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Abstract: Intelligent wireless networks that comprise self-organizing autonomous vehicles equipped
with punctual sensors and radio modules support many hostile and harsh environment monitoring
systems. This work’s contribution shows the benefits of applying such networks to estimate clouds’
boundaries created by hazardous toxic substances heavier than air when accidentally released into
the atmosphere. The paper addresses issues concerning sensing networks’ design, focussing on a
computing scheme for online motion trajectory calculation and data exchange. A three-stage approach
that incorporates three algorithms for sensing devices’ displacement calculation in a collaborative
network according to the current task, namely exploration and gas cloud detection, boundary
detection and estimation, and tracking the evolving cloud, is presented. A network connectivity-
maintaining virtual force mobility model is used to calculate subsequent sensor positions, and
multi-hop communication is used for data exchange. The main focus is on the efficient tracking of
the cloud boundary. The proposed sensing scheme is sensitive to crucial mobility model parameters.
The paper presents five procedures for calculating the optimal values of these parameters. In contrast
to widely used techniques, the presented approach to gas cloud monitoring does not calculate
sensors’ displacements based on exact values of gas concentration and concentration gradients.
The sensor readings are reduced to two values: the gas concentration below or greater than the
safe value. The utility and efficiency of the presented method were justified through extensive
simulations, giving encouraging results. The test cases were carried out on several scenarios with
regular and irregular shapes of clouds generated using a widely used box model that describes the
heavy gas dispersion in the atmospheric air. The simulation results demonstrate that using only a
rough measurement indicating that the threshold concentration value was exceeded can detect and
efficiently track a gas cloud boundary. This makes the sensing system less sensitive to the quality of
the gas concentration measurement. Thus, it can be easily used to detect real phenomena. Significant
results are recommendations on selecting procedures for computing mobility model parameters
while tracking clouds with different shapes and determining optimal values of these parameters in
convex and nonconvex cloud boundaries.

Keywords: phenomena clouds monitoring; boundary estimation; MANET; wireless sensor network;
self-organization; artificial potential field; simulation

1. Introduction

Modern industry produces substances whose volatilization causes a severe threat to
the environment. Many of these hazardous substances form gas clouds heavier than air
when accidentally released into the atmosphere. As a result, the gas cloud changes its
shape, which is usually irregular, moves and covers a larger area with time. Toxic gases
usually endanger humans [1]. The strategic step for conducting a situational assessment is
to create a sensing system to determine a gas-covered area with a concentration greater
than the safe value [2].
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Research and commercial implementations in recent years have shown that self-
configuring networks built from static and mobile wireless devices equipped with sensing
modules can significantly enhance the capability to investigate and sense unknown en-
vironments [3]. Such networks can be successfully used to monitor phenomena, such as
clouds created by heavy hazardous toxic substances [4]. Mobile devices equipped with a
Central Processing Unit (CPU), radio transceiver, Global Positioning System (GPS), and gas
detector can exchange data and dynamically change both the position and role in the net-
work. However, to ensure accurate measurement and effective tracking of moving clouds,
an efficient computing scheme for online trajectory planning and a reliable interconnection
network of sensing devices is required. Moreover, low processing power, low-quality wire-
less communication, limited radio range and energy resources are significant limitations
that make the implementation of such a network even more complex.

This paper presents a comprehensive approach to heavy gas cloud monitoring that can
be used for disaster management and toxic spill counteraction using unmanned ground
vehicles or drones. Specifically, it describes a computing scheme for creating sensing
mobile ad hoc networks (MANETs) for estimating and tracking cloud boundaries and
reporting the results to the central dispatcher of the system (base station) to build situational
awareness. The proposed computing scheme incorporates gas dispersion modeling [5],
wireless transmission modeling [6], motion modeling [7] and clustering techniques [8].
The network operation consists of three stages: (i) exploration of the sensing scene and
gas cloud detection, (ii) exploration of the cloud and its boundary detection, (iii) tracking
the evolving and moving cloud. The focus is on mobility modeling and adaptation of
the boundary tracking algorithm to various shapes of gas clouds. Our approach’s main
originality is three algorithms for online network node displacement calculations in the
mentioned phases of a gas cloud monitoring process. New positions of sensing devices are
computed, solving the optimization problems with differentiable real-valued performance
measures, which are viewed as energy. To improve the sensing network’s long-term stable
operation, multi-hop communication with the base station (BS) is implemented. Thus,
a cooperative and coherent network comprising fully autonomous smart sensors that
can operate without any external fixed communication infrastructure is proposed. It is
assumed that sensing devices can constantly exchange data with their neighbors and finally
transmit measurements to BS. There is no central control in the system, and all nodes make
autonomous decisions based on sensor readings and data provided by their neighbors.
Multi-hop communication with BS reduces the energy costs and communication delays
compared to direct communication between BS and a given sensor node. It enables the
system to monitor vast areas covered with toxic substances and tracking clouds located at
a considerable distance from the base station. In general, it improves system scalability,
resilience and reliability.

In most sensing systems described in the literature, an exact value of gas concentration
and its gradient are used to calculate the expected positions of sensors. The concentration
gradient indicates the boundary of a cloud. It is possible to assess the gas concentration
in the whole sensing scene using adequate gas dispersion models and a series of mea-
surements. Due to negative buoyancy, heavy gas clouds’ behavior differs from typical
pollution clouds [9]. The dynamics of changes are minor. Despite this, the monitoring
and tracking of such phenomena is a challenging problem. In the case of gases heavier
than air, even slight changes to the terrain seriously influence the concentration gradient.
The extent and shape of the cloud depend on current atmospheric conditions, including
wind strength. Unfortunately, most gas dispersion models do not consider changes to
the terrain and obstacles [10]. It is assumed that the cloud moves over a flat area and
ignores local perturbations of the gas concentration. It results in a simplified situation
where the gas concentration decreases towards the cloud boundary. In reality, this situation
does not usually occur. Moreover, heavy gas clouds are characterized only by a negative
vertical concentration gradient, which does not help detect the cloud boundary. The vertical
gradient causes turbulent gas mixing, further disturbing the horizontal gas concentration
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regularity of the distribution. Therefore, methods that determine the direction of motion
based on the exact value of the measured concentration can give outstanding results in
simulators and fail in the real world. In our system, sensor readings are reduced to two
values, namely the gas concentration below or greater than the safe value, to decrease its
sensitivity to the accuracy of gas concentration measurements.

To sum up, this work’s main contribution is to present the general overview of the
system for detection of a heavy gas cloud in a working space W, detection of its boundary,
and its estimation and tracking. The algorithms for motion planning and cooperation
of the sensing devices used at each stage of the gas cloud exploration are presented and
discussed. The system can be used for disaster management using unmanned vehicles or
drones equipped with sensors. The data collected by the sensors and transmitted to the
emergency management center will allow creating emergency awareness, supporting the
evacuation of people from the endangered area, supporting the rescue teams conducting
operational activities, and neutralizing a toxic spill.

The presented results extend the work described in [11]. The paper [11] addresses
the problem of cloud boundary detection and estimation. In this paper, a brief overview
of algorithms for cloud boundary detection and estimation is provided. The attention is
paid to the most challenging task, namely, a boundary of slowly moving cloud tracking.
The main contribution is a novel algorithm for convex and nonconvex gas cloud boundary
tracking and five procedures for tuning the algorithm’s parameters. An exhaustive simula-
tion study that shows the effectiveness of these procedures depending on the considered
scenario is presented. Finally, we provide recommendations for the choice of a procedure,
respectively, for a given cloud shape.

The rest of the paper is structured as follows. Section 2 presents the survey of the
application of MANETs to monitor and truck phenomena clouds. Section 3 provides
a formulation of the problem to be solved and the model of a network composed of
smart wireless sensing devices. Section 4 describes the concept of a three-stage strategy
for heavy gas cloud monitoring and tracking and computing schemes for online motion
trajectories calculation. A comparative study of a few variants of procedures for tuning
model parameters is presented in Section 5. Finally, Section 6 concludes the paper and
highlights future research directions. The Appendix A provides a list of notations used
that is standard across all of the sections.

2. Related Work

The problem of developing effective and valuable strategies for detecting, estimating
and tracking boundaries using collaborating static and mobile sensing devices has been
studied in recent years by many researchers. Various techniques have been investigated,
implemented and tested through simulation and in testbeds constructed of real devices.
Shu et al. in [12] discuss the research directions for existing and future gas leakage source
detection and boundary estimation schemes with wireless sensor networks. The authors
of [13] present a survey of selected approaches for monitoring phenomena clouds. They can
be classified concerning various criteria, such as a task to be performed, equipment used
and expected network configuration, sensing and control strategies, communication and
computing algorithms, and the accuracy of utilized gas dispersion models. A significant
problem addressed in the literature is the resilience of the monitoring network to failures
and insufficient energy resources. Imran and Ko in [14] present an energy-efficient method
for detecting and estimating continuous objects spread over a large area by a failure-prone
network. Improving the accuracy of boundary estimation while reducing the energy
consumption is considered in [15].

This paper focuses on mobile sensing networks for phenomena-cloud boundary
estimation and tracking. In general, we can distinguish simple systems built of a single
mobile sensor or more complex systems comprised of a team of sensing devices. The simple
systems for gas cloud boundary tracking are described in [16,17]. Wang et al. in [16] propose
the algorithm for boundary estimation and tracking using a gas concentration gradient. A
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single moving platform equipped with the punctual sensor explores the sensing scene and
constantly measures the gas concentration. The concentration gradient and consequently a
new position of the platform are calculated based on these measurements. The algorithm
for control the motion of a single unmanned underwater vehicle (UUV) equipped with
sensors is presented and examined in [17]. Similarly to [16], both the initial detection of the
cloud boundary and the tracking procedures are based on calculating the toxic substance
concentration gradient. Moreover, the current speed measured by a dedicated sensor is
taken into account in motion trajectory calculation. The proposed control algorithm was
validated in the natural water reservoir with a dyeing substance imitating the toxic one.
The paper [18] addresses the problem of boundary tracking for the mobile robot with
uncertain dynamics and external disturbances. Sun et al. present and evaluate an adaptive
control system using a radial basis function neural network to approximate a nonlinear
function containing the uncertain model terms and toxic substance concentration gradient.
Simulation results illustrate the stability of the system.

Another group of systems is networks built from cooperating or non-cooperating
devices. The scheme for data gathering by multiple autonomous and non-cooperating
underwater vehicles is described and discussed in [19]. In this approach, each device’s
target position is determined autonomously. The current positions of other team members
do not influence this device’s position calculation. A similar approach with multiple
autonomous vehicles used to track boundaries is described in [20].

Many researchers address the problem of boundary tracking by a team of cooperating
vehicles. Singh et al. in [21] describe a simple mechanism for unmanned vehicle cooper-
ation. It is composed of two phases: first, mobile devices that form the network explore
roughly the whole area of interest, then the initial shape of a boundary is discovered. In
the second phase, each node follows the boundary to increase the accuracy of the initial
estimation. Singh et al. demonstrate that their strategy can be easily adapted to a network
consisting of multiple devices. In the case of a wide sensing area, it can be divided into
subregions that are equally assigned to all nodes. Data collected by all nodes are gathered
by a selected node that estimates the boundary’s shape. Next, the estimated boundary is
divided into parts that are assigned to nodes, respectively, for further investigation. This
approaches’ main drawback is that each device has to cover a long distance in the case of
a vast cloud. Triandaf and Schwartz in [22] present a method for calculating the motion
path for the formation of communicating sensors. The aim of all sensors is to follow a
time-dependent concentration gradient. The algorithm allows the sensors to move in space
in a non-stationary environment. It can be used for finding and tracking the boundary
of any stable surface. The common feature of the solutions proposed in [23,24] is the
concept of nominating a leader of the whole formation. This leader is selected from the
group of devices located close to the cloud boundary. The objective of the sensing system
described in [23] is to detect and track a wildfire border. It is assumed that network nodes
measure the temperature of the air. The Rothermel model describing a spreading fire and
the Kalman filter to detect a boundary in a sensing space are used to develop an algorithm
for the motion control of all sensing devices. Unfortunately, because the Rothermel model
is directly used to calculate all sensing devices’ target positions, this computing scheme
can not be quickly adapted to other use cases. In [24], a team of four mobile robots is
used to track the boundary of a phenomena cloud. A concentration gradient is used to
calculate the target positions of all robots. At every time step, all devices equipped with
punctual sensors measure the concentration of substances, and the concentration gradient
is calculated. All devices’ target positions are calculated, solving the optimization problem
with the performance function dependent on the concentration gradient. The application
of algorithms for motion planning based on the concentration gradient and the concept of
a virtual potential field [7], which are widely used in mobile robotics, is presented in [25].
Both techniques were verified and validated through simulation of the underwater oil spill
tracking by unmanned underwater vehicles.
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An alternative approach to tracking heavy gas clouds is to apply accurate models of the
phenomena and use computer simulation to predict cloud dynamics and environmental
risk. The heavy gas dispersion simulators SLAB [26] and Fluidyn-PANACHE [27] are
commonly used. In [1], rapid assessment of exposure to chlorine released from a train
derailment is described. However, to estimate the area covered by the heavy gas cloud,
additional data and measurements have to be provided, i.e., landform, wind direction and
strength, and obstacles presence. The quality of the cloud’s boundary estimation is usually
sensitive to the accuracy of these data.

Reviewing the literature shows that most of the proposed gas cloud tracking systems
built from mobile sensing devices use accurate gas concentrations in a sensing space and
centralized schemes for node position calculation. The disadvantages of such an approach
are discussed in Section 1. Therefore, our research focused on developing a solution that
does not utilize the concentration gradient and implements the distributed mobility model.

3. Problem Formulation and Model of a Mobile Wireless Sensing Network

The aim is to design a sensing network composed of intelligent mobile wireless devices
to explore an unknown environment to detect the toxic gas cloud, detect its boundaries,
and finally, monitor and track the boundary of the evolving and moving cloud. Consider a
network comprised by a set V of mobile sensing devices (network nodes) Di, i = 1, . . . , N

G = (V , E),V 6= ∅, E 6= ∅, (1)

where
V = {Di, i = 1, . . . , N}, (2)

E = {(Di, Dj) : Di ∈ V , Dj ∈ V , di
j ≤ rt, i, j = 1, . . . , N, i 6= j}. (3)

In the above formulas, E denotes the set of active direct connections between each
pair of devices Di, and Dj, i 6= j, (Di, Dj) is a bidirectional link. Each Di is equipped
with the radio transceiver with radio range rt and a positioning system (GPS). Its position
is described by a reference point xi = [xi1 , xi2 , xi3 ], which is the location of its antenna.
di

j = ||xi − xj|| is the Euclidean distance between Di and Dj. Assume that each node Di can
freely change both its position and role in a network according to its knowledge about the
environment and the network topology.

Each Di uses a punctual sensor to measure the gas concentration g at a given point in
a workspace W every regular time interval ∆t. For the sake of simplicity, it is assumed that
each sensor at time t returns one of two values

• g(x, t) = 1: the gas concentration exceeds the threshold value ḡ,
• g(x, t) = 0: otherwise.

This approach does not use a concentration gradient. Therefore, local disturbances in
gas concentration can be ignored.

Each Di can move with the speed vi ∈ [vimin , vimax ] in a desirable direction. The
common direction in motion planning is to apply an artificial potential function V that can
be viewed as a landscape where the device moves from a high-value state to a low-value
state. A value of this function can be viewed as energy and its gradient as a force. V can be
constructed as a sum of repulsive and attractive potentials, i.e., V(d) = V−(d) + V+, where
d denotes a distance between a given device and other devices in a network or obstacles in
the working space. The meaning of V−(d) and V+ is straightforward; the obstacle repels
the device, the target point attracts it. Hence, the sum of both these influences draws the
device to the target position while deflecting it from obstacles.

In our research, we have adopted a network connectivity-maintaining, virtual force
mobility model described in [28] to calculate motion trajectories of platforms carrying
sensors. In this model, a simple artificial potential function drawing on the Lennard–Jones
potential used in liquid crystals is applied to model the interactions between moving
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devices and their displacement calculation. The function Vi
j that models the interactions

between two devices Di and Dj is as follows

Vi
j (d

i
j) =

d
i
j

di
j
− 1

2

, di
j = ||xi − xj||, (4)

where d
i
j denotes the reference distance between Di and Dj. The total potential between Di

and all other m objects in the working space, i.e., other sensing devices and obstacles in the
working space and target position, can be expressed as follows

Vi
j (d

i
1, di

2, . . . , di
m) =

m

∑
j=1

εi
jV

i
j (d

i
j). (5)

where εi
j > 0 denotes the weighting factor determining the importance of the impact of the

object j on Di. Moreover, since the external communication system can be broken or suffer
from congestion in the disaster area, it is assumed that the distance between the selected,
critical pairs of nodes should not be greater than the specified safe distance that guarantees
permanent connectivity in a network.

The task is to calculate the optimal positions of all Di, i = 1, . . . , N at given time steps
for a given application scenario. From Equation (4), it is obvious that in the reference

positions of all Di, namely such that d
i
j = di

j, an optimal network topology is obtained.

4. An Overview of a Method for Heavy Gas Cloud Monitoring and Tracking

The application scenario considered in this paper is heavy gas cloud detecting and
monitoring. Figure 1 shows a typical heavy gas cloud. Due to its dispersion characteristics,
heavy gas forms a cloud with the largest cross-section at its base.

Figure 1. Typical characteristics of a heavy gas cloud.

In situational awareness tasks, determining the extent of contamination and delin-
eating the area at risk is critical. Moreover, in most heavy gas propagation simulators,
the cloud moves over a flat area and ignores local terrain and obstacles, which also cause
changes in gas density. Therefore, although our virtual force motion model allows motion
trajectories to be determined in three-dimensional space, the research presented in this
paper focuses on the two-dimensional and obstacle-free workspace.
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Consider the self-organizing network defined in Equations (1)–(5). Assume the sens-
ing devices (network nodes) Di (i = 1, . . . , N) do not have any information about the
environment, particularly the cloud location. However, they can exchange data with
each other about their positions and the measured gas concentrations. Based on this
information, they autonomously determine the direction and speed of movement in a
workspace. The limitation of the number of sensor readings g(x, t) to two values (0 and 1)
allows fast detection of the cloud boundary. Changing the reading value indicates crossing
the boundary.

Our heavy gas cloud monitoring method is composed of three main steps
executed sequentially.

• Stage 1: workspace exploration to search for a gas cloud.
• Stage 2: cloud exploration to detect its boundary.
• Stage 3: permanent exploring and tracking of a cloud boundary.

All network nodes perform at regular intervals ∆t of gas concentration measurements
and exchange information about their locations and current sensors readings. Then, based
on the obtained data, an optimal new target position of each device is calculated.

4.1. Stage I: Gas Cloud Detection

A team of N sensing devices Di, i = 1, . . . , N is used to explore the sensing scene W
to search for a gas cloud. The device D1 is responsible for maintaining the connectivity
with the base station (BS)—the system’s central station. Other devices enable constant
communication with D1 using multi-hop transmission. Hence, all Di, i = 1, . . . , N create
the coherent searching network that maintains continuous connectivity with BS.

The first stage begins with setting the target point c in the workspace. It is randomly
selected. The device closest to the point c is elected to be a temporary leader Dleader
of the team. Dleader is forced to move in the direction of c, the other nodes are forced
to follow Dleader. A new position of Dleader is calculated every ∆t solving the following
optimization problem

min
xi

Vi =

(
d

i
c

di
c
− 1

)2, di
c = ||c− xi||, (6)

with reference distance d
i
c > 0 closed to 0. Other devices follow the Dleader. They move in

formation. The process is repeated until the cloud is detected by at least one sensing device
Dk ∈ V . Then Dk continues its movement, and the remaining devices are attracted to Dk.
Their displacements are calculated as follows

min
xi

Vi =

(
d

i
k

di
k
− 1

)2, i = 1, . . . , N, i 6= k, (7)

with positive reference distance d
i
k ≈ 0.

The cloud can move and change its shape over time. All Di measure the gas concen-
tration every ∆t and in the case of g(xi, t) = 0, they move towards the cloud. The first
stage ends when sensors of at least two devices detect gas concentration higher than ḡ
(Figure 2a).

∃(i,j),i∈{1,...,N},j∈{1,...,N},i 6=j : g(xi, t) = 1∧ g(xj, t) = 1. (8)

Then, the location Ψ of the gas cloud center is estimated based on data received from
devices located inside the cloud.

Ψ =
∑Di∈V+ xi

|V+| , (9)
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where V+ denotes a set of devices located inside the cloud. The number of devices with
positive sensor readings increases in time. Ψ is updated based on new data received from
all these devices.

(a) (b) (c) (d)

Figure 2. Gas cloud detection and monitoring: (a) Stage 1 completed (b) Stage 2: clusters (M = 4)
and temporal topology, (c) Stage 2 completed, (d) Stage 3: potential direction of boundary tracking.

4.2. Stage 2: Gas Cloud Boundary Detection

The second stage aims to extract the cloud from the environment, namely, detect
its boundary, not explore its inside. The boundary is defined as a curve dividing the
workspace W into two regions, respectively, with a gas concentration greater and lower
than a given concentration threshold ĝ. The optimal solution of Stage 2 is an even coverage
of the cloud boundary with sensors. Hence, the target positions of all devices should be
on the cloud boundary. To solve this task, we have to elbow sensing nodes, repulse them
from the center of the cloud Ψ, and force them to move and take the target positions. The
complexity of the problem grows in the case of vast clouds and an insufficient number of
sensing devices. We developed and validated through simulations two computing schemes,
centralized and distributed ones. In the centralized method, one node in a network is
nominated for a network head DH ∈ V . Each device Di, i = 1, . . . , N repetitively calculates
its target position in W, solving the optimization problem

min
xi

Vi = εi
ΨVi

Ψ + ∑
Dj∈Ni ,j 6=i

εi
jV

i
j = εi

Ψ

(
d

i
Ψ

di
Ψ
− 1

)2

+ ∑
Dj∈Ni ,j 6=i

εi
j

d
i
j

di
j
− 1

2
, (10)

under the constraint
d

i
j < rt. (11)

In the above formulas, εi
Ψ ≥ 0 and εi

j ≥ 0 denote weighting factors determining the
importance of the impact of, respectively, the center of the cloud Ψ and the neighboring
node Dj on the new position of Di. di

Ψ and di
j are real Euclidean distances between xi

and, respectively, Ψ and xj after a network transformation. d
i
Ψ and d

i
j are the reference

distances between xi and, respectively, Ψ and xj. These distances are repetitively calculated
by the leader of a network DH . Ni = {(Di, Dn) : ||xi − xn|| ≤ rt}, n = 1, . . . , N is a set of
neighboring nodes of the node Di and rt is the radio range.

In contrast to the centralized method, a clustering-based technique is proposed. The
sensing network G (1) is divided into M separated subnetworks (clusters of devices) Vm,
m = 1, . . . , M, V1 ∪ V2 ∪ . . . ∪ VM = V , V1 ∩ V2 ∩ . . . ∩ VM = ∅. In each cluster Vm,
m = 1, . . . , M one node is nominated for a cluster head DHm ∈ Vm. Moreover, we select one
cluster head to be the head of the whole network, DH ∈ {DH1 , . . . , DHM}. All cluster heads
are responsible for maintaining permanent connectivity with DH . All members of a given



Sensors 2021, 21, 3625 9 of 23

cluster have to maintain permanent connectivity with its cluster head. Hence, each network
node repetitively calculates its target position in W, solving the optimization problem

min
xi

Vi = εi
ΨVi

Ψ + ∑
Dj∈Ni ,Dj∈Vm

εi
jV

i
j + ∑

k∈ICm

εi
kVi

k

= εi
Ψ

(
d

i
Ψ

di
Ψ
− 1

)2

+ ∑
Dj∈Ni ,Dj∈Vm

εi
j

d
i
j

di
j
− 1

2

+ ∑
k∈ICm

εi
k

(
d

i
k

di
k
− 1

)2
,

(12)

where

d
i
k =

∑k∈ICm di
k

2
+ w2, w2 > 0. (13)

In the above formulas, εi
k denotes a weighting factor determining the importance of

the impact of the centroid of a cluster Vk, di
k an actual Euclidean distance between xi and a

centroid of k-th cluster (ck). ICm denotes a set of indexes of two clusters closest to the m-th
cluster that contains Di. d

i
k is an average distance between centroids of two clusters with

indexes from ICm increased by a slight distance margin w2.
The calculation scheme and algorithm for selecting clusters for the set ICm are de-

scribed in detail in [11]. Moreover, the authors of [11] present the results of the comparative
study of two computing schemes: centralized and distributed. After numerous simulations,
some improvements to the cluster-based algorithm that speed up the target positions
calculations and do not affect the final result were introduced. Since the task of cluster
leaders DHm , m = 1, . . . , M is limited to maintaining communication, the optimization
problem (12) that has to be solved by each DHm can be simplified to the following one

min
xm

Vm = ∑
Dj∈Nm ,Dj∈Vm

εm
j Vm

j + ∑
k∈ICm

εm
k Vm

k

= ∑
Dj∈Nm ,Dj∈Vm

εm
j

(
d

m
j

dm
j
− 1

)2

+ ∑
k∈ICm

εm
k

(
d

m
k

dm
k
− 1

)2
.

(14)

A sample result of the clustering-based algorithm is depicted in Figure 2b. The
paper [29] defines criteria for sensing network topology assessment and describes the
algorithm that can be used to temporarily detect optimal topology and complete the second
stage of the computing scheme. In general, stage 2 is completed when devices are almost
evenly distributed on the boundary of the cloud, Figure 2c. The set of these devices’
locations can be used to discover a given gas cloud boundary’s shape.

4.3. Stage 3: Gas Cloud Boundary Tracking

The final aim is to explore and track the gas cloud and report changes to its boundary
over time. Let us assume that both nodes and clusters are almost evenly dispersed on
the area covered by the phenomena; Figure 2c and Stage 3 starts. Each cluster head DHm ,
m = 1, . . . , M selects one node from m-th cluster members. Let us denote it DPm , where
DPm ∈ Vm, and m is a cluster number. This node aims to move along the boundary over
time to discover its current shape, Figure 2d. Other members of cluster m follow DPm ,
m = 1, . . . , M. They serve as a communication link to the network head DH , which collects
data from all network nodes.
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4.3.1. Node DPm Selection

Let us consider the cluster Vm. One can distinguish two situations (Figure 3). Some
members of the m-th cluster are located on a boundary (Figure 3a). The set of nodes located
on a boundary at time t is defined as follows

{Di ∈ Vm : ∃t∗∈[t−∆tout ,t]g(xi, t∗) = 0}, (15)

where ∆tout denotes a fixed time period. The node most advanced in a clockwise direction
is selected to play the role of DPm .

(a) (b)

Figure 3. DPm selection procedure (green node—DHm , red node—DPm ): (a) DPm selected among
devices located on the boundary, (b) DPm selected among devices located inside the cloud.

Otherwise, when all cluster m-th members are located inside the cloud, the node
furthest from the cluster head DHm is nominated for DPm (Figure 3b). The distance between
a given node Di ∈ Vm and DHm is calculated in hops, i.e., number of relay nodes.

4.3.2. Motion Trajectory Calculation

Both DPm , m = 1, . . . , M and other members of clusters repetitively calculate their
target positions in W, solving the optimization problems with performance measures
defined respectively to their roles in the sensing network.

Let us start from the leaders of tracking teams DPm , m = 1, . . . , M displacements
calculation. Two points that influence these nodes’ motion trajectories can be defined,
i.e., centroid of the cloud Ψ (9) and the point χ ⊂ W that forces the node to follow the
cloud boundary. Hence, we obtain two functions VPm

Ψ and VPm
χ that model the interactions

between each DPm and, respectively, Ψ and χ. The method for determining point χ is
shown in Figure 4. Two cases are considered, the first one with the current position of DPm

outside the cloud (Figure 4a) and the second one with DPm inside the cloud (Figure 4b).

(a) (b)

Figure 4. The location of the point χ: (a) DPm (red dot) outside the gas cloud, (b) DPm inside the gas
cloud. The artificial potential forces VPm

Ψ and VPm
χ —blue arrows.
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Finally, a new position of DPm is calculated every ∆t, solving the following optimiza-
tion problem.

min
xPm

[
VPm = εΨVPm

Ψ + εχVPm
χ

= εΨ

(
d

Pm
Ψ

dPm
Ψ

− 1

)2

+ εχ

d
Pm
χ

dPm
χ

− 1

2
,

(16)

where dPm
Ψ and dPm

χ denote an actual Euclidean distances between DPm and, respectively, the

estimated centroid of the cloud Ψ and point χ. d
Pm
Ψ and d

Pm
χ are reference distances between

DPm and points Ψ and χ. Note that the cloud is in motion. Each node DPm , m = 1, . . . , M is
forced to move inside or outside the cloud depending on the sensor reading. Hence, the
motion trajectories oscillate around the cloud boundary. To force oscillations, the reference

distances d
Pm
Ψ in Equation (16) are defined as follows

d
Pm
Ψ =

{
maxDi∈V+ di

Ψ + w1 if g(xPm , t) = 1,
minDi∈V+ di

Ψ if g(xPm , t) = 0,
(17)

where V+ denotes the set of devices located inside the cloud. Other members of the clusters
Di ∈ Vm, m = 1, . . . , M (including DHm ) aim to maintain connectivity between nodes DPm

and DH . They are relay nodes in communication between DPm and DH . It is evident that
each node Di ∈ Vm, Di 6= DPm is forced to follow DPm . Hence, its new position is calculated
every ∆t, solving the optimization problem.

min
xi

Vi = Vi
Pm

=

d
i
Pm

di
Pm

− 1

2
, d

i
Pm ≤ rt, (18)

where di
Pm

denotes an Euclidean distance between Di ∈ Vm and DPm , d
i
Pm is a reference

distance between Di and DPm . rt is the radio transmission range.

4.3.3. Weighting Factor Calculation

Several parameters have to be identified in the optimization task (16). To simplify the

model, we assumed without loss of generality d
Pm = d

Pm
χ = d

Pm
Ψ and εΨ = 1. Hence, the

optimization problem (16) is reduced to the following one

min
xPm

[
VPm = VPm

Ψ + εχVPm
χ =

(
d

Pm

dPm
Ψ

− 1

)2

+ εχ

(
d

Pm

dPm
χ

− 1

)2
, (19)

and only coefficient εχ must be tuned. The impact of εχ on the recommended motion
direction of the node DPm is depicted in Figure 5.

The recommended motion direction should be fit to the shape of a given boundary.
Figure 6 presents the examples of various shapes of the cloud boundary and adequate
directions of DPm displacements.
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Figure 5. The impact of the coefficient εχ on the motion direction of the node DPm .

(a) (b) (c)

Figure 6. Recommended directions of DPm displacements; various shapes of boundaries (a) flat;
(b) convex; (c) concave.

Assume τz, z = 1, 2, . . . , denote time stamps of DPm detector state changes (g(xPm , τz)
6= g(xPm , τz − ∆t)) and τz+1 − τz = kz · ∆t, where kz is a number of sensor readings taken
since the last change of the detector state. Five methods for the weighting parameter εχ in
Equation (19) updating every ∆t, i.e., at time steps t = τz +∆t, τz + 2∆t, . . . , τz + (kz− 1)∆t,
z = 1, 2, . . . , were proposed and tested. The input data contains a list of historical values
of εχ and a list of historical bivalent sensor readings. The following items present the
algorithms for adjusting the factor in the periods between subsequent sensor readings
changes, i.e., τz+1 − τz, z = 1, 2, . . . ,.

Variant I A constant value of the weighting factor in the whole tracking horizon. ε
(k)
χ = εχ,

k = 0, 1, . . . , kz where εχ is the predefined value, the same one regardless of the
sensor state.

Variant II Decreasing the value of the weighting factor over time (the closer the device
to the cloud boundary, the slower it moves). The new value of εχ is calculated
based on the previous one, starting from the predefined value)

ε
(0)
χ = εχ, ε

(k)
χ = l · ε(k−1)

χ , k = 1, 2, . . . , kz, (20)

where l ∈ (0, 1).

Variant III The initial value of εχ for time stamps τz, z ≥ 3 is calculated as a linear
combination of a predefined constant value and value of εχ at the time stamp of
the same change of sensor state in the past.

ε
(0)
χ =

{
εχ, z < 3,
α · εz−2

χ + (1− α) · εχ, z ≥ 3,
(21)

where α ∈ (0, 1) is an experimentally adjusted model parameter and εχ a pre-
defined constant value. εz−2

χ is a value of the factor calculated at time stamp
τz−1 − ∆t. The scaling factor is decreased according to the Equation (20).
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Variant IV ε
(0)
χ = εχ at time stamps τz, z < 3. At time stamps τz, z ≥ 3 the initial value of

εχ is calculated according to the following formula

ε
(0)
χ =

{
εz−2

χ , kz−2 > 1,
εz−2

χ + b, kz−2 = 1,
(22)

where τz−1− τz−2 = kz−2 ·∆t, b > 0 is a constant value used to increase the speed
of node DPm . The scaling factor is decreased according to the Equation (20).

Variant V Modification of variant IV by replacing the fixed b with the variable b. This
variable is updated every τz, z = 1, 2, . . .. It is calculated as follows

bz =

{
b, kz−2 > 1,
bz−2 + ∆b, kz−2 = 1,

(23)

where ∆b > 0 is a fixed value and bz−2 a value of the variable b calculated at
τz−1 − ∆t. Finally, the initial value of the factor εχ at time stamps τz, z ≥ 3 is
calculated according to the following formula

ε
(0)
χ =

{
εz−2

χ , kz−2 > 1,
εz−2

χ + bz, kz−2 = 1.
(24)

Next, the scaling factor is decreased according to the Equation (20).

4.4. Nonconvex Boundary Tracking

The problem arises in the case of tracking the cloud boundary with concave sections.
The possible target positions are limited to the quarter determined by the range of motion
of DPm , Figure 7a. Therefore, it may take a long time to cover the border accurately, even if
the value of factor εχ is close to zero, (Figure 7b).

(a) (b)

Figure 7. Tracking concave sections of the cloud boundary: (a) possible locations of target points,
(b) sample motion trajectory of DPm tracking a nonconvex cloud boundary.

Hence, to improve the quality and speed up the concave sections tracking, the follow-
ing correction procedure is proposed. In the case of εχ < εmin, where εmin is a predefined
threshold value, the point χ is relocated. Its position is replaced by a new one calculated by
rotating the original one by the angle r π

2 , r ∈ {−3,−2,−1, 1, 2, 3} in a clockwise direction
relative to the position of DPm . Then, the optimization problem (19) is solved, and new
positions of leaders of tracking teams DPm , m = 1, . . . , M are calculated. The parameter r is
calculated according to Algorithm 1.
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Algorithm 1 Detection of concave parts of boundary and r calculation

1: r = 0
2: if εχ < εmin and kz > 1 then
3: if g(xPm , t) = 1 then
4: r = r− 1
5: else
6: r = r + 1
7: end if
8: else if g(xPm , t) 6= g(xPm , t− ∆t) and kz−1 = 1 then
9: if r < 0 then

10: r = r + 1
11: end if
12: if r > 0 then
13: r = r− 1
14: end if
15: end if

5. Experimental Study

The computing scheme for detecting and tracking heavy gas clouds was tested and
evaluated through simulation. Many of the experiments were designed and conducted to
tune the parameters of the developed algorithms for sensing devices’ motion planning and
evaluate the efficiency of developed sensing networks. The sensing networks comprising
intelligent wireless mobile devices were implemented in the MobASim simulation plat-
form [30]. MobASim is a software environment for prototyping and simulation of wireless
ad hoc networks in two-dimensional space. For the experiments, a simple box model of an
instantaneous heavy gas cloud [31] that hazard analysts widely adopt was implemented. It
provides a convenient and efficient method for atmospheric dispersion modeling.

5.1. Quality and Performance Metrics

Three metrics to measure the quality and efficiency of developed algorithms were
defined, i.e., (i) the accuracy of the boundary estimation, (ii) the time used to discover the
boundary, (iii) frequency of boundary-crossing.

Compact sensors’ coverage of the boundary of the cloud is the most crucial require-
ment. To evaluate this requirement, the widely used accuracy measure acc was proposed

acc =
TP + TN

TP + TN + FN + FP
. (25)

Let us assume that tcircle denotes a lap time of the gas cloud by the sensing device DPm .
Subsequent target positions of DPm are calculated every ∆t. Hence tcircle = L · ∆t, where
L is the number of calculated positions. Let us use linear interpolation. The input data
set consists of L target positions of DPm . Finally, we can approximate the cloud boundary
and use it to estimate the area covered by the cloud. Figure 8 shows the result for the
circular gas cloud covering the part of the given working space. Then, we can calculate
the values of TP (true positive), TN (true negative), FN (false negative) and FP (false
positive) in Equation (25). TP and TN denote the correctly recognized area by our sensing
devices, respectively, inside and outside the cloud, while FN and FP denote incorrectly
recognized areas. It is evident that the greater the acc measure, the better the approximation
of the boundary.
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Figure 8. The cloud boundary approximation: TP (light green), TN (bottle green), FN (yellow) and
FP (red).

In general, it is desirable for the sensing device to cross the boundary as frequently
as possible. It means that the devices are still within the narrow margin of the boundary.
Hence, the corresponding measure fcrossing can be defined

fcrossing =
∑tcircle−1

t=1 h
tcircle − 1

, h =

{
0 g(xPm , t) = g(xPm , t + ∆t)
1 g(xPm , t) 6= g(xPm , t + ∆t)

(26)

The linear interpolation better approximates the boundary of the cloud when there
is a higher fcrossing. Finally, a cloud boundary exploration time tcircle should be as short
as possible.

An indicator q that aggregates all described metrics has been introduced to simplify
the sensing network performance evaluation

q =
( fcrossing)

w f · accwacc

(tcircle)wt
, (27)

where wt > 0, w f > 0 and wacc > 0 are parameters that indicate the importance of
given measures.

5.2. Scenario Description

The testing scenario was a synthetic network comprised of 16 sensing devices designed
to detect and track the chlorine cloud resulting from an immediate leak. All devices were
equipped with radio transceivers with a maximum transmit power equal to −10 dBm
(transmission range rt = 162.86 m), sensors measuring gas concentration every ∆t = 1 s
and moving platforms with a maximum speed 15 ms. In all experiments, the network was
divided into four autonomous clusters. In general, the subnetworks trucked the cloud
independently, and the only binding element was the center of cloud Ψ. The following
values of parameters in indicator q (27) were fixed: wt = 3, w f = 1 and wacc = 2.

Five simulation scenarios were tested: Cloud 1, a gas cloud with a circle-shaped border,
Cloud 2, a gas cloud with an ellipse-shaped border, Cloud 3, a gas cloud with a mixed border,
partially circle-shaped and partially ellipse-shaped, and two gas clouds, i.e., Cloud 4 and
Cloud 5, with nonconvex borders. The average values of performance metrics acc, fcrossing,
tcircle and q calculated by leaders of all clusters are presented in the tables. All figures
illustrate motion trajectories of device DPm from the same selected cluster. Consecutive
points show successive DPm positions in the workspace (800 × 800 m). At this localization,
DPm measured the gas concentration. Colors indicate the values of εχ used to calculate
these points. Various shades of five colors: violet (εχ ∈ [0.1, 2.5) ), blue (εχ ∈ [2.5, 5.0)),
green (εχ ∈ [5.0, 7.5)), yellow (εχ ∈ [7.5, 10)), red (εχ ≥ 10) are used.
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5.3. Model Parameters Tuning—Circle and Ellipse Shaped Clouds

The first set of experiments were designed to examine and compare the performance
and efficiency of the developed sensing network for various values of parameters εχ, b,
∆b, l and α that have to be arbitrarily selected by the user and the weighting factor εχ in
Equation (19) calculated according to I-V variants described in Section 4.3.3. The aim was
to test the sensitivity of the developed algorithm for boundary tracking of these parameters
and to determine the values of all mentioned parameters and a variant of the εχ updating
procedure that guarantees high-quality boundary estimation. The results of simulations
conducted for two different shapes of gas clouds, namely scenarios Cloud 1 and Cloud 2,
are presented in Tables 1–4 and Figures 9 and 10. Tables 1 and 3 collect values of model
parameters for which the highest value of the indicator q calculated for each variant of εχ

updating was obtained in both scenarios. Tables 2 and 4 show the values of all metrics
described in Section 5.1. The best ones are marked in green. Figures 9 and 10 depict the
motion trajectories (positions in time) of the selected device DPm calculated for various
variants of the εχ updating procedure and circle-shaped and ellipse-shaped clouds.

Table 1. Values of parameters used to calculate the optimal weighting factor εχ; indicator q, simulation
scenario Cloud 1.

Variant I Variant II Variant III Variant IV Variant V

εχ 2 5 10 2 2
l - 0.8 0.8 0.8 0.8
α - - 0.9 - -
b - - - 0.5 1

∆b - - - - 1.3

Table 2. Values of performance metrics obtained for five variants of εχ updating; simulation scenario
Cloud 1.

Variant I Variant II Variant III Variant IV Variant V
tcircle 105.5 98.75 98.25 99.75 98.25

fcrossing 0.61 0.7 0.65 0.82 0.73
acc 0.977 0.988 0.988 0.99 0.991
q 4.9 7.0 6.7 8.1 7.6

Table 3. Values of parameters used to calculate the optimal weighting factor εχ; indicator q, simulation
scenario Cloud 2.

Variant I Variant II Variant III Variant IV Variant V

εχ 1 2 8 5 2
l - 0.6 0.6 0.6 0.5
α - - 0.9 - -
b - - - 0.9 1

∆b - - - - 1.3

Table 4. Values of performance metrics obtained for five variants of εχ updating; simulation scenario
Cloud 2.

Variant I Variant II Variant III Variant IV Variant V
tcircle 107 111.5 106.5 108.75 108.5

fcrossing 0.45 0.56 0.57 0.65 0.64
acc 0.962 0.965 0.972 0.975 0.973
q 3.5 3.8 4.4 4.8 4.7
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(a) (b)

(c) (d)

Figure 9. Successive DPm positions during cloud boundary tracking calculated for four variants of
εχ updating procedures: (a) variant I, (b) variant III, (c) variant IV, (d) variant V; simulation scenario
Cloud 1. The colors of the points correspond to different values of εχ.

(a) (b) (c)

Figure 10. Successive DPm positions during cloud boundary tracking calculated for three variants of
εχ updating procedures: (a) variant III, (b) variant IV, (c) variant V; simulation scenario Cloud 2. The
colors of the points correspond to different values of εχ.

It can be seen that, in general, the best values of all metrics were obtained for two
variants of the weighting factor εχ updating, namely IV and V for both simulation scenarios.
However, variant IV was the best with respect to the indicator q aggregating all metrics,
although the time used to circle the cloud was slightly longer than in the case of variant
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III. The optimal values of parameters εχ are lower for ellipse-shaped cloud boundary. A
higher value of εχ increases the time for the device to return to the cloud region when the
radius of the curvature of the cloud decreases rapidly. Moreover, it can be observed that
each device needs more time to circle the ellipse-shaped cloud than the circle-shaped one.
In general, tracking an ellipse-shaped cloud is a more difficult task.

5.4. Model Parameters Adjusting—Convex Clouds

The second set of experiments was designed to check how the model parameters
tuned for networks tracking gas clouds with circle and ellipse-shaped boundaries can be
adjusted to networks tracking gas clouds with a mixed border, partially circle shaped and
partially ellipse-shaped (scenario Cloud 3). Two series of experiments were conducted. The
aim was to compare the quality of boundary tracking in two cases (i) the weighting factor
εχ in Equation (19) calculated for values of parameters collected in Table 1, (ii) εχ calculated
for values of parameters collected in Table 3. The results are presented in Tables 5 and 6.

Table 5. Values of performance metrics obtained for five variants of εχ updating and values of parameters from
Tables 1 and 3; simulation scenario Cloud 3.

Variant I Variant II Variant III Variant IV Variant V

Table 1 Table 3 Table 1 Table 3 Table 1 Table 3 Table 1 Table 3 Table 1 Table 3
tcircle 116.5 149 112 125 112 116.5 116.5 117 113.75 122.5

fcrossing 0.52 0.81 0.37 0.73 0.54 0.69 0.68 0.72 0.52 0.69
acc 0.976 0.979 0.963 0.982 0.983 0.986 0.985 0.987 0.971 0.984
q 3.2 2.4 2.5 3.6 3.7 4.2 4.2 4.4 3.4 3.6

Table 6. Successive DPm positions during cloud boundary tracking calculated for two variants of εχ

updating procedures and two sets of parameters from Tables 1 and 3; simulation scenario Cloud 3.

Variant I Variant II

Table 1 Table 3 Table 1 Table 3

(a) (b) (c) (d)

Variant III Variant IV

Table 1 Table 3 Table 1 Table 3

(e) (f) (g) (h)
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Table 6. Cont.

Variant V

Table 1 Table 3

(i) (j)

As can be seen, all results of boundary tracking are, in general, acceptable. However,
better accuracy of the boundary estimation was obtained using values of parameters
tuned for the ellipse-shaped cloud. It is clearly illustrated in Table 6. Similar to previous
experiments described in Section 5.3, the highest value of the indicator q was obtained for
variant IV of the εχ updating procedure. The time taken to circle the gas cloud was the
shortest in the case of variant III. However, it should be noted that much worse results
in comparison to those presented in Section 5.3 were achieved for variant V. It can be
concluded that the presented approach is sensitive to model parameters. Hence, the
number of parameters should not be too large as it is difficult to identify them for various
shapes of clouds. Variant V can be successfully applied in tracking clouds with a big radius
of curvature.

5.5. Model Parameters Adjusting—Nonconvex Clouds

The experiments discussed in the two previous sections were conducted for convex
clouds. Let us consider a nonconvex cloud with an irregular, nonconvex boundary, as
presented in Figure 11, Cloud 4.

(a) (b)

(c)

Figure 11. Successive DPm positions during cloud boundary tracking calculated for three variants of
εχ updating procedures: (a) variant III, (b) variant IV, (c) variant V; simulation scenario Cloud 4. The
colors of the points correspond to different values of εχ.
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A series of simulations were conducted for three variants of the εχ updating procedure
and parameters from Table 1. Table 7 shows the values of metrics obtained for three variants
of εχ updating. Worse results were obtained than in scenarios with convex boundaries. It
can be concluded that variant V of the εχ updating procedure is suitable only when the
boundary has a shape with a constant radius of curvature. In the case of two other variants,
the results are very similar, and the decision to choose one of them requires prioritizing
the criteria. When fast detection of the boundary is crucial, variant III is recommended.
In addition, simulations were performed in which εχ was calculated for parameters from
Table 3. The results were a bit better, i.e., acc = 0.962 and q = 3.2.

Table 7. Values of performance metrics obtained for three variants of εχ updating; simulation scenario
Cloud 4.

Variant III Variant IV Variant V
tcircle 112 124 119.75

fcrossing 0.47 0.96 0.49
acc 0.956 0.991 0.949
q 3 2.9 2.6

The last series of experiments aimed to test the efficiency of the correction procedure
described in Section 4.4. The results of simulations for the application scenario Cloud 5, i.e.,
a cloud with multiple concave parts of its boundary, are presented in Table 8 and Figure 12.
The weighting factor εχ was calculated according to Equation (22) (variant IV) for values of
parameters from Table 1. The threshold value εmin was fixed to 0.3. The motion trajectory
of the device DPm presented in Figure 12b can be compared to the one calculated when the
correction for concave parts of boundaries is disabled (Figure 12a). It can be seen that the
correction procedure significantly improves the accuracy of cloud boundary estimation for
very irregularly shaped clouds.

(a) (b)

Figure 12. Successive DPm positions during cloud boundary tracking calculated for two variants:
(a) correction procedure disabled, (b) correction procedure enabled; simulation scenario Cloud 5. The
colors of the points correspond to different values of εχ.

Table 8. Values of performance metrics obtained for variant IV, parameters from Table 1, disabled
and enabled correction procedure.

Disabled Enabled
tcircle 343.5 360.25

fcrossing 0.51 0.6
acc 0.987 0.99
q 6.9× 10−10 8× 10−10

6. Conclusions

The paper summarizes the research results concerned with designing and developing
distributed sensing systems for heavy gas cloud monitoring. This system comprises
autonomous unmanned vehicles, equipped with punctual sensors, radio transceivers
and GPS modules that spontaneously create a network of devices that adapt to achieve
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goals. The paper describes a three-stage strategy for boundary detection, estimation
and tracking. In this approach, the optimal motion trajectories for all sensing devices’
discovering the current shape of the boundary are calculated based on the data collected
from sensing vehicles and the models for target position calculation that incorporates
artificial potential functions. The effectiveness was tested through extensive simulations.
The presented results of experiments show that the design of an efficient sensing system
for phenomena clouds should account for trade-offs between detection accuracy and
computational complexity, measurement quality and equipment cost, communication
reliability and network load. The challenge for the designer of this type of network is to
develop efficient algorithms for online calculating of motion trajectories of sensing nodes
and determine the optimal values of model parameters. This paper presents such an
algorithm and examines the quality of various computing schemes for its parameter tuning.
Simulation experiments showed the sensitivity of the proposed system to the model
parameters and the need to select a procedure for tuning the coefficients of the optimization
task to a particular scenario. Nevertheless, even for nonconvex clouds with irregular
shapes, satisfactory results were obtained for calculated values of model parameters.
Moreover, the simulation results demonstrated that using only a rough measurement to
indicate that the threshold concentration value was exceeded can detect and track a gas
cloud boundary. Calculating new sensor positions only based on the information about
exceeding the safe gas concentration value makes our sensing system less sensitive to the
quality of the gas concentration measurement. Because of the inaccuracy of actual sensors,
such an approach may be better suited to real-world applications. Moreover, it can be easily
adapted to detect other phenomena clouds, namely oil spill and wildfires, etc. To sum up,
the simulation results corroborate our analysis and confirm that mobile ad hoc networks
can be successfully used to monitor dynamic phenomena, create situation awareness and
support rescue teams.

The research in that domain will be continued. The future work will focus on the
experiments conducted on more complex and realistic scenarios with more detailed toxic
gas dispersion models and workspace with obstacles. The goal is to test the sensitivity of
our system on the speed of boundary evolvement and the impact of the obstacles on the
quality of gas concentration measurement, radio communication and, consequently, the
effectiveness of our monitoring system. Moreover, we plan to develop and investigate a
version of the system to operate in a three-dimensional workspace. It will allow extending
the possibilities of applications to monitor other phenomena such as oil spills, wildfire,
moving groups of people.
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Appendix A. Summary of Standard Notation

G = (V , E) a sensing network; V—a set of sensing devices, E a set of active direct
connections between each pair of devices

Di, xi , vi i-th sensing device, its position in the workspace W and speed

Ni a set of nodes in the radio range rt of the node Di

di
a, d

i
a an actual Euclidean distance and a reference distance between Di and a

εi
b a weighting factor determining the importance of the impact of b on

the new position of Di

Vb
a a virtual force that models the interactions between two points in the

workspace W

g(x, t) a gas concentration measured at point x and time t

Dleader a formation leader in the gas cloud detection stage

DH a network head in the gas cloud boundary detection stage

Vm, DHm m-th cluster and its cluster head

DPm a leader of tracking team in m-th cluster (cloud boundary track-
ing stage)

Ψ, εΨ an estimated gas cloud center and its weighting factor

χ, εχ a point forcing a device to follow the cloud boundary and its weight-
ing factor

tcircle, fcrossing,
acc, q

quality metrics: a cloud boundary exploration time, a number of
boundary crossing, an accuracy of boundary detection, an aggre-
gated measure
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