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Nonsegmental vitiligo is a depigmented skin disorder showing acquired, progressive, and depigmented lesions of the skin, mucosa,
and hair. It is believed to be caused mainly by the autoimmune loss of melanocytes from the involved areas. It is frequently
associated with other autoimmune diseases, particularly autoimmune thyroid diseases including Hashimoto’s thyroiditis and
Graves’ disease, rheumatoid arthritis, type 1 diabetes, psoriasis, pernicious anemia, systemic lupus erythematosus, Addison’s
disease, and alopecia areata. This indicates the presence of genetically determined susceptibility to not only vitiligo but also to
other autoimmune disorders. Here, we summarize current understanding of autoimmune pathogenesis in non-segmental vitiligo.

1. Nonsegmental Vitiligo

Nonsegmental vitiligo is acquired depigmented skin lesions
mainly caused by autoimmune loss of melanocytes. Genetic
and environmental factors are involved in the development.
Recent genetic studies identified predisposed genes involving
the development of nonsegmental vitiligo [1–5]. Current
histopathological studies showed increased infiltration of
dendritic cells, Th17 cells [6], and CD8+ cytotoxic T
lymphocytes [7–10] in the margin of vitiligo and the reduced
number of regulatory T (Treg) cells in the affected skin
[11, 12].

2. Genetics in Nonsegmental Vitiligo

Genome-wide association studies are applied for identifying
the candidate genes in multifactor-associated disorders such
as nonsegmental vitiligo [1–5]. In 2007, NALP1 was revealed
to be associated with the risk of nonsegmental vitiligo in
Caucasians [1]. The subsequent studies in Caucasians iden-
tified multiple loci on major-histocompatibility-complex
(MHC) class I molecules, MHC class II molecules, PTPN22,
LPP, IL2RA, UBASH3A, C1QTNF6, RERE, GZMB, TYR,
FOXP1, CCR6, TSLP, XBP1, and FOXP3 [2–4]. Another
study in Chinese Han population detected two independent

loci within the MHC region and a locus at 6q27 containing
RNASET2, FGFR1OP, and CCR6 [5]. The current candidate
genes of nonsegmental vitiligo are summarized in Table 1
[13–91]. These genes are classified into (i) autoantigen,
(ii) innate immunity, (iii) innate and acquired immunity,
and (iv) other function and miscellaneous. Importantly,
nonsegmental vitiligo-susceptible genes are often involved
in other autoimmune disorders. Further study is needed to
identify additional nonsegmental vitiligo susceptible genes
and to elucidate the pathologic mechanism of the genes in
nonsegmental vitiligo.

3. Immunology in Nonsegmental Vitiligo

Nonsegmental vitiligo can be caused by an immunologically
complex mechanism. A variety of melanocytes-expressing
proteins have been identified as autoantigens. Cui et al.
showed that 24 (83%) of 29 vitiligo patients had autoanti-
body to melanocytes-associated autoantigen versus 2 (7%)
of 28 healthy controls [92]. Until now, various proteins have
been detected as autoantigens including tyrosinase [93–95],
tyrosinase-related protein 1 [96–99], tyrosinase-related pro-
tein 2 [96, 100], Pmel17 [101, 102], melanin-concentrating
hormone receptor 1 [103], tyrosine hydroxylase [104], and
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lamin A [99]. Antityrosine hydroxylase autoantibody was
more frequent in active vitiligo patients [104], suggesting
potency as an activity marker. Using radioimmunoassay,
Waterman et al. found positive antibody reactivity to
gamma-enolase (8%), alpha-enolase (9%), heat-shock pro-
tein 90 (13%), osteopontin (4%), ubiquitin-conjugating
enzyme (15%), translation-initiation factor 2 (6%), and
Rab38 (guanosine-5′-triphosphate- (GTP-) binding pro-
tein) (15%) in nonsegmental vitiligo patient sera [105].
Melanocyte-specific antibodies might induce apoptosis of
melanocytes [106]. Ruiz-Argüelles et al. reported that serum
immunoglobulin G antibodies from vitiligo patients were
able to penetrate cultured melanocytes in vitro and trigger
apoptosis [106]. However, further investigations are required
to elucidate the pathogenetic function of autoantibodies
[107].

Histopathological studies demonstrated the increased
dendritic cells [6], Th17 cells [6, 108], and CD8+ cytotoxic
T lymphocytes [7–10] and the decreased naturally occurring
CD4+CD25+FOXP3+ Treg cells [11, 12] at the margin of
vitiligo lesions. The infiltrating cytotoxic CD8+ T cells recog-
nize melanocyte-associated autoantigens and enable to locate
at dermal-epidermal junctions [109]. The paucity of Treg
in vitiligo skin causes perpetual antimelanocyte reactivity in
nonsegmental vitiligo [110, 111]. The role of Treg and Th17
cells should be elucidated in order to understand the balance
between the occurrence and suppression of the autoimmune
reaction.

The activation of inflammasome constructed by NOD-
like receptors such as NALP-1 overproduces proinflamma-
tory cytokines of IL-1β and IL-18, inducing apoptosis [112].
Interestingly, Wang et al. showed the increased IL-1β level
in the vitiligo lesion and the expression of NALP-1 in the
activated epidermal Langerhans cells and dermal dendritic
cells [6]. As IL-1β is the essential cytokine to develop Th17
cells [6], IL-1β produced by activated inflammasome may
involve the development of nonsegmental vitiligo.

4. Conclusion

Considerable progress is being made towards understanding
the pathogenesis of nonsegmental vitiligo. Although a num-
ber of genes have been implicated by well-designed genome-
wide association studies, we do not have good genotype-
phenotype correlations. In the future, we can anticipate
further advancement regarding specific interactions between
disease-susceptible genes and gene-environment interac-
tions.
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