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Abstract: Infection with Clostridioides difficile (CDI), a common healthcare-associated infection, in-
cludes symptoms ranging from mild diarrhea to severe cases of pseudomembranous colitis. Toxin
A (TcdA) and toxin B (TcdB) cause cytotoxicity and cellular detachment from intestinal epithelium
and are responsible for CDI symptomatology. Approximately 20% of C. difficile strains produce a
binary toxin (CDT) encoded by the tcdA and tcdB genes, which is thought to enhance TcdA and TcdB
toxicity; however, the role of CDT in CDI remains controversial. Here, we focused on describing
the main features of CDT and its impact on the host, clinical relevance, epidemiology, and potential
therapeutic approaches.

Keywords: Clostridioides difficile; binary toxin; epidemiology; hypervirulent strains

Key Contribution: This work contributes to the understanding of the role of Clostridioides difficile
binary toxin in pathogenesis; focusing on clinical relevance and epidemiology.

1. Introduction

Clostridioides difficile is a Gram-negative, anaerobic, spore-forming, and toxin-producing
bacillus [1]. Infections with C. difficile (CDI) include symptoms ranging from mild diarrhea
to severe cases of pseudomembranous colitis [2]. CDI is a frequently reported healthcare-
associated infection in the USA, with 500,000 estimated cases and 29,000 deaths per year [3].
C. difficile colonizes the intestinal tract in humans and other mammals; in humans, up
to 70% of infants and 5% of adults are colonized by this microorganism [4]. C. difficile
spores are resistant to environmental desiccation and disinfectants and therefore persist
on surfaces for years [1]. Spores are activated in the intestinal tract because of microbiota
dysbiosis caused by consumption of antibiotics; other risk factors for CDI development are
extended hospital stays, age > 65 years, immunosuppression, transplants, and cancer [1].
Two toxins produced by C. difficile, the Rho glycosylases toxin A (TcdA) and toxin B (TcdB),
are responsible for CDI symptomatology; they cause cytotoxicity, cellular detachment from
intestinal epithelium, and inflammation at the infection site [5]. TcdA and TcdB are encoded
by the pathogenicity locus (PaLoc), which includes five genes: tcdA (toxin A), tcdB (toxin B),
and three regulatory genes. Approximately 20% of C. difficile strains produce a binary toxin
(CDT) encoded by the cdtA and cdtB genes. CDT is thought to enhance TcdA and TcdB
toxicity and is related to more severe disease and higher sporulation rates [4,5].
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A strain denominated BI/North American PFGE type 1 (NAP1)/027 [6] is positive
for binary toxin and has been associated with an increased production of toxins A and B
owing to mutations in the toxin regulatory gene tcdC [7]; additionally, the production of the
binary toxin has been linked to more severe disease [8], but the role of CDT in CDI remains
controversial. In the present study, we focused on describing the main features of CDT and
its impact on the host and clinical relevance, epidemiology, and diagnostic and therapeutic
approaches. We described recent findings in epidemiology and therapeutic approaches due
to the increasing relevance of CDT in disease, mainly in the area of chaperone inhibitors.

2. Clostridioides difficile Binary Toxin (CDT)

C. difficile binary toxin is an actin-ADP-ribosylating protein that belongs to a family of
binary toxins produced by C. botulinum (C2 toxin), C. perfringens (iota toxin), C. spiroforme
(toxin CST), Bacillus anthracis (edema and lethal toxins), and B. cereus (vegetative insecticidal
proteins) [9]. The toxin is encoded by the cdtA and cdtB genes, located within a 6.2 kb
region designated the “CDT locus” (CDTloc; Figure 1) [10,11]. In addition, CDTloc contains
the cdtR gene, which encodes LytTR family response regulator [12]. CdtR is involved
in the positive regulation of CDT production as well as TcdA and TcdB production; this
regulation occurs at the transcriptional level, possibly via indirect regulation of TcdR, a
positive regulator of PaLoc gene expression [13–15]. CdtR is activated by phosphorylation
of Asp61 in RT027 strains; however, in RT078 strains, CdtR has demonstrated a lack of
function due to polymorphisms in the promoter region, potentially suggesting a mechanism
of evolution [16].
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Figure 1. Representation of CDT locus and CDTa and CDTb components [11,17,18].

The mechanism of CDT secretion is currently unknown because CDT does not contain
secretory signals and no genes are associated with its transport [11].

CDT comprises two regions, CDTa (48 kDa in size) and CDTb (99 kDa). CDTa is
divided into two domains: the N-terminal part (residues 1 to 215), which interacts with
CDTb, and the C-terminal part (residues 224 to 420), which catalyzes the ADP-ribosylation
of actin [11,12,17]. CDTa comprises 463 amino acids and has a mass of ~53 kDa; the first
43 amino acids are cleaved by proteolysis, leaving a CDTa protein with a mass of ~48 kDa
(Figure 1) [17]. CDTb comprises 876 amino acids and four conserved domains: D1 formed
by 295 residues (at the N-terminus), D2 formed by amino acids 296 to 511, D3 formed by
residues 512 to 615, and D4 formed by residues 761 to 876. These domains are involved in
activation (D1, after proteolytic cleavage of a ~20 kDa fragment at the N-terminus), pore
formation and membrane insertion (D2), oligomerization (D3), and receptor binding (D4).
A fifth domain recently described is called D3′ (residues 616 to 744), and it is contained
between D3 and D4; this domain is thought to encode for a galactose binding site [18].
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Refs. [11,12] CDTb also contains a signal sequence of 42 amino acids (Figure 1) [17].
The lipolysis-stimulated lipoprotein receptor (LSR) was identified as the host cell receptor
for CDT [19]. CDTb induces the clustering and accumulation of the receptor into lipid
rafts, and the N-terminus of CDTb serves as a binding site for CDTa (Figure 2) [10]. The
local accumulation of CDTb monomers promotes oligomerization of CDTb on the cell
surface, and the enzymatic component (CDTa) in turn binds to CDTb, thus triggering
internalization of this complex into cells [12]. The low pH of endosomes probably induces
the insertion of the binding component into the membrane and allows pore formation to
deliver the toxin into the cytosol [17]; CDT inserts into the vesicle membrane to form a
transmembrane β-barrel channel [20]. It has been described that translocation is dependent
on host helper proteins such as Hsp90, FK506-binding protein 51, and peptidyl-prolyl
cis/trans isomerase cyclophilin A [17]. Although proteolytic activation of the transport
component is not essential for receptor binding and clustering into lipid rafts, it is required
for oligomerization and subsequent intoxication of host cells [10].
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3. In Vitro Effects of CDT

The main effects induced by CDT include cell rounding, inhibition of migration, and
activation of leucocytes [12]. CDTa ADP-ribosylates G-actin at Arg177, which in turn
inhibits actin polymerization [21]. ADP-ribosylated actin then acts as a capping protein,
which inhibits polymerization of non-modified actin, eventually resulting in complete
depolymerization of the actin cytoskeleton, thus causing changes in cell morphology and
tight junctions [12].

CDTb causes cell rounding and damage in Vero and CaCo-2 cell monolayers, with loss
of cell viability and epithelial integrity; the latter depends on the presence of the LSR, the
specific cellular receptor of CDT [22]. However, when acting alone, CDTb does not induce
cell rounding and is inhibited by enzymatically inactive CDTa or a pore blocker, suggesting
that CDTb induces the production of pores in cytoplasmic membranes, thus contributing
to cytotoxicity [22]. Furthermore, CDTb and the receptor-binding domain (RBD) of CDTb
induces clustering of LSR into sub-compartments that contain marker proteins of lipid
rafts; oligomerization occurs at the membrane and is enhanced by local accumulation of
LSR-bound monomers into lipid rafts [23]. CDT induces microtubule redistribution and
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formation of protrusions at the surface of intestinal epithelial cells; this occurs together
with ADP ribosylation of actin and depolymerization of microfilaments [24]. Electron
microscopical studies have shown that protrusions increase the adherence of C. difficile
by five-fold at the cell surface of epithelial cells under anaerobic conditions; thus, this
mechanism enhances colonization of the pathogen [25]. However, it has been demonstrated
that TcdA and TcdB negative, but binary toxin positive strains (A−B−C+) are non-toxigenic
in vitro. In a study by Kuehne et al., a series of toxin A and B mutants in which the binary
toxin genes were still functional were assayed in vitro and in vivo. The strains expressing
toxin B and CDT (A−B+C+) as well as those expressing toxin A and CDT (A+B−C+) showed
cytotoxicity in vitro; moreover, in a golden Syrian hamster model, all the hamsters (8 of 8)
developed terminal CDI. However, when evaluating the A−B−C+ mutants, three of nine
animals succumbed to disease with no typical symptoms of CDI. Some hemorrhage and
inflammation were observed in their small intestines, suggesting that C. difficile caused
infection in the small intestine [26]. Furthermore, using a mouse infection model (in which
animals rarely progress to severe disease or death), less intestinal damage was detected
in animals infected with an A−B−CDT+ mutant than in wild-type strain-infected mice
(p = 0.0022). Additionally, histopathological scoring of tissues from CDT− strain-infected
mice were similar to those found in wild-type strain-infected mice [27]. Additionally, it has
been demonstrated that cdtR mutants produced less TcdA and TcdB than the wild type and
when mutants were complemented, high levels of toxins A and B were detected, showing
high cytotoxicity in vitro; also, the relative transcription of toxin A, B and CDT, as well as
TcdR were significantly decreased in mutants compared to the wild type strain [14].

Little is known about CDT and its role in immune response; however, CDT may
enhance the disruption of the host’s protective mechanisms stimulated by C. difficile toxins
A and B [28]. It has been shown that CDT enhances the virulence of RT027 strains in ani-
mal models by inducing pathogenic host inflammation, resulting in eosinophil apoptosis
in the colon and blood [29]. Furthermore, CDT activates NFκB and induces inflamma-
tory interleukin (IL)-1β production by TLR2 signaling [29]. The subunit CDTb provokes
mucosal-associated invariant T (MAIT) cell activation and degranulation of the lytic granule
components. MAIT cell responses depend on IL-18 and the major histocompatibility com-
plex (MHC) class I-related protein (MR1) signaling pathway. Additionally, CDT-stimulated
monocytes seem to be involved in MR1-dependent activation of MAIT cells. Furthermore,
it is suggested that MAIT cell cytotoxicity contributes to diminution of toxemia and the
immunopathology of the disease [30].

4. CDT-Producing Ribotypes

C. difficile is a diverse and heterogeneous species, and CDI exhibits a changing epi-
demiology. CDT is produced by diverse PCR ribotypes including those considered as
hypervirulent and epidemic, such as PCR ribotypes 027 and 078 [11]. Strains producing
only CDT have been isolated from symptomatic patients, adding evidence for CDT as a
contributor to the pathogenesis [31].

A+B+CDT+ ribotypes include PCR ribotype 027 (RT027) and PCR ribotype 078 (RT078).
The prevalence of strain RT027 (Table 1) has increased since 2002 after the first reports in
Canadian Hospitals, together with an increase in mortality and morbidity [32]. In Europe,
this strain was reported in the Netherlands [33], and an association between the use of
fluoroquinolones and CDI was described for the first time. RT027 is considered as “hyper-
virulent” owing to increased production of TcdA and TcdB, together with the production
of binary toxin [8], which is associated with a higher production of toxin in vitro [34].
Furthermore, increased production of toxins has been linked to severe disease, 30-day
all-cause mortality [35], and recurrent episodes [36]. In the Netherlands, the CDT+ RT078
(Table 1) [37] was reported in patients younger than those infected with RT027, and it was
mainly community-associated (CA-CDI); moreover, rates of severe diarrhea and mortality
induced by the CDT+ RT078 were similar to those induced by RT027 [37]. Furthermore,
RT078 is associated with zoonotic transmission from pigs and cattle [38–41]. PCR ribotype
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023 (Table 1) is another CDT+ strain with disease severity and attributable mortality com-
parable with that of hypervirulent strains (RT027 and RT078/126); furthermore, RT023 is
associated with community-acquired cases [42]. RT244 is an RT027-related strain, associ-
ated with severe disease [43]; this strain is frequently reported in New Zealand, mainly in
CA-CDI cases [44].

Table 1. Epidemiology and characteristics of binary toxin-producing strains.

RT Toxin
Genotype ST Clade Characteristics References

023 tcdA+, tcdB+,
cdtA+, cdtB+ 5, 22, 25 3

Resistance to erythromycin, levofloxacin,
and moxifloxacin. Reports from USA,
Northern and Eastern Europe.

[45–47]

027/176 tcdA+, tcdB+,
cdtA+, cdtB+ 1 2

Strain associated with increased
morbidity and mortality. Reports from
Korea, Singapore, Austria, Belgium,
Denmark, Finland, France, Germany,
Hungary, Ireland, Luxembourg, The
Netherlands, Norway, Spain, Sweden,
UK, Chile, Panama, Costa Rica, Mexico,
Japan, China.

[33,48–55]

033 tcdA−, tcdB−,
cdtA+, cdtB+ ND 5

Isolated from a young patient with
ulcerative colitis and severe diarrhea in
Australia.

[56,57]

078/126 tcdA+, tcdB+,
cdtA+, cdtB+ 11 5

Community-associated and zoonotic
strain with increased morbidity and
mortality. Reports from France, Italy,
Germany, Taiwan, Czech Republic,
Korea, Japan, Australia.

[5,40,41,48,50,57–61]

244 tcdA+, tcdB+,
cdtA+, cdtB+ 41 2

Community-associated; cause of
outbreaks. Reports in Australia, New
Zealand.

[44,45,62]

251 tcdA+, tcdB+,
cdtA+, cdtB+ 231 2

Isolated from three patients in Australia
with severe diarrhea, recurrent disease,
and one death.

[63]

826 tcdA+, tcdB+,
cdtA+, cdtB+ ND 5

Identified in an outbreak in The
Netherlands, associated with recurrent
and severe disease in two of five patients

[64]

ND tcdA+, tcdB+,
cdtA+, cdtB+ 201 3

Isolated from a patient in China, with a
severe clinical phenotype; it exhibits a
faster germination rate, higher motility,
and a higher biofilm formation than
RT027 and RT078.

[62,65,66]

ND tcdA−, tcdB−,
cdtA+, cdtB+ 11 5

Isolated from a patient in Germany, with
eight episodes of CDI ranging from mild
to severe symptoms.

[67]

RT: ribotype; ST: Sequence type; ND: no data; CDI: Clostridioides difficile infection.

A−B−CDT+ C. difficile strains may contain additional antimicrobial resistance deter-
minants that contribute to enhanced survival and colonization [68]. However, regarding
susceptibility, RT033 isolates (Table 1) have been reported to be susceptible to fidaxomicin,
rifaximin, vancomycin, metronidazole, amoxicillin/clavulanate, and meropenem but resis-
tant to tetracycline, moxifloxacin, erythromycin, and clindamycin [68]. Phenotypic assays
performed in a collection of 148 strains of 10 different ribotypes (033, 238, 239, 288, 585, 586,
QX143, QX444, QX521, and QX629) showed that A−B−CDT+ strains, except RT239, were
non-motile. However, the flagellin and flagella cap genes were conserved. Furthermore,
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the strains produced deoxyribonuclease, esterase, and mucinase; however, they were not
found to be pathogenic in an animal model [69].

5. Clinical Relevance

CDT is considered a virulence factor that contributes to the severity of CDI, mainly
in patients infected with hypervirulent strains; it has been shown that C. difficile strains,
especially RT027 strains, express CDT in vitro. However, there is limited evidence for the
role of CDT in the pathogenesis of CDI [70]. One of the initial studies regarding clinical
impact of CDT was reported by Barbut et al. in a retrospective case–control study to
identify clinical features and risk factors of CDI attributable to CDT+ strains. Most of the
cases were community-acquired (65.4%). Diarrhea was associated with abdominal pain
(p = 0.07) and with liquid stools (p = 0.14) [8]. Moreover, the presence of CDT has been
described as an independent predictor of recurrent CDI, and binary toxin producers may
require long antibiotic regimens [71]. Similarly, Stewart et al. found an association between
the presence of a binary toxin gene with at least one recurrent episode of CDI (p = 0.03);
furthermore, it predicted the need for hospital admission for a primary episode of CDI
and the first recurrence [72]. Furthermore, Bacci et al. showed that patients infected with
binary toxin-producing strains had higher case fatality rates than patients infected with
other strains [73].

Recently, López-Cárdenas et al. studied the association between the binary toxin
and the appearance of severe disease, complications, or recurrence; patients infected
with CDT+ strains showed higher frequencies of severe disease than patients with CDT−

strains (39.2% vs. 21.2%, p = 0.005) and higher rates of complications and recurrence than
patients with CDT− strains (21.6% vs. 10.9%, p = 0.037 and 14.9% vs. 5.8%, p = 0.029;
respectively). In total, 45.5% of CDT+/TcdB+ cases presented severe disease compared with
18.6% in the CDT−/TcdB− group (p = 0.018), and the TcdB+/CDT+ group had significantly
more complicated cases (33.3% vs. 10.3%, p = 0.013) and recurrences (24.2% vs. 5.2%,
p = 0.031) [74], indicating that infection with TcdB+/CDT+ strains had a greater impact
on prognosis. Regarding mortality, it has been reported that patients infected with a
CDT+ strain were nearly eight times more likely to die than patients infected with CDT−

strains [75]. In addition, Goldenberg et al. showed that 28% of the 207 C. difficile isolates
analyzed in a 2-year period possessed binary toxin genes. The white cell count and 30-day
all-cause mortality rate were significantly higher in the CDT+ group [76].

However, despite the latter findings and associations of infection with CDT+ strains
and severity or complications, there is no convincing epidemiological evidence that binary
toxin is a marker of severe disease or complications [77,78]. A retrospective case–control
study from Belgium compared clinical and epidemiological characteristics of 33 patients
with binary toxin-positive CDI and 33 patients with binary toxin-negative CDI. The patients
did not differ in disease recurrence, morbidity, or mortality, except for a higher peripheral
leukocytosis in the binary toxin-positive group (16.30 109/L vs. 11.65 109/L; p = 0.02). Thus,
the authors concluded that the presence of the binary toxin gene is not associated with
poor outcome [79]. Additionally, Berry et al. analyzed clinical severity and outcome data of
1083 patients with CDI; the presence of binary toxin was associated with longer hospital
stays and a higher risk of all-cause mortality (with a risk ratio of 1.68 [p < 0.001]). However,
the presence of CDT did not predict the clinical severity of CDI [80]. Moreover, Reigadas
et al. investigated the association between CDT+ isolates and outcome of 319 CDI cases in
a non-027 ribotype setting; in total, 54 cases (16.9%) were caused by CDT+ strains, of which
90.7% belonged to ribotype 078/126. There were no differences in the rates of recurrent
cases, treatment failure, overall mortality, or CDI-related mortality between infections
caused by CDT− and CDT+ strains. No association was found between the presence of
CDT and poor outcome [81].

The described results depict the controversial status of CDT and its contribution to
severity of diarrhea over the years; more clinical and fundamental research is needed to
elucidate the level of virulence of CDT-producing strains.
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6. Implications of CDT in Laboratory Diagnosis

The diagnosis of CDI is based on detection of C. difficile toxins in a stool sample.
Cytotoxicity assays are the gold standard for detecting toxigenic C. difficile (toxins A and/or
B) in the stool [82,83]. This technique has a sensitivity up to 100% and specificity up to 99%;
however, it is labor-intensive and requires trained personnel; thus, it is not appropriate
for routine diagnosis [82,83]. Due to this, detection of glutamate dehydrogenase (GDH)
has been implemented, with a rapid turnaround time and a specificity of almost 100%.
However, this test does not distinguish whether the strain is toxigenic (specificity of 59%);
thus, GDH testing must be paired with a test that detects toxins [74,84–86]. Enzyme
immunoassays (EIAs) detect toxins A and B; the sensitivity and specificity are variable
(from 75–85% and specificities form 95–100%) depending on if the reaction is performed
over a membrane or in a well-based EIAs [82,87]. Nucleic acid amplification testing (NAAT)
is based on either a PCR method or isothermal amplification. These tests detect toxin genes
(tcdA and tcdB), the tcdC gene, and/or CDT genes and identify the presence of toxigenic
C. difficile in a single step [88–90]. NAAT testing shows sensitivity and specificity higher
than 90%. However, due to its sensibility, NAAT test can detect toxigenic C. difficile in
asymptomatic patients; thus, results should be carefully interpreted considering symptoms
and not using molecular tests alone [86,87,91,92]. Thus, the best approach to optimize the
diagnosis of CDI is to combine two tests in an algorithm. The first test should one with a
high negative predictive value, including GDH, EIA, or NAAT, and the second test should
be toxin A/B EIAs (a test with a high positive predictive value). The GDH/NAAT-based
algorithm has reported sensitivity from 91% to 98% and specificity from 96 to 98% [93].
Despite ribotypes producing only CDT are not common in humans, infection with these
strains is a challenge at human diagnostic testing, as most tests detect only toxins A
and B or its genes. The dissemination of CDT+ strains, such as RT027, has caused that
some commercial tests also evaluate the presence of CDT genes [94]. Six commercial real-
time PCRs (qPCR) that detect CDT are available: The Cepheid Xpert C. difficile BT assay
(Sunnyvale, CA, USA) [94], the EasyScreen C. difficile Reflex (Genetic Signatures, Newtown,
NSW, Australia) [95], the VeriGene Clostridium difficile Test (Luminex, Austin, TX, USA) [96],
the C. difficile DNA Complete Test (OpGen, Rockville, MD, USA) [94], the GenSpeed C. diff
OneStep Test System (Greiner Bio-One International GmbH, Kremsmünster, Austria) [97]
and the GenoType Cdiff (Hain Lifescience GmbH, Nehren, Germany) [94]. In addition, a
loop-mediated isothermal amplification-based (LAMP) assay has been described; this assay
has the potential to be used as a rapid, reliable and cost-effective tool for detecting CDT+ at
the point of care [92].

Other approaches have been developed to detect CDT: a method based on MALDI-TOF
(matrix-assisted laser-desorption time-of-flight) technology, with the potential to reduce
the need for time-consuming molecular methods; and a prototype and research-use only
EIA. The latter technique detects CdtB and has a high correlation between detection of fecal
CdtB and the recovery of ribotype 027 isolates that produce CDT in vitro [70].

In conclusion, the low prevalence of CDT+ strains complicates epidemiological re-
search; however, identification of these strains using systems capable of detecting CDT will
help to establish the clinical implications of CDT production and disease.

7. CDT as a Therapeutic Target

Antibiotic treatment is the main approach in CDI; however, current treatment with
antibiotics such as metronidazole, vancomycin, or fidaxomicin may result in disturbance
of the gut microbiota, increasing the risk of recurrent episodes [11]. Toxins A and B
have been used as targets for novel therapeutic approaches; nevertheless, owing to the
increasing relevance of CDT as a virulence factor and its role in disease, components of CDT
are currently used as targets to develop effective new therapeutic strategies for treating
hypervirulent strains in particular [91].

Chloroquine and chloroquine derivatives (azolopyridinium salts and 4-aminoquinolines)
block CDTb pores in lipid bilayer membranes [98]. These compounds inhibit CDTb-induced
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Vero cell rounding, supporting the hypothesis that CDTb alone is a pore-forming toxin
and suggesting the use of pore blockers as potential therapeutic strategies directed at CDT.
Colon epithelial cell lines, HCT 116 and CaCo-2, were also protected against toxin effects
by chloroquine derivatives. Moreover, the CDTb-induced loss of epithelial barrier integrity
of a CaCo-2 cell monolayer was inhibited by a chloroquine derivative [98].

α-defensin-5 is produced by enteric Paneth cells in the crypts of Lieberkühn to prevent
excessive colonization by microorganisms; a neutralizing effect of α-defensin-5 toward
TcdA, TcdB, and CDT has been demonstrated [99]. Determination of toxin-induced changes
in cell morphology, intracellular substrate modification, and decrease in transepithelial
electrical resistance indicated that the inhibition of cell intoxication was time and concen-
tration dependent. For CDT, α-defensin-5 promotes the inactivation of the CDTb pore,
which causes marked changes in cell morphology and cell viability. This human peptide
may be a candidate pharmacological inhibitor to treat CDI caused by CDT-producing
strains [99]. Similarly, α-defensin-1 protects cells and human intestinal organoids from the
cytotoxic effects of TcdA, TcdB, CDT, and their combination. In mice, α-defensin-1 reduced
the CDT-induced intestinal damage in a time- and concentration-dependent manner. The
mechanism of action seems to be based on an interaction between the binding and transport
component CDTb and α-defensin-1, leading to direct inhibition of the CDTb channels. It is
suggested that α-defensin-1 inhibits oligomer formation of CDTb or blocks the reconstitu-
tion of CDTb into lipid bilayer membranes [100]. It was recently shown that CDT binds
to Hsp90, Hsp70, and peptidyl-prolyl cis/trans isomerases belonging to the cyclophilin
(Cyp) and FK506-binding protein (FKBP) families; furthermore, these proteins are needed
for the translocation of components of CDT from endosomes to the cytosol [101–103]. Si-
multaneous inhibition of these chaperones by Rad (inhibitor of Hsp90), CsA (inhibitor
of Cyps), FK506 (inhibitor of FKBPs), VER (inhibitor of Hsp70, Hsc70 and Grp78), and
Bafilomycin A1 (BafA1, inhibitor of v-ATPase), protects cells from intoxication with CDT;
when a combination of inhibitors was used, an enhanced effect was observed [104].

A tetravalent vaccine containing attenuated binary toxin components as well as TcdA
and TcdB has been described [105]; it induced the production of neutralizing antibodies
against the binary toxin complex in hamsters immunized with either CDTa or CDTb; the
combination of CDTa and CDTb had an additive effect on the neutralizing antibody titer.
The inclusion of CDTa and CDTb improved the efficacy of the vaccine against NAP1
strains, significantly enhancing survival in hamsters compared with a vaccine containing
only attenuated TcdA and TcdB and producing a neutralizing antibody response to TcdA,
TcdA, and CDT. Further evaluation of vaccines is required to prevent severe disease by
hypervirulent strains of C. difficile [105].

8. Concluding Remarks

The role of CDT in CDI remains debated; however, evidence suggests an important role
of CDT in the pathogenesis of CDI. Several CDT+ strains are frequently found and reported
and are associated with severe disease (including hypervirulent strains); moreover, strains
producing only CDT are becoming prevalent. Thus, the study of these strains is crucial in
deciphering the potential contribution of CDT to disease and the changing epidemiology
of this emerging pathogen.
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