further react with hydrogen
peroxide (H2O2) to give rise to the hydroxyl radicals (OH•)
(Koskenkorva-Frank et al., 2013). All of these components -
H2O2, O2

−, and OH•–kill ingested microbes. Additionally,
neutrophils have another iron-dependent metalloprotein in its
arsenal; an enzyme called myeloperoxidase (MPO) contained in
intracellular granules—which represents about 5% of the total
protein within a neutrophil and is the “green protein” that gives
pus and phlegm their green tinge. MPO is a hemoprotein and its
Fe3+/Fe2+ redox states are critical to its role in producing anti-
microbial effects (Arnhold et al., 2003). Chloride is also available
in the phagosome through direct endocytosis or via chloride
channel import such as the CFTR (cystic fibrosis transmembrane
conductance regulator) channel (Di et al., 2006). MPO catalyzes
the H2O2-mediated oxidation of chloride to form hypochlorous
acid (HOCl) (Everse et al., 1991). Moreover, MPO oxidizes
tyrosine to the tyrosyl radical again using H2O2 as an oxidizing
agent (Everse et al., 1991). Both HOCl and tyrosyl radicals kill
phagosome-restrained pathogens.

Other related hemoproteins include salivary peroxidase
and lactoperoxidase (LPO) which are present in multiple
human exocrine secretions, including tears, milk, saliva, and
vaginal fluid, and also serves anti-microbial killing actions
similar to MPO (Sarr et al., 2018). In addition, neutrophils
produce large amounts of calprotectin and lactoferrin, both of

which scavenge iron, thereby inhibiting bacterial proliferation
(Nakashige et al., 2015). In addition to its role in scavenging iron,
lactoferrin, through binding to its cognate receptor, promotes the
maturation, migration and cell proliferation of many immune
cells including macrophages and monocytes which impact on
the efficacy of host responses in the course of infections (Actor
et al., 2009; Legrand, 2012; Lepanto et al., 2019). Interestingly,
eosinophils have a homolog of MPO called eosinophil peroxidase
(EPX) which shares∼70% similarity at the amino acid level with
neutrophilicMPO (Ten et al., 1989). However, unlike neutrophils
which release MPO into the phagosome, eosinophils release their
EPX-containing granules extracellularly to kill parasites to which
they are attached (Acharya and Ackerman, 2014).

MACROPHAGES AND IRON

Macrophages are another immune cell of the innate immune
system. They are phagocytic cells which engulfs dead cells,
pathogens as well as cancer cells. Moreover, they also present
foreign antigens to the adaptive immune system (T and B cells)
to activate that arm of our defense. However, macrophages also
have an essential homeostasis role in our bodies in promoting
RBC maturation as well as scavenging toxic free heme and
hemoglobin from dying RBCs. Hemoglobin-containing RBC
development in the bone marrow requires large amounts of
iron (Figure 3). Macrophages and Kupffer cells scavenge heme
from damaged or aged RBCs in the bone marrow, liver and
spleen, and extract the Fe2+ iron using HO-1 and then either
exports it back into the circulation through FPN or stores it in
ferritin intracellularly (Knutson et al., 2005; Theurl et al., 2016).
Interestingly, heme promotes monocyte differentiation into iron-
recycling macrophages by inducing the master transcription
factor for macrophage differentiation SPI-C, through direction
inhibition of its repressor BACH1 (Haldar et al., 2014). This
process is blocked by the action of hepcidin during times of
infection to prevent iron release in the circulation, which would
otherwise fuel extracellular pathogen growth (Ganz and Nemeth,
2015). In the case of infection with intracellular pathogens
such a strategy would be counterproductive. Thus, macrophages
infected with intracellular bacteria, induce a reprogramming of
iron metabolism to limit intracellular iron availability for these
pathogens. In mice, this is done by increased production of
nitric oxide (NO) (Nairz et al., 2013), which activates the stress-
responsive transcription factor, NRF2 resulting in transcriptional
induction of FPN expression leading to subsequent increase
of iron export from the cell, thus again restricting iron
availability to the intracellular pathogen. Macrophages also
express a phagolysosomal protein, known as NRAMP1 (natural
resistance associated macrophage protein 1, SLC11A1) which
confers resistance to intracellular microbes such as Salmonella,
Mycobacteria, or Leishmania (Forbes and Gros, 2001). NRAMP1
acts as a transporter for divalent metals, including iron, and
promotes iron export from the phagolyosome and then from the
cytoplasm by induction of FPN expression (Nairz et al., 2007; Lim
et al., 2018).
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The intracellular iron equilibrium can regulate the
polarization of macrophages into M1 (pro-inflammatory)
and M2 (anti-inflammatory, pro-tissue healing) macrophages
depending on their micro-environmental niche and local
metabolic cues (Recalcati et al., 2012). In vitro M2-polarized
macrophages present an iron-release prone phenotype, with
higher FPN and lower ferritin expression levels than classically
activated M1 macrophages. This allows the M2 macrophages to
promote iron recirculation and aid in tissue healing, a process
which requires large amount of iron to rebuild damaged tissue
(Recalcati et al., 2010a). In contrast, M1 macrophages enhance
iron uptake and storage, and display an attenuated iron-release
phenotype favoring intracellular iron sequestration and storage,
which has been shown to enhance antimicrobial effector
functions such as increased pro-inflammatory TNFα expression
while suppressing expression of the anti-inflammatory cytokine,
IL-10 (Weiss et al., 1994; Mulero et al., 2002; Fritsche et al., 2008).
Recently, several studies have investigated the iron-dependent
immunometabolic switches involved in the activation of human
macrophages. Acute deprivation of iron levels in human
macrophages was shown to reprogram their transcriptional
and metabolic responses, enhancing glycolytic-regulated genes
via ATF4 while concurrently blocking mitochondrial oxidative
phosphorylation (via reduced activity of the Fe-S containing
respiratory chain enzymes NDUFS6 and SDHB), ultimately
resulting in impaired cell proliferation and reduced severity in
a macrophage-dependent mouse kidney autoimmune model
(Pereira et al., 2019). Interestingly, a non-catalytic role for
iron in human macrophage activation was demonstrated by
which the trace metal is essential for modulating the nuclear
membrane-binding ability of 5-LOX (5-lipoxygenase) (Dufrusine
et al., 2019). 5-LOX is an enzyme important in the production
of proinflammatory leukotrienes (LT). Upon macrophage
stimulation, both cytosolic and nuclear 5-LOXs incorporate
ferric iron (Fe3+) enabling its translocation to the nuclear
envelope for LT production (Dufrusine et al., 2019). Therefore,
iron ion binding represents an immediate post-translational
mechanism not just supporting catalytic activities, as we have
seen but also directly influencing intracellular trafficking and
localization of proteins.

In addition, macrophage-dependent, and indeed microglia-
dependent, regulation of iron homeostasis in the brain has been
recently implicated in the maintenance of neuroinflammatory
diseases such as multiple sclerosis. Myelin breakdown and
the phagocytosis of its debris, including iron, occurs at active
multiple sclerosis lesions. However, degeneration of cells in the
brain also result in the deposition of iron in the extracellular
space, which then induces waves of oxidative stress (via Fenton
chemistry) in these brain regions (Craelius et al., 1982; Bagnato
et al., 2011). Such microglial dystrophy has been observed in
Alzheimer’s brains as well as aged brains (Lopes et al., 2008).

Cancer immunotherapy, the ability to coax one’s own immune
system to seek and destroy cancer cells, has revolutionized anti-
cancer therapies. Classical approaches of cancer immunotherapy
have included inhibition of cell cycle checkpoints in T cells
or blocking tumor-derived immune suppression strategies.
Targeting iron homeostasis in immune cells, and in particular

macrophages, has received recent interest. However, in the
context of the tumor microenvironment (TME), the situation is
quite complicated asM2 TAMs (tumor-infiltratingmacrophages)
which are “iron-releasing” will support tumor growth while M1
“iron-retaining” limit tumor progression (Jung et al., 2019).
Therefore, novel approaches to manipulate iron homeostasis
and metabolically re-program macrophages in the TME are
currently being investigated. Iron-loaded macrophages display
a pro-inflammatory M1-like phenotype which although can be
associated with tissue damage, may also be used to exhibit
anti-cancer responses. In lung cancer for example, iron-
laden TAMs have been demonstrated to enhance production
of ROS and pro-inflammatory cytokines (TNFα and IL-
6) and to directly kill tumor cells (da Silva et al., 2017),
prompting the exciting possibility of delivering iron to TAMs
as a simple adjuvant therapeutic strategy. Indeed, iron oxide
nanoparticles have been shown tomodulate the IRF-5 (interferon
regulatory factor 5) signaling pathway to enhance anti-
tumor M1 macrophage polarization while at the same time
down-regulate M2-assoicated arginase-1 (Gu et al., 2019).
These studies provide new understandings of the role iron
regulation plays in macrophage function and paves the way
for designing advanced iron-based anti-inflammatory as well as
anti-cancer technologies.

T CELLS AND IRON

T cells, together with antibody-producing B cells, are the
main components of the adaptive immune system. T cells
can be cytotoxic (CD8+ T cells) as well as helper (CD4+ T
cells) immune cells. CD8+ T cells can directly kill infected or
cancer cells by releasing cytotoxic mediators such as perforin,
while CD4+ T cells orchestrate and coordinate B cells and
innate immune cells through release of various cytokines and
chemokines. Proliferation and effector functions of T cells are
energy expensive processes that require iron for the many
metabolic and redox reactions involved as well as heme- and Fe-
S-containing enzymes that are indispensable for cell division and
cytokine production (Cronin and Penninger, 2007; Figure 3). T
cells undergo rapid cellular expansion during development in the
thymus as well as during an immune response, such as infection
or cancer. Therefore, it is not surprising that one of the earliest
cues for T cell activation and proliferation is the upregulation of
the transferrin receptor (TFR, also called CD71) on the surface
of T cells (Batista et al., 2004). Indeed within a minute of T cell
receptor (TCR) engagement, surface TFR is upregulated from
endosomal compartments and is localized to the immunological
synapse (IS), the receptor-filled contact area between an antigen-
presenting cell and a T cell, necessary for full T cell activation
(Batista et al., 2004). TFR has also been hinted to play a role
in T cell activation independent of its role in iron uptake as it
also contributes to the signal transduction of TCR stimulation
by the direct interaction of the ζ-chains of the CD3 co-receptor
(Salmeron et al., 1995).

CD4+ helper T cells, when activated, can differentiate broadly
into two major subtypes, TH1 (which coordinate macrophages
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and cytotoxic CD8+ T cell responses) and TH2 cells (which
coordinate eosinophils, basophils, mast cells, and B cells).
Inhibition of TFR affects the proliferation of T cell subtypes
differently with TH1 immune responses being more sensitive
to intracellular iron depletion than TH2 (Thorson et al., 1991;
Mencacci et al., 1997). Moreover, it has been suggested that
induction of T cell anergy, a process whereby an activated
T cell becomes tolerant and functionally inactive (a desirable
effect in cases of hyper T cell activation under autoimmune
conditions and undesirable in the tumor microenvironment)
involves TFR downregulation (Zheng et al., 2007). It has been
also demonstrated using TFR blocking antibodies, that TFR-
mediated iron uptake is essential for lymphocyte development
and proliferation (Neckers and Cossman, 1983; Ned et al.,
2003). Importantly, a mutation in the human TFRC gene,
which codes for TFR, was identified in patients with combined
immunodeficiencies (CID) (Jabara et al., 2015). Patients suffering
from CID are highly susceptible to life-threatening infections
due to a greatly diminished immune response mediated by the
adaptive arm of the immune system, namely in T- and B-cell
function. The identified single amino acid substitution in TRF1
(Y20H) affects iron uptake in both T and B cells resulting
in defective development, proliferation and antibody type class
switching (Jabara et al., 2015). Furthermore, hematopoietic-
specific deletion of the ferritin heavy chain (Fth) gene results in
reduced numbers of lymphocytes while other cell types such as
granulocytes and monocytes are unaffected, again highlighting
the essential nature of iron regulation to the adaptive immune
system (Vanoaica et al., 2014). Ablation of Fth leads to an
increase in the labile iron pool (LIP) within the cell contributing
to increased oxidative stress and cell death, though when cells
are stimulated the increased availability of Fe2+ iron enhances
proliferative capacity before ultimately undergoing cell death,
possibly due to proliferating cells using up the excess iron
(Vanoaica et al., 2014). If intracellular iron stores could somehow
be replenished, it would be interesting to then see whether
enhanced proliferation would continue.

As mentioned above, hemolysis (RBC rupture) causes a
massive release of heme-containing proteins which, when
oxidized, liberate the heme/Fe moiety and thereby cause pro-
oxidant, cytotoxic effects. Heme scavenging proteins such as
hemopexin can bind free heme, thus clearing it from the
circulation and delivering it to cells (Smith et al., 1988). Once
internalized the heme is catabolized by HO-1 to produce iron
as well as the cytoprotective molecules biliverdin and carbon
monoxide (CO) (Tenhunen et al., 1969; Maines, 1988). CO
has been shown to inhibit presentation of exogenous soluble
antigens to CD8+ and CD4+ naïve T cells by blocking normal
antigen trafficking in LPS-treated DCs (Tardif et al., 2013),
whereas biliverdin induces tolerance to cardiac allografts by
interfering with activation of nuclear factor of activated T
cells (NFAT) and nuclear factor-κB (NF-κB), two transcription
factors involved in interleukin-2 (IL-2) transcription and T cell
activation and expansion (Yamashita et al., 2004). Thus, HO-
1 exerts cytoprotective effects by reducing the pro-oxidative
activity of heme and by re-programmingmetabolic traits, thereby
limiting tissue damage in the course of inflammatory processes,

including sepsis (Gozzelino et al., 2010; Weis et al., 2017).
Accordingly, HO-1 deficient mice show enhanced CD4+ T cell
activation (Poss and Tonegawa, 1997).

Patients with iron-overload in beta-thalassemia major have
decreased CD4+ T cells but increased CD8+ T cell numbers
(Porto and De Sousa, 2007), while patients suffering from
hereditary hemochromatosis (HH) have apparently normal
CD4+ and reduced CD8+ numbers, with the latter displaying
a more “effector” phenotype, suggesting again that increased
intracellular iron availability may have hyper-proliferative effects
in T cells, although this may well-depend on which oxidation
form of Fe is available (Costa et al., 2015). Further corroborating
the link between intracellular iron stores and proliferation,
cancer cells are known to stockpile intracellular iron through
deregulating iron homeostasis mechanisms (Torti and Torti,
2013). Intriguingly, a significant association between almost 50%
of genes involved in ironmetabolism and breast cancer prognosis
has been observed (Miller et al., 2011).

Iron deposition has long been known as a hallmark of
many autoimmune diseases including in the brains of patients
with neuroinflammatory diseases such as multiple sclerosis
(MS), a brain inflammatory disease whereby autoreactive T
cells facilitate CNS inflammation by secreting a variety of
proinflammatory cytokines. Indeed, iron deprivation reduced
EAE, a T cell dependent autoimmune mouse model of MS
(Grant et al., 2003) and importantly, showed some beneficial
improvements in MS patients (Hametner et al., 2013; Weigel
et al., 2014). One recent mechanism of how iron drives T
cell-mediated pathogenicity in MS centered on the regulation
of GMCSF (granulocyte-macrophage colony-stimulating factor)
by iron levels. GM-CSF is essential for the development and
progression of EAE. Mice deficient in GM-CSF are resistant
to EAE induction, and blockade of GM-CSF in wild-type mice
suppresses ongoing disease (McQualter et al., 2001; Codarri
et al., 2011). It was demonstrated that iron protects PCBP1
(Poly(RC)-binding protein 1), an RNA binding protein which
stabilizes GMCSF mRNA, from caspase-mediated proteolysis
thus leading to enhanced GMCSF production when iron levels
are high within the T cell to drive inflammation (Wang et al.,
2018). Moreover, increased intracellular bioavailable iron in
CD4+ T cells has also been linked to the pathophysiology of
systemic lupus erythematosus (SLE). Levels of intracellular iron
were increased significantly in SLE CD4+ T cells compared
to healthy controls and the researchers suggest a link between
iron homeostasis and global DNA methylation status (Zhao
et al., 2018), by which SLE T cells exhibit reduced DNA
demethylation resulting in enhanced immune-related gene
expression. Interestingly a link between intracellular iron levels
and epigenetic programming has also been described to control
B cell activation, proliferation and antibody responses at the level
of H3K9 demethylation at the promoter region of the cell-cycle
regulator, cyclin E1 (Jiang et al., 2019). Iron deficiency in mice led
to dramatically attenuated antigen-specific antibody responses
(Jiang et al., 2019). Intriguingly, human patients with iron
deficiency also show significantly weakened antibody responses
when challenged with the measles vaccine. Inhibited H3K9me
demethylation at the promoter region of cyclin E1 (Jiang et al.,
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2019). These findings are quite significant in the light of the
recent spate of measles and varicella outbreaks in areas with high
vaccination coverage. It may therefore be interesting to further
investigate the link between individual iron intake as well as
iron serum levels and their ability to elicit adequate antibody
production upon vaccination to reduce the risk of infection
and disease.

Ferroptosis is an iron-dependent oxidative form of cell
death associated with increased lipid peroxidation (Xie et al.,
2016). It is morphologically and mechanistically distinct from
apoptotic, necroptotic, and autophagic cell death (Xie et al.,
2016). Moreover, ferroptosis can be blocked with iron chelators
but not with inhibitors of apoptosis and necroptosis (Xie
et al., 2016). The term ferroptosis was introduced to describe
cell death induced by the compound erastin, which causes
glutathione depletion through the glutamate-cystine antiporter
system X−

c inhibition and consequently glutathione peroxidase 4
(GPX4) inactivation leading to accumulation of lipid peroxides
(Ursini et al., 1982; Dixon et al., 2012). GPX4 is essential
for the survival and expansion of recently activated T cells,
indicating the importance of preventing lipid peroxidation
and of iron dysregulation resulting in ferroptosis, in T cell
proliferation (Matsushita et al., 2015). Iron is essential for the
process of ferroptosis as free divalent iron (Fe2+) converts
the hydrogen peroxide (H2O2) produced by mitochondrial
respiration into the toxic free hydroxyl radical (OH•) through
Fenton chemistry which then “takes” electrons from lipids
resulting in lipid peroxidation and ferroptosis. As mentioned
above, tumors have developed mechanisms to suppress T cells
in the tumor microenvironment (TME) and that the field
of cancer immunotherapy focuses on re-establishing cytotoxic
CD8+ T cell-mediated killing of cancer cells by, for example,
the use of checkpoint inhibitors. Notably, it has recently been
demonstrated that restored immunotherapy-activated CD8+

cytotoxic T cells downregulate the expression of the system
X−
c on tumor cells through IFNγ leading to enhanced lipid

peroxidation and ferroptosis of tumor cells (Wang et al., 2019),
suggesting a potential combinatorial therapeutic approach of
removing checkpoints as well as targeting iron metabolism, for
more effective cancer immunotherapy.

TETRAHYDROBIOPTERIN (BH4)—LINKING
IRON HOMEOSTASIS TO
MITOCHONDRIAL FUNCTION IN
ACTIVATED T CELLS

Iron homeostasis, its regulation through uptake, use, storage
and export, influences the activity of metabolic pathways to
couple the activation, growth and survival of T cells. Our
laboratory has recently uncovered a novel role for a metabolite,
linking iron regulation to T cell effector function (Cronin
et al., 2018). Tetrahydrobiopterin, known as BH4, has been
till now almost exclusively studied as an essential co-factor
for several enzymes with critical physiologic and metabolic
functions, including the three nitric oxide synthases (neuronal,
inducible and endothelial NOS), alkylglycerol mono-oxygenase

(AGMO), and aromatic amino acid hydroxylases (phenylalanine,
tryptophan and tyrosine hydroxylases) (Werner et al., 2011).
Through these enzymes, BH4 is required for nitric oxide
(NO) production, metabolism of ether lipids, phenylalanine
catabolism, and synthesis of the amine neurotransmitters
norepinephrine, epinephrine, serotonin, and dopamine. GTP
cyclohydrolase I (GCH1) is the rate-limiting enzyme for BH4
biosynthesis (Werner et al., 2011; Figure 4). In terms of the
immune system, BH4-dependent nitric oxide (NO) production
by inducible nitric oxide synthase (iNOS) in macrophages is
compromised in Gch1-deficient macrophages (McNeill et al.,
2015) although these cells have an enhanced ability to control
the growth of Mycobacterium tuberculosis through NO- and
BH4-independent mechanisms, which are enhanced upon BH4
deficiency (McNeill et al., 2018).

We and others have shown that GCH1 is expressed in
T cells but only after TCR stimulation (Chen et al., 2011;
Cronin et al., 2018). Using multiple T cell specific ablation
strategies, we demonstrated that genetic inactivation of GCH1
or pharmacological inhibition of the terminal enzyme in the
biosynthetic pathway of BH4, sepiapterin reductase (SPR),
results in severely impaired proliferation of T cells (Cronin
et al., 2018). In various models of T cell development
autoimmunity or asthma, BH4 blockage significantly reduces
T cell effector function and infiltration into affected tissues.
However, interestingly, T cell development or homeostasis as well
as B cell and regulatory T cell (Treg) functions are unaffected
by inhibition of this pathway. Furthermore, by enhancing BH4
production, either genetically or pharmacologically, we observed
an opposing phenotype, where the T cells are hyper-activated,
displaying stronger effector functions. In orthotopic cancer
transfer models, BH4-overproducing T cells have increased anti-
cancer immunity, resulting in greatly reduced cancer burden
(Cronin et al., 2018).

What is BH4 doing in these cells? In genetic inactivation
models, we did not detect any differences in iNOS expression
or NO production in T cells, nor any detectable signs of
activated T cells producing biogenic amine neurotransmitters
that require co-factor BH4. Gene expression profiling comparing
activated wild-type T cells to those lacking GCH1 (and
hence displaying BH4 deficiency) pointed instead to iron
regulation. We indeed observed increases at the protein
level of Mitoferrin, the mitochondrial Fe2+ importer; HO-1,
which breaks heme into Fe2+; ferritin, the storage regulator
of Fe3+, as well as frataxin, responsible for Fe-S biogenesis.
Moreover, we confirmed data from almost 50 years ago that
BH4 alone, in a co-factor independent manner, can reduce
cytochrome-C-Fe3+ to cytochrome-C-Fe2+ at physiological
concentrations and efficacy (Archer et al., 1972; Figure 4).
These data suggested that when T cells become stimulated
through TCR engagement, the increased metabolic needs
of the dividing, cytokine-producing effector cell requires
enhanced Fe2+-dependent mechanisms for, among many others,
efficient electron transfer chain (ETC) during mitochondrial
respiration and increased ATP synthesis. Under conditions of
BH4 deficiency, as in our Gch1-ablated T cells, cytochrome-
C reduction is compromised, resulting in dysfunctional

Frontiers in Molecular Biosciences | www.frontiersin.org 12 November 2019 | Volume 6 | Article 116

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Cronin et al. Iron Regulation in Immunity

FIGURE 4 | BH4 enhances iron-dependent mechanisms upon T cell activation. Upon T cell receptor (TCR) stimulation, T cells alter their metabolic programming, such

as promoting energy-producing mitochondria and electron transport chain (ETC) activity, to be able to proliferate and carry out effector functions. These increased

metabolic needs require additional regulators for efficient ETC function to limit dangerous ROS byproducts due to the increased energy demands. To accomplish this,

T cells induce the expression of the enzyme GCH1 which produces the metabolite BH4 after stimulation. BH4 can not only act as a superoxide ROS scavenger but

also directly reduce Fe3+ to Fe2+ and therefore affect cytochrome C (cyto-C) activity in the ETC. Other iron-regulated processes such as heme and Fe-S biogenesis,

as well as the function of various iron-dependent metalloproteins, may also be affected. Under BH4 deficiency, T cells show dysfunctional ETC, enhanced ROS, and

reduced ATP production in activated T cells. Moreover, the T cells show dysregulated Mitoferrin, Frataxin, HO-1, Ferritin and overall reduced iron levels in the cell

suggesting that BH4 deficiency affects iron metabolism and the cell compensates by trying to increase Fe2+ levels in the mitochondria. GTP, guanosine triphosphate;

PTPS, 6-pyruvoyl tetrahydropterin synthase; SPR, sepiapterin reductase; DHTP, dihydroneopterin triphosphate; 6-PTH, 6-pyruvoyl tetrahydropterin; BH4,

tetrahydrobiopterin; ROS, reactive oxygen radicals; ALAS, aminolevulinic acid synthase; e-, electron.

mitochondrial respiration, increased superoxide formation and,
ultimately diminished ATP production, all of which we observed
(Cronin et al., 2018). We could rescue the mitochondrial
respiration defect by supplying reduced cytochrome-C-
Fe2+ directly to the mitochondria of Gch1-ablated T cells
after stimulation.

Fe2+ is not only needed for metalloproteins like cytochrome-
C to function optimally but also for Fe-S cluster biogenesis,
which are essential for complex I and II activity of the ETC,
and heme production (Figure 4). A common phenotype of
defective Fe-S biogenesis is mitochondrial iron loading, resulting
in mitochondrial dysfunction and oxidative stress (Reeve et al.,
2012). Indeed, such Fe-S mitochondrial disruptions can cause

cytosolic iron depletion (Huang et al., 2011). We observed an
overall depletion of total iron in T cells after activation under
BH4-deficient conditions. A general decrease in Fe3+ reduction
resulting in a scarcity of Fe2+ and increase of Fe3+ would affect
many aspects of cellular metabolism (Volani et al., 2017) which
contribute to the reduced T cell proliferation observed with BH4-
deficiency. By increasing the levels of mitoferrin, HO-1, and
frataxin, the BH4-deficent T cells attempt to increase the import
of Fe2+ into the mitochondria for Fe-S biogenesis and other iron-
dependent processes. Interestingly, we also observed enhanced
secretion of IFNγ in Gch1-deficient T cells following antigen
receptor-mediated activation. IFNγ has a strong regulatory role
in iron homeostasis as it enhances the expression of cellular
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iron-regulating genes such as HO-1 but also reduces the iron-
exporting gene ferroportin (Ludwiczek et al., 2003; Nairz et al.,
2015). This may explain the enhanced IFNγ observed in Gch1-
deficient T cells, to increase the amount of Fe2+ by preventing
its export (through FPN downregulation) while increasing HO-
1 to provide more bioavailable Fe2+ from heme degradation
for the mitochondria. Alternatively this may be a compensatory
mechanism of the cell responding to low BH4 levels, as IFNγ can
also upregulate GCH1 in macrophages (Oexle et al., 2003).

THERAPEUTIC TARGETING OF THE BH4
PATHWAY TO CONTROL AUTOIMMUNITY
AND CANCER

Intriguingly, sulfasalazine, a drug used for decades to treat
autoimmune inflammatory bowel disease (IBD) and psoriatic
arthritis (Gupta et al., 1990), is now recognized as targeting
the BH4 pathway by inhibiting SPR (Haruki et al., 2013),
in addition to other targets, such as NFκB (Wahl et al.,
1998). Interestingly, high doses of sulfasalazine are associated
with RBC abnormalities (Pounder et al., 1975). A more
specific and potent target for reducing activity in the BH4
synthetic pathway could therefore provide new opportunities
to treat autoimmune diseases. To this end, we developed a
novel BH4 inhibitor, QM385, which targets SPR, and blocks
both mouse and human T cell proliferation at nanomolar
potency with good oral bioavailability and no observable side-
effects at immune suppressant exposures (Cronin et al., 2018).
Importantly, in several different models of T cell-mediated
autoimmunity, such as intestinal inflammation, experimental
allergic encephalitis (EAE), psoriasis, and T cell-driven asthma,
the genetic or pharmacologic inhibition of the BH4 pathway
markedly abrogated the severity of autoimmunity. We also
demonstrated that human peripheral blood mononuclear cells
(PBMCs) when stimulated through the T cell receptor (TCR)
produce BH4 and that QM385-mediated inhibition of BH4
diminished the proliferative capacity of healthy human donor T
cells (Cronin et al., 2018). Our work therefore provides strong
evidence that targeting this pathway offers a novel therapeutic
avenue for the treatment of autoimmunity.

We also showed that by enhancing BH4 genetically, or
pharmacologically with BH4 itself, T cells displayed heightened
proliferation and, importantly, increased anti-tumor activity
(Cronin et al., 2018). We observed that with increased BH4,
mitochondrial respiration and ATP production were also
amplified, however, we did not see a surge in total intracellular
iron contents. Whether the ratio of Fe3+ to Fe2+ or the amount
of metabolically active iron is affected needs to be further

investigated. As discussed above, T cells from patients suffering
from HH and iron overload exhibit abnormal proliferation,
differentiation and functionality (Walker and Walker, 2000).
Hence, the T cell proliferative effect of increased BH4 may
very well-affect iron regulation. Whether manipulations of the
pathway will ameliorate T cell function and immune responses
both in general and in situations of pathologic iron accumulation
needs to be tested in future experiments.

CONCLUSIONS

In this review we have highlighted the major pathways and
immune cells involved in iron regulation, from initial uptake
in the gut to the utilization of iron for Fe-S clusters, heme
biogenesis and mitochondrial function. Nature has evolved
complex regulatory pathways to control iron levels, not only
in the circulation, but within cells. Invading pathogens can
hijack these iron regulatory networks for their own benefit
and the hosts have developed responses to counter such
iron scavenging pathogens. Different immune cells use iron
for different effector functions ranging from “respiratory
bursts” by neutrophils, killing intracellular pathogens for
macrophages, or for T cells, regulating iron metabolism
required for efficient proliferation. Competition for iron at
the host-pathogen interface impacts the course of infection
and alterations of iron homeostasis in inflammation can
impair erythropoiesis resulting in anemia. With recent
technological advances and whole transcriptomic, proteomic
and metabolic profiling, exciting new insights into how
immune cells regulate, and are regulated by iron have
emerged. We identified BH4 as a metabolite induced in
antigen receptor-stimulated T cells. In such activated T cells,
BH4 regulates both the reduction of Fe3+ and increases the
availability of Fe2+ in the cell, which aid activated T cells
in coordinating the increased metabolic needs for effector
functions. Targeting this pathway offers a novel therapeutic and
new mode-of-action opportunity to control T cell proliferation,
and in this way help to control autoimmunity or enhance
anti-cancer immunity.
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