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Abstract: Cellular senescence contributes to aging and age-related disorders. High glucose (HG)
induces mesenchymal stromal/stem cell (MSC) senescence, which hampers cell expansion and
impairs MSC function. Intracellular HG triggers metabolic shift from aerobic glycolysis to oxidative
phosphorylation, resulting in reactive oxygen species (ROS) overproduction. It causes mitochondrial
dysfunction and morphological changes. Tryptophan metabolites such as 5-methoxytryptophan
(5-MTP) and melatonin attenuate HG-induced MSC senescence by protecting mitochondrial integrity
and function and reducing ROS generation. They upregulate the expression of antioxidant enzymes.
Both metabolites inhibit stress-induced MSC senescence by blocking p38 MAPK signaling pathway,
NF-κB, and p300 histone acetyltransferase activity. Furthermore, melatonin upregulates SIRT-1,
which reduces NF-κB activity by de-acetylation of NF-κB subunits. Melatonin and 5-MTP are a new
class of metabolites protecting MSCs against replicative and stress-induced cellular senescence. They
provide new strategies to improve the efficiency of MSC-based therapy for diverse human diseases.

Keywords: type 2 diabetes; hyperglycemia; mesenchymal stromal/stem cells; 5-methoxytryptophan;
melatonin; cellular senescence mitochondrial dysfunction; reactive oxygen species; antioxidant enzymes

1. Introduction

Cellular senescence is a hallmark of aging [1]. Accumulation of senescent cells pro-
motes aging and triggers age-related disorders [2]. Cellular senescence was originally
observed in cultured fibroblasts following limited replications [3]. It was subsequently
noted as a response to DNA damage, telomere attrition, mitochondrial dysfunction, and
oncogenic, hyperglycemic, and oxidative stresses [4–6]. Cellular senescence plays an im-
portant role in parturition and embryo development [7,8]. It may influence the fate of
tumorigenesis through senescence-associated secretory phenotype (SASP). It was reported
that acute senescent cells induce immortalized prostate cells to undergo senescence via
SASP but have no effect on metastatic prostate cancer cells [9]. Replicative, develop-
mental, and stress-induced premature cell senescence share common cellular phenotypic
changes including an increased expression of p16 and p21, cell cycle and proliferation
arrest, senescence-associated (SA) heterochromatin foci, SA-β galactosidase (β gal), and
SASP, as well as cellular morphological changes [10]. Phenotypic changes of senescent
cells are mediated by multiple signaling pathways leading to complex transcriptional
reprogramming [11,12].

Hyperglycemia due to type 2 diabetes (T2D) and pre-diabetic metabolic syndrome and
obesity has emerged as a key extracellular stress signal to induce cellular senescence as well
as cell death [13]. As T2D is increasing with aging and contributes to age-related chronic
diseases [13], hyperglycemia has become a leading age stress factor. Hyperglycemia induces
cellular senescence through metabolism shift, reactive oxygen species (ROS) generation,
mitochondrial dysfunction, and aberrant gene expressions.

Replicative and stress (hyperglycemia and oxidative stress)-induced mesenchymal
stromal cell senescence has been extensively investigated as it is critical for MSC-based cell
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therapy. Mesenchymal stromal cells (MSCs) are isolated and characterized according to
a set of criteria [14,15]. Current isolation procedures generate heterogeneous nonclonal
stromal cell populations with different multipotent and differentiation potentials [16].
MSCs possess immunosuppressive and anti-inflammatory properties [17,18]. As MSCs
can be obtained and cultured with ease, they are popular sources for cell-based therapy
of a variety of human diseases. More than 700 clinical trials have been registered [16].
However, MSC-based cell therapy faces challenging problems. Replicative senescence of
cultured MSCs limits the cell expansion and its availability for cell therapy. Moreover, stress-
induced premature senescence in vitro and in vivo reduces the efficacy of transplanted
MSCs in tissue regeneration and treatment of autoimmune and inflammatory diseases.
New strategies are actively being employed to develop new drugs to combat cellular
senescence. The candidate drugs are either senolytic, which kill and remove senescent
cells, or senomorphic, which modify senescent cell phenotypes to attenuate their tissue-
damaging effects [19–21]. Senomorphic agents comprise a wide range of compounds
with different targets aiming at reducing SASP and senescent markers without causing
cell apoptosis [20]. Recent studies indicate that tryptophan metabolites produced via the
tryptophan hydroxylase (TPH) pathway defend against replicative and hyperglycemia
or oxidative stress-induced cell senescence. 5-methoxytryptophan (5-MTP) was reported
to rescue bone marrow mesenchymal stromal cells (BM-MSCs) from high glucose (HG)-
induced senescence [22], while melatonin protects MSC from replicative and stress-induced
senescence [23]. Melatonin and 5-MTP represent a new class of senomorphic compounds
which may be useful in protecting MSC against senescence and age-related diseases. This
review will comment on the anti-senescence actions of 5-MTP and melatonin with a focus
on 5-MTP biosynthesis, its defense of HG-induced MSC senescence, and mechanisms
of actions.

2. Hyperglycemia Induces Cellular Senescence

High blood glucose levels (hyperglycemia) contribute to diabetic microvascular, renal,
retinal and neural complications by multiple mechanisms including mitochondrial dysfunc-
tion and ROS generation [24,25]. Results from in vivo and in vitro experiments have shown
that hyperglycemia induces cellular damage, apoptosis, and necrosis through ROS genera-
tion and mitochondrial dysfunction [24,25]. In addition, hyperglycemia was reported to
induce renal tubular cell and retinal endothelial cell senescence in streptozotocin-induced
diabetic mice [26,27] and HG in cultured media was reported to induce senescence of
diverse cell types including MSCs [28–30]. Senescent cells cause further tissue damage
through secretion of pro-inflammatory cytokines and proteolytic enzymes [1,31].

2.1. HG-Induced Cellular Senescence Is Attributed to Mitochondrial Dysfunction and
ROS Generation

The exact mechanisms by which HG induces senescence are not entirely clear. Mi-
tochondrial dysfunction and ROS generation are considered to be major players. HG
induces mitochondrial ROS generation by enhancing mitochondrial metabolism via tricar-
boxylic acid (TCA) cycle and oxidative phosphorylation [24]. ROS generation is closely
related to mitochondrial morphological changes. It was reported that HG-treated rat liver
cells undergo mitochondrial fission, which was required for ROS generation [32]. ROS,
in turn, cause mitochondrial fission [33], creating a vicious cycle (Figure 1). It was also
reported that HG increases ROS through activation of NADPH oxidase [34,35], but its
relevance to cell senescence is unclear and remains to be investigated. ROS overproduction
is considered to be a major cause of cell damage and lethality. However, at sublethal
concentrations, H2O2 induces cellular senescence as a way of protecting cells from ROS-
induced death [36,37]. ROS represent a common mediator via which diverse stress signals
induce cellular senescence. For example, Ras overexpression in fibroblasts induce cellular
senescence by elevation of ROS generation [37].
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attrition and altered expression of p53, p16, and p21 [38,39]. However, increased ROS gen-
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Changes in mitochondrial dynamics [41,42], metabolism, and signaling molecules such as 
AMPK [43–45] are considered to mediate senescence independent of ROS. 
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MSCs in bone marrow reside in hypoxic microenvironment. They depend on glycol-

ysis as energy source and thus express relatively low levels of oxidative phosphorylation 
(OXPHOS) proteins [46]. MSCs cultured in nutrient-rich normoxic conditions shifts the 
metabolism to OXPHOS [47]. MSC metabolism is altered during osteoblastic vs. chondro-
genic differentiation. Osteoblastic differentiation requires OXPHOS, while chondrogenic 
differentiation uses aerobic glycolysis in energy generation [48]. When MSCs are incu-
bated with HG medium, excessive intracellular glucose shifts metabolism from aerobic 
glycolysis to TCA cycle and OXPHOS. Consequently, a high level of ROS is leaked from 
the electron transport chain which induces MSC senescence [49,50]. Effects of HG on MSC 
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Figure 1. Simplified scheme illustrating the mechanism by which high glucose (HG) induces
cellular senescence. HG enhances tricarboxylic acid (TCA) cycle and oxidative phosphorylation
(OXPHOS), which results in reactive oxygen species (ROS) generation. HG induces mitochondrial
fission, which is accompanied by ROS accumulation. ROS, in turn, induces mitochondrial fission as
indicated by a two-head arrow. Sublethal ROS (H2O2) induces oxidative DNA damage and senescent
phenotypic changes.

ROS induces cellular senescence by oxidative damage to DNA, leading to telomere
attrition and altered expression of p53, p16, and p21 [38,39]. However, increased ROS
generation cannot explain all the phenotypic manifestations. Mitochondrial structural
changes and functional defects contribute significantly to stress-induced senescence [40].
Changes in mitochondrial dynamics [41,42], metabolism, and signaling molecules such as
AMPK [43–45] are considered to mediate senescence independent of ROS.

2.2. HG Induces MSC Senescence

MSCs in bone marrow reside in hypoxic microenvironment. They depend on glycoly-
sis as energy source and thus express relatively low levels of oxidative phosphorylation
(OXPHOS) proteins [46]. MSCs cultured in nutrient-rich normoxic conditions shifts the
metabolism to OXPHOS [47]. MSC metabolism is altered during osteoblastic vs. chondro-
genic differentiation. Osteoblastic differentiation requires OXPHOS, while chondrogenic
differentiation uses aerobic glycolysis in energy generation [48]. When MSCs are incu-
bated with HG medium, excessive intracellular glucose shifts metabolism from aerobic
glycolysis to TCA cycle and OXPHOS. Consequently, a high level of ROS is leaked from
the electron transport chain which induces MSC senescence [49,50]. Effects of HG on MSC
mitochondrial biogenesis and metabolism have not been described. However, it is likely
HG-induced mitochondrial structural and metabolic changes contribute to MSC senescence.
MSC senescence puts a limit to MSC expansion, which hampers its use in cell therapy.
Furthermore, it impairs MSC function which reduces its support for hematopoiesis and
immunosuppressive properties [51].
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3. 5-MTP Rescues MSCs from HG-Induced Senescence
3.1. 5-MTP Biosynthesis and Its Perturbation by Environmental Stresses

5-MTP was originally identified as a cytoprotective molecule named cytoguardin [52].
It is produced in and released from human fibroblasts [52]. Its biosynthesis in fibroblasts is
catalyzed by two enzymes: tryptophan hydroxylase (TPH), which converts L-tryptophan
to 5-hydroxytryptophan (5-HTP) and hydroxyindole O-methyltransferase (HIOMT), which
converts 5-HTP to 5-MTP [53] (Figure 2A). Of the two isoforms of TPH identified and
characterized in human cells [54,55], TPH-1 is selectively expressed in human fibroblasts,
and silencing of TPH-1 with siRNA results in diminished release of 5-MTP into the cul-
tured medium [53]. Thus, TPH-1 is the functional isoform catalyzing 5-MTP synthesis.
HIOMT was previously identified and characterized as the terminal enzyme in catalyz-
ing melatonin (N-acetyl-5-methoxytryptamine) synthesis. As it catalyzes the conversion
of N-acetylserotonin to melatonin in pineal cells (Figure 2B), it is commonly called N-
acetylserotonin O-methyltransferase (ASMT). It is encoded by a single gene with three
mRNA isoforms due to alternative splicing [56,57]. The full-length isoform which contains
LINE 1 repeat sequences in exon 6 codes for a 373 aa protein [57]. The isoform that codes for
a 345 aa protein has exon 6 spliced, while the isoform coding for a 298 aa protein loses exons
6 and 7 to splicing. The nomenclature for HIOMT isoforms is different between NCBI and
Uniprot database. To avoid confusion, the isoforms are thus named HIOMT373, 345 and
298, respectively [58]. Bovine and macaque express only a single transcript which aligns
with human HIOMT345. As only HIOMT345 from pineal tissues is catalytically active in
melatonin synthesis, HIOMT345 is considered to be a wild-type ASMT [59]. By contrast,
HIOMT345 is not involved in 5-MTP production. Fibroblasts express only HIOMT298
isoform which was shown to be active in catalyzing 5-MTP synthesis [58]. This is surprising
because HIOMT298 is a truncated isoform and structural analysis suggests that it lacks
binding site for S-adenosylmethionine, a co-factor required for melatonin synthesis [59]. It
is unclear how this truncated isoform catalyzes conversion of 5-HTP to 5-MTP.

It was subsequently reported that 5-MTP production is not limited to fibroblasts.
Vascular endothelial cells (ECs) and smooth muscle cells (SMCs) as well as bronchial and
renal epithelial cells produce 5-MTP [60]. Human umbilical vein ECs express TPH-1 and
HIOMT298. Immunofluorescent studies show that 5-MTP is detected in cytoplasm with
an endoplasmic reticulum (ER) pattern, and biochemical studies suggest that 5-MTP is
secreted via Golgi vesicular transport [60]. BM-MSCs, like fibroblasts and ECs, express
TPH-1 and HIOMT298 and release 5-MTP into the conditioned medium.

Lipopolysaccharide (LPS) and pro-inflammatory cytokines inhibit 5-MTP production
by suppressing TPH-1 expression in ECs [60,61]. Addition of 5-MTP alleviates LPS and
cytokine-induced vascular permeability suggesting that 5-MTP plays an important role in
protecting endothelial barrier function [60,61]. LPS and pro-inflammatory cytokines exert
their actions via ROS [62,63]. BM-MSCs cultured in medium containing HG release a lower
amount of 5-MTP into the medium than control. Incubation of BM-MSCs with sublethal
concentrations of H2O2 results in reduction of 5-MTP in the medium. Reduction of 5-MTP
may be due to TPH-1 suppression by ROS.
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Figure 2. Biosynthesis of 5-methoxytryptophan (5-MTP) and melatonin. (A) 5-MTP is produced
in human fibroblasts, bone marrow mesenchymal stromal cells (BM-MSCs), vascular endothelial
cells (ECs) and SMCs, bronchial and renal epithelial cells. Its synthesis is catalyzed by TPH-1
(tryptophan hydroxylase-1) followed by hydroxyindole O-methyltransferase (HIOMT, also known
as N-acetylserotonin O-methyltransferase, ASMT). HIOMT298 denotes HIOMT isoform coding for
298 aa HIOMT. (B) For comparison, melatonin biosynthesis in pineal cells is shown, highlighting
HIOMT345 (ASMT 345) as the functional isoform. (C) Structural comparison between 5-MTP
and melatonin.
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3.2. 5-MTP Rescues BM-MSC from HG-Induced Cellular Senescence by Suppressing
ROS Generation

Addition of 5-MTP to BM-MSC cultured in HG medium prevents growth arrest, blocks
p16 and p21 elevation, attenuates SA-β gal positive cells and reduces interleukin-6 (IL-
6) [22]. Furthermore, 5-MTP preserves BM-MSC morphology. 5-MTP controls HG-induced
MSC senescence by suppressing ROS accumulation [22]. HG enhances mitochondrial ROS
generation through electron transport chain [24]. Excessive ROS causes cell damage and
death. However, at sublethal concentrations, ROS induces cellular senescence. Pretreatment
of BM-MSC with 5-MTP results in reduction of ROS [22]. ROS comprise several species of
oxidants and oxygen radicals among which H2O2 is a key mediator of cellular senescence.
H2O2 at sublethal concentrations induces characteristic BM-MSC senescence [22]. 5-MTP
pretreatment alleviates H2O2-induced cellular senescence [22].

3.3. 5-MTP Upregulates MnSOD and Catalase via FOXO3a

ROS levels in mitochondria are controlled by several antioxidant enzymes including
MnSOD (SOD-2) and catalase [64]. Hyperglycemia was reported to alter MnSOD and
catalase activities in a cell-dependent manner: it downregulates MnSOD and catalase in
human umbilical vein ECs but not in microvascular EC [65]. HG does not alter MnSOD or
catalase activity in BM-MSC [22]. However, 5-MTP upregulates MnSOD and catalase in
HG-treated BM-MSCs. MnSOD and catalase are mitochondrial antioxidant enzymes that
have immediate access to ROS generated in mitochondrial matrix, converting superoxide
to water and oxygen. Upregulation of both enzymes by 5-MTP increases ROS scavenging
and thereby reduces the damaging effect of ROS.

FOXO3a is a pleotropic transcriptional activator that mediates expression of diverse
genes including antioxidant genes [66,67]. 5-MTP upregulates FOXO3a expression, and
silencing of FOXO3a in HG-treated BM-MSC abrogates 5-MTP-induced rise of MnSOD
and catalase [22]. Importantly, FOXO3a silencing eliminates the protective effect of 5-
MTP on HG-induced senescence [22]. 5-MTP protects HG-induced cellular senescence by
upregulating FOXO3a-mediated MnSOD and catalase expression.

3.4. 5-MTP Restores BM-MSC Osteogenic Differentiation via Controlling ROS Levels

Excessive ROS generation was reported to induce defective MSC differentiation: it
impairs osteogenic and promotes adipogenic differentiation [68]. The adverse effects of
ROS on MSC differentiation play an important role in age-related skeletal disorders and
obesity. It is worth noting that physiological osteogenic differentiation is accompanied
by metabolism shift from aerobic glycolysis to oxidative phosphorylation [46]. Although
ROS is expected to be elevated, it is not because MnSOD and catalase activities are upreg-
ulated [46]. Thus, the ROS level is controlled by a well-regulated redox balance during
osteogenic differentiation. Oxidative stress disrupts the balance and tilts it toward ROS
overproduction, which impairs osteogenic differentiation. 5-MTP restores the redox bal-
ance and thereby protects MSC osteogenic differentiation [22]. It is less clear whether
excessive ROS influence MSC chondrocyte differentiation [69]. However, it was reported
that chondrocytes from patients with osteoarthritis (OA) exhibit mitochondrial defects and
senescent changes [70]. Oxidative stress-induced chondrocyte senescence contributes to
joint dysfunction in OA [70]. As 5-MTP and melatonin reduce ROS accumulation, they
may exert an effect on protecting chondrocyte function [22,71].

4. Melatonin Protects Against Replicative and Stress-Induced Cellular Senescence

Melatonin is produced primarily in pineal and retinal cells. Its synthesis from L-
tryptophan shares with serotonin biosynthesis common enzymes, i.e., TPH-2 which con-
verts L-tryptophan to 5-HTP and aromatic amino acid decarboxylase (AADC) which
catalyzes decarboxylation of 5-HTP to form 5-hydroxytryptamine (5-HT, serotonin) (Fig-
ure 2B). 5-HT is N-acetylated by arylalkylamine N-acetyltransferase (AANAT) to form
N-acetyl-5HT (N-acetylserotonin). AANAT expression is regulated by circadian rhysm and
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its expression in dark accounts for burst melatonin synthesis. The final step of melatonin
synthesis is catalyzed by HIOMT (ASMT). All three isoforms are detected in pineal cells
but only isoform 345 is catalytically active in melatonin synthesis [59]. As HIOMT298 is
expressed in pineal cells, it is possible that they may produce 5-MTP. Melatonin plays a
physiological role in regulating circadian rhythm and sleep [72]. In addition, a large num-
ber of reports suggest that melatonin possess anti-inflammatory actions by suppressing the
expression of pro-inflammatory genes such as cyclooxygenase-2 [73]. It protects against
stress-induced cell and tissue damage [74]. Melatonin inhibits cancer growth through
melatonin-receptor-mediated signaling transduction [75,76]. Recent studies reveal that
melatonin also possesses anti-senescence activities.

4.1. Melatonin Attenuates MSC Replicative Senescence by Restoring Mitochondrial Function and
Reducing ROS

Cultured MSCs undergo progressive replicative senescence accompanied by mito-
chondrial dynamic changes, excessive ROS generation, and decreased mitochondrial mem-
brane potential [23]. Melatonin pretreatment rescues MSC from replicative senescence by
restoring mitochondrial dynamics, reducing ROS generation and maintaining membrane
potential through upregulating heat shock protein 1L (HSPA1L) [18]. HSPA1L, a member
of HSP70 family [77], functions as a chaperone protein facilitating protein folding and
stabilizing prion protein Prpc [23]. Prpc regulates mitochondrial integrity and function
through binding to HSPA1L. Melatonin-induced HSPA1L upregulation results in recruit-
ment of Prpc to mitochondria to maintain mitochondrial integrity. HSPA1L expression is
suppressed in replicative senescent MSCs with a lower level of Prpc recruitment [23]. Mela-
tonin pretreatment restores HSPA1L expression and Prpc recruitment, thereby alleviating
senescent changes and improving MSC functions. Melatonin-treated MSCs confer more
effective revascularization when transplanted to a hindlimb ischemic murine model [23].

4.2. Melatonin Controls HG- and Oxidant-Induced Cellular Senescence by Upregulating
Antioxidant Enzymes

Pancreatic β-cells incubated in HG medium undergo premature senescence which
is associated with reduced expression of antioxidant enzymes and increased ROS [78].
HG-treated cells exhibit impaired insulin secretion. Melatonin attenuates HG-induced
senescence and improves insulin secretory activity by restoring expression of antioxidant
enzymes and suppressing ROS generation [78]. Melatonin was reported to protect MSC
from oxidant-stress-induced senescence by scavenging ROS generation [79]. Melatonin is
also effective in antagonizing the action of a uremic toxin, p-cresol, on MSC senescence [80].
Melatonin blocks HG- and oxidant-induced senescence in diverse cell types by scavenging
ROS generation through upregulation of MnSOD and catalase activities [78,80] in a manner
analogous to 5-MTP.

5. Melatonin and 5-MTP Target p38 MAPK

p38 MAPK occupies a central position in transducing signals from environmental
insults [81]. It mediates inflammation by activating pro-inflammatory activators [81].
Furthermore, it mediates stress-induced cellular senescence through interaction with
ROS [82,83]. ROS alters p38 MAPK activities by oxidative modification of kinases in
the p38 MAPK signaling cascade [84]. ROS may sustain p38 MAPK activation by inhibiting
MAPK phosphatases (MKP) [85,86].

5-MTP was reported to be an arsenal against LPS- induced systemic inflammation
by blocking p38 MAPK activation [60]. It protects vascular barrier function and endothe-
lial integrity by inhibiting p38-mediated damage [61,87,88]. 5-MTP effectively prevents
vascular intimal hyperplasia and vascular smooth muscle cell migration by blocking p38
MAPK activity [89]. Thus, p38 MAPK inactivation is a key mechanism by which 5-MTP
exerts its biological actions. It is highly likely that 5-MTP attenuates HG-induced MSC
senescence by suppressing p38 MAPK signaling pathway. Melatonin controls inflammation
and tumorigenesis also by targeting p38 MAPK. Melatonin was reported to inhibit breast
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cancer cell invasion and control glial cell-mediated inflammation by blocking p38 MAPK
activation [90,91]. Furthermore, it protects BM-MSC from oxidant-induced senescence and
differentiation defects through inhibiting p38 MAPK [92].

5-MTP and melatonin protect stress-induced cell damage and senescence by targeting
ROS and p38 MAPK-signaling pathway suggesting that they share a common mechanism.
Melatonin is known to exert its actions by interacting with membrane receptors. It is
unknown whether 5-MTP acts via a specific receptor. There is suggestive evidence that
macrophage plasma membrane expresses 5-MTP receptors [60]. It remains unclear whether
5-MTP receptors are related to melatonin receptors and whether the receptor-mediated
signaling pathway cross-talks with the p38 MAPK signaling cascade.

6. Melatonin and 5-MTP Control Cellular Senescence through Inhibition of NF-κB

Cellular senescence is accompanied by transcriptome rearrangement and altered gene
expressions [11,12]. Several transactivators are activated to promote SASP and senescence.
Genome-wide search and proteomic analysis identify NF-κB as a master regulator of
cellular senescence and SASP [93,94]. ROS and redox transitions are the key drivers of
NF-κB activation [95–97]. H2O2 activates IκB kinase (IKK) via which it phosphorylates and
degrades IκB and the consequent liberation of p65/p50 NF-κB [95]. NF-κB enters nucleus
where it is phosphorylated and binds to specific binding motifs of a large repertoire of
pro-inflammatory and pro-senescent genes and promotes their expression. C/EBPβ was
reported to regulate stress-induced senescence and SASP via ROS and p38 MAPK [98].
NF-κB and C/EBPβ act in concert to promote senescence, and mediate age-related chronic
inflammation and tissue damages through SASP. Melatonin and 5-MTP block NF-κB and
C/EBPβ activation and thereby attenuate stress-induced senescence and SASP-mediated
chronic inflammation.

Melatonin and 5-MTP Modify Histone and NF-κB Acetylation

Gene transcription is regulated by epigenetic modification of histones and trans-
activators. Acetylation of histones by transcriptional co-activators such as p300 his-
tone acetyltransferase (HAT) enhances promoter activities by altering chromatin struc-
ture [99,100]. Furthermore, p300 HAT acetylates myriade transactivators to strengthen
their binding [99,100]. Histone and transactivator acetylation are controlled by histone
deacetylases and a dynamic balance between p300 HAT and deacetylases maintains a
normal state of gene expression. NF-κB binding and transcriptional activity are enhanced
by p300 HAT [101,102]. HG increases expression of p300 [103]. 5-MTP inhibits p300 HAT
activation and reduces NF-κB-mediated expression of cyclooxygenase-2 (COX-2) and pro-
inflammatory cytokines [60,104]. 5-MTP probably controls stress-induced MSC senescence
by blocking p300 HAT activation thereby reducing NF-κB acetylation and NF-κB mediated
transcription of pro-senescent genes.

Melatonin protects cells and tissues from inflammatory damage by inhibiting NF-κB
activation and NF-κB-mediated expression of COX-2 and cytokines [105–107]. Further-
more, its control of H2O2-induced cellular senescence is mediated by Sirt-1 dependent
deacetylation of p65 submit of NF-κB, thereby reducing NF-κB activity [108]. Sirt-1 is
a NAD-dependent deacetylase, which performs diverse biological functions including
regulation of cellular senescence [109]. Sirt-1 is suppressed in senescent cells [110] and
its supplement alters senescent phenotype and reduces secretion of pro-inflammatory cy-
tokines through histone de-acetylation [111]. H2O2 at sublethal concentrations suppresses
Sirt 1 expression accompanied by p38 MAPK activation. Melatonin restores Sirt 1 levels
while inhibiting p38 MAPK suggesting that Sirt 1 is regulated via p38 MAPK and melatonin
upregulates Sirt 1 by controlling p38 MAPK.

Transcription of pro-senescent and pro-inflammatory genes is regulated by a delicate
balance between p300 HAT and Sirt 1 deacetylase. Oxidative and metabolic stresses tilt
the balance to histone and NF-κB acetylation through p300 HAT activation and Sirt 1
downregulation (Figure 3). Melatonin restores the balance and maintains a normal level of
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histone and NF-κB acetylation. Given that 5-MTP inhibits p300 HAT, 5-MTP acts on histone
and NF-κB acetylation in a manner similar to melatonin. This regulatory mechanism
is of particular importance to SASP as it contributes significantly to age-related chronic
inflammatory disorders.
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7. Conclusions

Melatonin and 5-MTP are structurally related metabolites derived from L-tryptophan
via the TPH pathway (Figure 2C). They control replicative and/or HG- and oxidant-induced
MSC senescence by scavenging ROS. Replicative and oxidative stress-induced cellular
senescence is characterized by an early event of mitochondrial structural changes and
metabolic shift, resulting in excessive ROS generation. Melatonin and 5-MTP reduce ROS
by upregulating the expression of mitochondrial MnSOD and catalase. Melatonin protects
mitochondrial integrity and function by upregulating a p70 heat shock family protein,
HSPA1L, which recruits Prion protein, Prpc, to maintain mitochondrial homeostasis and
reduce ROS generation.

Proteomic analysis and genome-wide search identified NF-κB (p65/p50) as a master
promoter of cellular senescence. Stress signals activate IKK, which phosphorylates IκB,
resulting in IκB degradation and p65/p50 activation. NF-κB activity is post-translationally
enhanced by phosphorylation and epigenetic modification. The p300 HAT acetylates NF-



Int. J. Mol. Sci. 2021, 22, 697 10 of 14

κB subunits and augments its binding activity, while Sirt 1 deacetylates NF-κB and reduce
its activity. Pro-inflammatory mediators and HG increase p300 HAT activity, thereby
enhancing NF-κB-mediated senescence. Stress-induced senescence is accompanied by
downregulation of Sirt 1, enforcing NF-κB acetylation and activation. 5-MTP inhibits
p300 HAT activity, thereby reducing NF-κB binding and transcriptional activity, while
melatonin upregulates Sirt 1 and the consequent deacetylation of p65 subunit. Epigenetic
modification of NF-κB and histone is a common transcriptional mechanism by which
tryptophan metabolites combat cellular senescence.

Several triggering events of cellular senescence are mediated via p38 MAPK. The
p38 MAPK mediates ROS-induced cellular senescence and NF-κB activation. Melatonin
and 5-MTP target p38 MAPK for their anti-senescent and anti-inflammatory actions. It is
unclear how these two metabolites block p38 MAPK activation. Melatonin exerts its actions
by interaction with membrane receptors and receptor-mediated signaling transduction. It is
likely that melatonin inhibits p38 MAPK and transcriptional mechanism through cross-talk
between its receptor-mediated signaling and the p38 MAPK activation cascade. Preliminary
data suggest that 5-MTP acts via interaction with a membrane receptor. However, the
receptor has not been isolated and characterized and it’s signaling pathway remains to
be investigated.

Melatonin-treated MSCs in culture improve revascularization when transplanted to a
hindlimb ischemia mouse model through attenuation of cellular senescence. Melatonin and
5-MTP are potentially useful for improving MSC expansion and restoring MSC function in
MSC-based cell therapy of diverse age-related disorders.
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