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Abstract: Lactobacillus ruminis can stimulate the immune response in vitro, but previous studies
were only carried out in vitro and the anti-inflammatory effects of L. ruminis needs more in vivo
evidences. In this study, the immune regulation and potential mechanisms of L. ruminis was inves-
tigated in DSS-induced colitis mice. L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 relieved the
symptoms of colitis, including inhibition of colon shortening and colon tissue damage. L. ruminis
FXJWS27L3 significantly reduced the pro-inflammatory cytokines IL-1β, TNF-α, and IL-17, while L.
ruminis FXJSW17L1 significantly increased short chain fatty acids in mice feces. Moreover, L. ruminis
FXJWS27L3 and L. ruminis FXJSW17L1 treatments significantly increased the gut microbiota diversity
and balance the intestine microbiota profiles, which improved the imbalance of intestine microbiota
composition to a certain extent. The results showed that L. ruminis can alleviate DSS-induced colitis,
which possibly was related to promoting the expression of pro-inflammatory cytokines, up-regulating
SCFAs and restoring the imbalance of gut microbiota.
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1. Introduction

Ulcerative colitis (UC) is one of the inflammatory bowel diseases, with a high in-
cidence and prevalence worldwide [1]. At present, routine therapy for most patients is
to use 5-aminosalicylic acid (5-ASA) medicines (mesalazine, sulfasalazine), steroids or
immunosuppressive agents to control inflammation [2], but severe side effects limit the
usage of them [3]. Therefore, it is extremely important to find new treatment options for
UC. Novel alternatives for IBD, such as prebiotics, probiotics, and monoclonal anti-TNF-α,
are used instead of traditional therapies, which could rebalance the gut microbiota and
modulate the immune response.

Numerous studies showed that a variety of Lactobacillus, especially L. fermentum,
L. reuteri, L. paracasei, and L. plantarum, can relieve ulcerative colitis in animal model
and clinical trials [4–7]. L. ruminis is one of the commensals in the gastrointestinal tract
of humans and animals [8,9], and it persists throughout the life of the host. Currently,
L. ruminis was reported to have pro-inflammatory effects in an in vitro study, in which
L. ruminis ATCC25644, the type strain of the species, and its culture supernatant can
activate the NF-κB pathway and increased IL-8 expression, which were mediated by
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TLR2 to a certain extent [10]. Another study also found that its flagellin can induce the
production of interleukin-8 (IL-8) in human intestinal epithelial cell lines [11]. In addition,
Taweechotipatr and colleagues found that L. ruminis exhibited the immunostimulatory
property by activating the production of TNF-α in THP-1 monocyte [12]. However, the
research on the immunomodulatory properties of L. ruminis is still insufficient. For example,
only a few strains were studied and all those previous researches were only carried out
in vitro, hence, the anti-inflammatory effects of L. ruminis need more investigations and
evidences. Therefore, the study aimed to investigate the effects of L. ruminis on colitis in a
DSS-induced mice model and the potential mechanism, and to provide a basis for further
exploring the immunomodulatory properties of L. ruminis.

2. Materials and Methods
2.1. L. ruminis Culture Conditions

L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 were isolated from fecal samples of
healthy volunteers in our previous work [13] and deposited at the Collection Center of Food
Microbiology (CCFM), Jiangnan University. Both strains were cultured in de Man, Rogosa,
and Sharpe medium (MRS) at 37 ◦C. Subsequently, the culture was centrifuged (8000× g,
20 min); the cell pellets was collected, washed three times with sterilized phosphate
buffer solution (PBS, pH 7.4), concentrated in 30% (v/v) glycerol solution, and stored at
−80 ◦C prior to use. For animal trial, the cell-pellet stock was washed twice with sterilized
phosphate buffer solution (PBS, pH 7.4) and diluted to 5 × 109 CFU/mL with 13% skim
milk aqueous solution before preparing for gavage.

2.2. Animals and Experimental Design

The animal trial was approved by the Experimental Animal Management and An-
imal Welfare Ethics Committee of Jiangnan University (JN. No20191030c1041215(300)),
and all methods were carried out in accordance with ARRIVE guidelines and regula-
tions. C57BL/6J mice (male, 8-week-old) were purchased from GemPharmatech Co. Ltd.,
(Nanjing, China). All the animals were kept in Experimental Animal Center of Jiangnan
University under standard conditions (constant temperature of 20 ± 2 ◦C, humidity of
50 ± 5%, and 12-h light-dark cycle).

A total of 40 mice were randomly divided into five groups (n = 8): control, DSS,
mesalazine, FXJWS27L3 and FXJSW17L1 after one week of adaptation. The housing
of mice in our research was carried out in compliance with the randomization on the
ARRIVE guidelines. Four mice were randomly placed in each cage, and the treatment
group was also randomly selected. Treatments were allocated based on online random
number generators (https://www.graphpad.com/quickcalcs/randomize1/) (accessed
on 15 December 2019), which was in accordance with the randomization principle. The
calculation of sample size was based on law of diminishing return, which was called
“resource equation” method [14]. By calculation, 8 mice each group were considered as
enough sample size. The experimental period was 14-day totally and the experimental
design was shown in Table 1. All the mice were free to sterilized water on day 1 to 7, and
on day 8 to 14, except for control group, the mice in all the other groups were free to 2.5%
(w/v) dextran sulphate sodium (DSS) solution. DSS solution was replaced every two days.
From day 1 to 14, different composition (0.2 mL) was administered to each mouse once
a day. 13% skim milk aqueous solution were intragastrically administered to the mice
in control and DSS groups, mesalazine which was dissolved in 13% skim milk aqueous
solution were intragastrically administered to mice in mesalazine group, and the mice
in FXJWS27L3 and FXJSW17L1 group were gavaged with 5 × 109 CFU/mL of L. ruminis
FXJWS27L3 or L. ruminis FXJSW17L1, respectively.

https://www.graphpad.com/quickcalcs/randomize1/
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Table 1. Animal model experimental design.

Group Daily Gavage Treatment (0.2 mL) 1–7 Day 8–14 Day

Control 13% skim milk aqueous solution Free drinking sterilized water Free drinking sterilized water
DSS 13% skim milk aqueous solution Free drinking sterilized water Free drinking DSS solution (2.5%)

Mesalazine 10 mg/mL mesalazine Free drinking sterilized water Free drinking DSS solution (2.5%)
FXJWS27L3 5 × 109 CFU/mL L. ruminis FXJWS27L3 Free drinking sterilized water Free drinking DSS solution (2.5%)
FXJSW17L1 5 × 109 CFU/mL L. ruminis FXJSW17L1 Free drinking sterilized water Free drinking DSS solution (2.5%)

After the mice were sacrificed, the colon tissues were isolated. The colon length of
each mouse was recorded. Approximately 0.5 cm of the distal colon were taken and fixed
in a 4% (w/v) paraformaldehyde, then, put the remaining colon in liquid nitrogen for quick
freezing and store at −80 ◦C prior to use.

2.3. Assessment of Colitis

During DSS challenge, the weight loss, stool consistency, and hematochezia were
measured at a fixed time every day, and the disease activity index (DAI) was calculated
following the criteria [15,16]. The feces of each mouse were collected to observe the
morphology, and the occult blood was measured by an Occult Blood Kit (Zhuhai Beisuo
Biotechnology Co. Ltd., Zhuhai, China).

After the colon tissue was fixed, it was embedded in paraffin and stained with Hema-
toxylin and Eosin (H&E). Pathology section scanner was used to record the photomicro-
graphs. The severity of colonic histological injury was scored from four perspectives: crypt
damage, amount of inflammation, depth of inflammation, and the percentage involvement
by the disease process following the Dieleman’s scoring system [17]. In tests, the numbers
of each mouse were also random and discontinuous, and only colon tissues were provided
to the raters without grouping information.

2.4. Determination of Cytokines in Colon

The colonic concentrations of IL-17, L-10, IL-4, IL-1β and TNF-α were determined
by commercial ELISA kits (Shanghai Meilian Biotechnology Co. Ltd., Shanghai, China),
and the BCA Protein Assay Kit (Beyotime Biotechnology, Shanghai, China) was used to
measure the protein concentration by BCA method.

2.5. Immunofluorescence Staining of Colon

For immunofluorescence analysis, the cut sections were stained with 200 times dilu-
tion of ZO-1 (AB96587; Abcam, Cambs, UK), 100 times dilution of Claudin3 (AB15102;
Abcam, Cambs, UK), and 100 times dilution of Occludin (AB216327; Abcam, Cambs,
UK). All the antibodies were anti-rabbit. Slides were examined and analyzed using an
epifluorescence microscope.

2.6. Determination of Short-Chain Fatty Acid Concentration and Gut Microbiota in Feces

The concentration of SCFA in feces was measured following the method described [18].
The FastDNA Spin Kit (MP Biomedicals, LLC, Irvine, CA, USA) was used to extract the
genomic DNA. PCR amplification of the V3-V4 region of 16S rDNA was implemented,
and the product was purified and quantified [19]. Library preparation, sequencing, and
bioinformatic analysis were carried out on the basis of the previously described method [16].
Especially, some sequences need to be eliminated in the bioinformatic analysis, such as,
sequences with a lower quality score (<30), a brief length (<200 bp), sequences containing
equivocal bases, and appearing jumbles. Random rarefaction of each library was performed
according to the sample with the least number of sequences. Sets of trimmed sequences
with more than 97% identity were characterized as an operational taxonomic unit (OTU).



Foods 2021, 10, 1349 4 of 16

2.7. Statistical Analysis

GraphPad Prism 9.0 and SPSS26.0 were utilized for data analysis and plotting, and the
significant difference was evaluated by one-way analysis of variance (ANOVA) followed
by a Tukey test for multiple comparisons. The Shapiro-Wilk test and Kolmogorov-Smirnov
test were used to test the normality of the data. If the within group distributions were not
normally distributed, the significant difference was evaluated by Kruskal-Wallis test. If the
variances were not equal, the significant difference was evaluated by Brown-Forsythe and
Welch ANOVA followed by a Dunnett’s T3 test for multiple comparisons. The ultimate
results were represented as the mean value ± standard deviation (SD). The significance is
determined by the p value (p < 0.05). The confidence interval was 95% (95%CI). No data
were lost and all mice provided all outcomes.

Briefly, the QIIME2 pipeline was used to analyze the sequence data. Alpha diversity
(Shannon and Chao1 index) and beta diversity (weighted UniFrac distance) of gut microbiota
were performed online Linear (https://www.microbiomeanalyst.ca/MicrobiomeAnalyst)
(accessed on 1 March 2020) [19]. Linear discriminant analysis Effect Size (LEfSe) analyses were
performed through online tools (https://huttenhower.sph.harvard.edu/galaxy) (accessed on
1 March 2020). Pearson correlation analysis of colonic SCFA concentration, significant genus,
colitis indexes, and cytokines were performed by SPSS26.0.

3. Results
3.1. L. ruminis Relieved the Colitis Symptoms

The effects of L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 on DSS-induced
colitis symptoms were investigated and compared. During DSS exposure, the weight loss,
stool consistency and hematochezia were measured every day. Mesalazine and L. ruminis
treatments did not relieve the weight loss of mice (Figure 1a). On the 14th day, the DAI
of mice in DSS group was as high as 10.50 ± 0.93, while that in mesalazine-treated mice
was 7.38 ± 1.06, with a decrease of 29.7%; compared with DSS group, the treatment of
L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 significantly reduced the DAI in mice
with a decrease by 27.9% and 36.09%, respectively (Figure 1b). In control group, the
colon was healthy light red, the feces were granular, and the length of the colon was
6.93 ± 0.62 cm; while the colon of mice in DSS group was dark red, the intestinal wall was
swollen, and the intestinal cavity had obvious bloody contents, and the length of the colon
was significantly decreased (5.07 ± 0.63 cm) (Figure 1c,d). The colon length of mice in
mesalazine, FXJWS27L3 and FXJSW17L1 treated groups were 1.23, 1.16, and 1.18 times than
that of the DSS-challenged mice, respectively (Figure 1d). The treatment of two L. ruminis
strains could significantly alleviate the colon shortening caused by DSS exposure, which
was as same as the result of DAI.

3.2. L. ruminis Reduced the Colonic Tissue Damage

The colonic intestinal mucosa of the mice in control group was intact, with neat villi,
healthy crypt structure and abundant goblet cells, without inflammatory cell infiltration
(Figure 2a). However, the colon of DSS-exposed mice showed submucosal edema, severe
inflammatory cell infiltration, complete disappearance of crypts and goblet cells, epithelial
damage, and intestinal atrophy. The colonic histological score of mice in DSS group was
13.13± 0.83, which was 9.87 times than that of control group (Figure 2b). Whilst mesalazine,
L. ruminis FXJWS27L3, and L. ruminis FXJSW17L1 treatments all significantly reduced the
colonic histological score of mice compared with DSS group (Figure 2b). Additionally, in
these three groups, the intestinal villi were relatively intact, the crypts partially disappeared,
and the inflammatory infiltration was lighter.

https://www.microbiomeanalyst.ca/MicrobiomeAnalyst
https://huttenhower.sph.harvard.edu/galaxy
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3.3. L. ruminis Regulated the Inflammatory Cytokines

The anti-inflammatory cytokines (IL-4, IL-10) and pro-inflammatory cytokines (IL-1β,
TNF-α, IL-17) in colon were measured to evaluate the modulation of L. ruminis on inflam-
matory cytokines. DSS exposure resulted in a significant increase in pro-inflammatory
cytokines IL-17, TNF-α, and IL-1β in colon tissue, while the treatment of mesalazine
significantly reduced those three pro-inflammatory cytokines (Figure 3a–c). IL-1β, TNF-
α, and IL-17 in the L. ruminis FXJWS27L3-treated mice were significantly decreased by
32.18%, 21.08%, and 37.16%, respectively, compared with DSS group. In addition, the
concentrations of IL-1β, TNF-α and IL-17 in L. ruminis FXJSW17L1-treated mice were also
significantly reduced (Figure 3a–c). Additionally, compared with DSS group, mesalazine,
L. ruminis FXJWS27L3, and L. ruminis FXJSW17L1 treatments had no significant effect on
the IL-4 (Figure 3d,e), although there was a certain increasing trend.
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3.4. L. ruminis Influenced the Tight Junction Protein in Intestinal Epithelial Cells

In order to further verify the protective effect of L. ruminis on the intercellular tight
junctions (TJ) proteins in the mice colon, the immunofluorescence was used to detect
the location and content of the intercellular TJ proteins including ZO-1, Claudin-3, and
Occludin. Under the reflected fluorescence illuminator, the cell nucleus showed blue
fluorescence. Compared with the control group, the Occludin in DSS group was almost
completely destroyed, the Claudin-3 and ZO-1 proteins were discontinuously distributed
at the intestinal lumen edge, and the amount of these two proteins in the cell membrane
and cytoplasm was dramatically reduced. Although L. ruminis FXJSW17L1 and L. ruminis
FXJWS27L3 treatments retained the contents of Claudin-3 and Occludin integrally and had
a relieving effect on the reduction in ZO-1 protein (Figure 4a–c). In addition, the results
from immunofluorescence sections showed the similar changing tendency as the degree of
colonic tissue damage.
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3.5. L. ruminis Influenced the Concentration of SCFA in Feces

The concentrations of SCFA in the feces after DSS challenge were measured, including
acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and isovaleric acid.
The results showed that, compared with control group, the concentration of SCFA in
the DSS-exposed mice increased, except for butyric acid, although it was not significant
(Figure 5a–f). L. ruminis FXJSW17L1 treatment significantly up-regulated the concentration
of acetic acid, propionic acid, and butyric acid, which were 2.97, 5.90, and 5.39 times as
much as DSS group; while the concentrations of isobutyric acid, valeric acid, and isovaleric
acid did not show a significant change. All those six SCFAs in L. ruminis FXJWS27L3-treated
mice feces showed an increasing trend as well, but there was no significant difference from
DSS group.
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3.6. The Modulation of L. ruminis on the Gut Microbiota Ruined by DSS

Alpha diversity was evaluated by Shannon and Chao1 indexes. Compared with DSS
group, the Shannon index was not statistically different (Figure 6a), while Chao1 indexes
of FXJWS27L3 group and FXJSW17L1 group were significantly increased (Figure 6b). The
principal coordinates analysis (PCoA) of weighted UniFrac distance (p < 0.01) was used to
reflect the beta diversity of gut microbiota. The results showed that there was a difference
between gut microbiota of DSS-exposed mice and that of control group (Figure 6c). The
treatment of L. ruminis FXJWS27L3 did not show a significant impact on the composition
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of gut microbiota, while the treatment of L. ruminis FXJSW17L1 caused a certain degree of
movement of gut microbiota to control group, although it was not significant.
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The relative abundance at the phylum level was analyzed. The relative abundance
of Bacteroidetes and Proteobacteria increased in DSS group, while Firmicutes and Verru-
comicrobia decreased. The relative abundance of Proteobacteria in L. ruminis FXJWS27L3-
and L. ruminis FXJSW17L1-treated mice decreased compared with DSS group, although its
relative abundance was higher than that in control group. Additionally, the relative abun-
dance of Firmicutes increased in FXJWS27L3 group and FXJSW17L1 group compared with
DSS group, while the relative abundance of Bacteroidetes and Proteobacteria decreased
(Figure 7).
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To further analysis is the genus with significant differences in relative abundance
among groups, the differences in the composition of gut microbiota among groups was
analyzed by the LEfSe, and the LDA score histogram could identify statistically significant
biomarkers and reveal the microbes with significant differences in relative abundance
among groups. The DSS exposure led to significant increase in relative abundance of
Rikenellaceae RC9 gut group and Odoribacter (p < 0.01), while the relative abundance
of Ruminococcaceae UCG-010, Ruminiclostridium 6, Akkermansia, and Lactobacillus was
significantly reduced (p < 0.01) (Figure 8a,b). The treatment of L. ruminis increased the abun-
dance of Lactobacillus, Akkermansia, Ruminiclostridium 6, and Ruminococcaceae UCG-010.
The differences between the two strains were that the relative abundance of Lactobacillus
decreased in FXJWS27L3 group, which was increased in FXJSW17L1 group, although there
was no significant difference (Figure 8c).
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significant differences in relative abundance between groups. All groups were compared with the DSS group.

3.7. Correlation Analysis of Colitis Symptoms, Gut Microbiota, SCFA, and Cytokines

Pearson correlation analysis was carried out among groups on the four genus with
significant differences in abundance, SCFA, pro-inflammatory cytokines, DAI and histo-
logical score. The results showed that the concentrations of six SCFAs were positively
correlated with Ruminococcaceae UCG-010, Ruminiclostridium 6, Akkermansia, and Lac-
tobacillus (Figure 9a). In addition, there was a significant positive correlation between
Ruminiclostridium 6 and the concentrations of acetic acid and butyric acid, and a signif-
icant positive correlation between Ruminococcaceae UCG-010 and the concentration of
butyric acid (p < 0.05). The concentrations of SCFAs were negatively correlated with DAI,
pro-inflammatory cytokines and histological score (Figure 9a). Ruminococcaceae UCG-010,
Ruminiclostridium 6, Akkermansia, and Lactobacillus were all negatively correlated with
DAI, histological score, and pro-inflammatory cytokines (Figure 9b).
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4. Discussion

Studies have shown that L. ruminis can stimulate cells to produce pro-inflammatory
cytokines in vitro and had potential immune regulation functions, but its in vivo benefit
is still unclear. Therefore, in this study, the immune regulation of L. ruminis FXJWS27L3
and L. ruminis FXJSW17L1 was investigated through the DSS-induced colitis in mice. Both
L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 can alleviate the symptoms of colitis
(including DAI and colon shortening) in mice. The results of colonic histopathological
scores showed that both L. ruminis strains can reduce the damage of epithelial structure
and submucosal edema, the infiltration of inflammatory cells and the disappearance of
crypts caused by DSS exposure.

Abnormal intestinal immune response is one of the characteristics of UC [20,21], and
TNF-α and IL-1β are pro-inflammatory mediators caused by the immune response of
colitis [22]. TNF-α can cause mucosal inflammation and intestinal barrier injury and is a
key factor in inducing inflammatory bowel disease. TNF-α can activate the NF-κB pathway
and further induce the expression of TNF-α and other pro-inflammatory cytokines such
as IL-1β [23]. IL-17 produced by Th17 cells has the ability to promote the production
of a variety of inflammatory cytokines and is an important part of the pathogenesis of
colitis [24]. In this study, the changes of anti-inflammatory cytokines IL-4 and IL-10 in
colon were evaluated. DSS exposure resulted in a large amount of expression of the pro-
inflammatory cytokines in colon, including IL-17, TNF-α, and IL-1β, and the treatment
of L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 significantly inhibited the increase
in pro-inflammatory cytokines. As for the anti-inflammatory cytokines IL-4 and IL-10,
L. ruminis treatment caused an upward trend compared with DSS group, although it was
not statistically significant. Therefore, our results showed that L. ruminis down-regulated
the pro-inflammatory cytokines, and up-regulated the anti-inflammatory cytokines. In
another study on Lactobacillus alleviating DSS-induced colitis, it was also found that the
treatment of L. plantarum AR113 and L. casei AR342 can significantly down-regulate the con-
centrations of TNF-α and IL-1β in mice colon tissues and up-regulate the anti-inflammatory
cytokine IL-10 expression, and, thus, played a role in alleviating colitis [4]. Additionally,
L. paracasei, L. fermentum and L. reuteri have been shown to significantly reduce the IL-17 as
well [5–7].

In addition, it was found in previous in vitro experiments that L. ruminis can in-
duce the expression of pro-inflammatory cytokines TNF-α and IL-8 [10–12], and in the
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current work, L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 can down-regulate the
pro-inflammatory cytokines to exert its anti-inflammatory effect on DSS-induced colitis.
The results indicated that the direction of immune regulation of L. ruminis might be strain-
dependent. Similar results were found in the study of L. plantarum immune regulation [25],
in which L. plantarum CCFM8610 had a significant inhibitory effect on the production of
pro-inflammatory cytokines IL-1β, IL-17F and TNF-α, while L. plantarum CCFM382 did
not show any obvious inhibitory effects.

Tight junctions (TJ), as a crucial part of the physical barrier of the intestines, are
a skeleton to connect cells and maintain the normal physiological functions of selective
permeability. Among various TJ proteins, intramembrane protein ZO-1, the transmembrane
protein Claudin-3 and Occludin are representative [26]. The previous studies have shown
that diverse Lactobacillus strains have different effects on the content and localization of
TJ proteins, containing ZO-1, Claudin-3 and Occludin [26]. Moreover, the respites of
Lactobacillus on colitis are related to its recovery of TJ proteins [27]. On the basis of that,
protection on the intestinal barriers may be an important factor for L. ruminis to relieve
colitis as well.

Short-chain fatty acids are metabolites released when gut microbiota digest the di-
etary fiber in the intestine, and mainly include acetic acid, propionic acid, butyric acid,
valeric acid, isobutyric acid, and isovaleric acid. It has been reported in the literature
that SCFAs were able to protect intestinal barrier function [28,29] and participate in the
regulatory mechanism of host intestinal immunity [30]. Increasing the intake of SCFA was
effective in the treatment of colitis [31]. Acetate and propionate can stimulate GPR43 to
up-regulate the expression of regulatory T cell transcription factors (Foxp3), and cause
the proliferation of colonic regulatory T cells (Treg), thereby promoting the production of
the anti-inflammatory cytokine IL-10 [32]. Butyric acid can increase the anti-inflammatory
ability of macrophages and dendritic cells (DC) by stimulating GPR109A, promoting Treg
differentiation and down-regulating the expression of inflammatory factor IL-17 [33]. In
this study, the treatment of L. ruminis FXJSW17L1 significantly up-regulated the concen-
tration of acetic acid, propionic acid and butyric acid in feces, and the concentration of
valeric acid and isovaleric acid showed an upward trend as well; and the six SCFAs in
L. ruminis FXJWS27L3-treated mice feces also showed an upward trend. The results of
correlation analysis also showed that all those six SCFAs were negatively correlated with
DAI, pro-inflammatory cytokines, and histological scores. A variety of Lactobacillus has
been shown to improve colitis by regulating the production of SCFAs. For example, the
treatment of L. acidophilus up-regulated the concentration of butyric acid and propionic
acid, thereby, significantly protecting the intestinal tract of mice with colitis [34]. L. casei
LH23 was able to up-regulate the concentration of acetic acid, propionic acid, and butyric
acid to compensate for the reduction in SCFAs caused by DSS exposure [35]. In addition,
Lactococcus lactis ML2018 alleviated colitis by promoting the production of SCFAs in the
intestine [36]. Therefore, regulating the production of SCFAs may be one of the key ways
for L. ruminis to relieve colitis.

Some previous studies have shown that inflammatory bowel disease can reduce
the diversity of gut microbiota, change the composition of gut microbiota and lead to
the destruction of the intestinal micro-ecology [37,38]. The imbalance of gut microbiota
plays a vital role in the pathogenesis of UC [39–41]. In this study, treatment of L. ruminis
FXJWS27L3 and L. ruminis FXJSW17L1 significantly increased the species richness of gut
microbiota, and the results of beta diversity analysis showed that gut microbiota of mice in
L. ruminis FXJSW17L1 group shifted to a certain extent to control group. Similar results
were found in previous study on L. fermentum alleviating colitis, in which the Chao1 index
was significantly increased compared with DSS group, and the disturbance caused by DSS
treatment in the gut microbiota was less severe when the mice were administered with
L. fermentum [5].

It has been reported that the increased relative abundance of Proteobacteria can be
used as a microbial biomarker for gut microbiota imbalance [42]. L. ruminis FXJWS27L3
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and L. ruminis FXJSW17L1 can inhibit the increase in relative abundance of Proteobac-
teria caused by DSS exposure, and restore the gut microbiota homeostasis of mice to a
certain extent. DSS-induced colitis can lead to a decrease in Firmicutes and an increase
in Bacteroidetes in the gut microbiota of mice [43], and Firmicutes has been reported
with anti-inflammatory effects [44]. In our study, compared with DSS group, the relative
abundance of Firmicutes in FXJWS27L3 group and FXJSW17L1 group increased, while
the relative abundance of Bacteroidetes decreased, thereby improving the imbalance of
Firmicutes and Bacteroidetes and the microbiota structure. In the studies of other Lacto-
bacillus, it was also found that L. paracasei treatment reduced the increase in the abundance
of Bacteroidetes caused by DSS treatment [6], and the treatment of L. reuteri I5007 caused a
significantly increased relative abundance of Firmicutes and a decreased Proteobacteria
relative abundance [7].

At the genus level, L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 treatments in-
creased the relative abundance of Akkermania, Ruminiclostridium 6, and Ruminococcaceae
UCG-010. Akkermansia is related to intestinal immunity and plays a key role in intestinal
homeostasis [45]. Previous studies found that L. fermentum KBL374 and L. fermentum
KBL375 can alleviate DSS-induced colitis, which was related to the significant increase
in Akkermansia and other beneficial bacteria in the gut microbiota [5]. Ruminiclostridium
can degrade the polysaccharides to generate acetate and butyrate, thereby promoting the
development of the immune system [46]. Ruminococcaceae is related to the production
of butyric acid, and previous research reported that this genus had the anti-inflammatory
activity [47]. The correlation analysis in our study also showed that there was a significant
positive correlation between Ruminiclostridium 6 and the concentrations of acetic acid and
butyric acid, and a significant positive correlation between Ruminococcaceae UCG-010
and the concentration of butyric acid. Additionally, Ruminococcaceae UCG-010, Rumini-
clostridium 6 and Akkermania were negatively correlated with DAI, histological score and
pro-inflammatory cytokines. Therefore, L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1
improved the imbalance of gut microbiota in DSS-induce colitis mice to some extent, which
may be another important factor for L. ruminis to alleviate colitis.

5. Conclusions

L. ruminis FXJSW17L1 and L. ruminis FXJWS27L3 can alleviate DSS-induced colitis in
mice. The effective patterns mainly include decreasing the pro-inflammatory cytokines
(TNF-α, IL-1β, IL-17), up-regulating the SCFAs, especially acetic acid, propionic acid, and
butyric acid, and restoring the imbalance of gut microbiota. This study firstly confirms the
anti-inflammatory effects of L. ruminis in vivo, which will provide a reference for further
exploring the immune regulation function of the species.

6. Patents

Bo Yang, Wei Chen, Shuo Wang, et al. A Lactobacillus ruminis strain alleviating colitis
and use thereof [P]. Chinese patent, 2020116254075.

Wei Chen, Bo Yang, Shuo Wang, et al. A Lactobacillus ruminis strain protecting intestinal
barrier and use thereof [P]. Chinese patent, 2020116327362.
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