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With the rapid development of the economy and society, geological disasters such as landslides, collapses, and mudslides have
shown an intensifying trend, seriously endangering the safety of people’s lives and property, and affecting the sustainable
development of the economy and society. Aiming at the problems of merging different data layers and determining the weighting
of data stacking in the statistical analysis model based on GIS technology in the evaluation of the risk of geological disasters, this
study proposes a logistic regression model combined with the RBFNN-GA algorithm, that is, the determination of the occurrence
of geological disasters. -e fusion coefficient (CF value) with the RBFNN-GA algorithm model, and with the help of SPSS
statistical analysis software, solves the problem of factor selection, heterogeneous data merging, and weighting of each data layer in
the risk assessment. In the experimental stage, this study adopts the method of geological hazard certainty coefficients to carry out
the sensitivity analysis of the geological hazards in the study area. Using homogeneous grid division, the spatial quantitative
evaluation of the risk of geological disasters is realized, and at the same time, the results of the spatial quantitative evaluation of the
risk of geological disasters are tested according to the latest landslide points in the region. -e existing classification mainly
depends on the acquisition of land use/cover information or the processing method of the acquired information, but the existing
information acquisition will be limited by time, space, and spectral resolution. -e results show that the number of landslide
points per unit area in the extremely unstable zone and the unstable zone is 0.0395 points/km2 and 0.0251 points/km2, re-
spectively, which is much higher than 0.0038 points/km2 in the stable zone, indicating the evaluation results and actual
landslide conditions.

1. Introduction

According to statistics, in the past 50 years, landslides,
collapses, and mudslides have caused more than 20,000
deaths, with hundreds to more than 1,000 deaths every year.
Among the many natural disasters, the death toll is second
only to earthquakes and floods. In particular, landslides,
collapses, and mudslides that erupt in densely populated
areas such as towns and mining areas often cause a disaster
event that kills hundreds of people [1]. Geological disasters
such as landslides, collapses, and mudslides are one of the
natural disasters that cause the loss of people’s lives and
property [2]. In order to effectively prevent and reduce

geological disasters, it is first necessary to have a more
comprehensive understanding of regional geological disas-
ters. When formulating regional geological disasters, they
can be more targeted. At the same time, research on geo-
logical disaster forecasting and early warning is based on the
division of geological disasters. -e foundation has also
become a hot issue in the field of geological disaster research
[3]. -ere are many domestic studies on the mechanism of
single geological disasters such as landslides, but the research
progress on the development and distribution of regional
geological disasters is relatively slow [4]. Exploring and
forming a set of scientific, complete, and practical research
methods for the development and distribution of regional
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geological disasters, and evaluating the risk of regional
geological disasters, is of great practical significance for the
prevention and control of regional geological disasters [5].

-e geological hazard evaluation method adopted at the
beginning has inherited the evaluation of geography inmany
methods, and the methods used can be summarized as
follows: dominant factor method, multifactor single-factor
item-by-item overlay method, geographic correlation
analysis method, and theoretical derivation method [6].
After the 1980s, the degree of quantification increased, the
application of mathematical knowledge in geosciences de-
veloped vertically and horizontally, and the geological
hazard evaluation and zoning research gradually tended to
quantify [7]. -e extensive application of linear regression
prediction, mathematical model analysis, gray theory, neural
network, GIS, etc. is gradually introduced to further improve
the degree of quantification [8]. In the study of slope geo-
logical hazards in an urban development planning project in
Australia, Mai [9] integrated the risk, vulnerability, and risk
assessment of slope hazards, using GIS software as the
technical platform, and using two-dimensional and three-
dimensional evaluation systems, respectively, for research
on the danger and risk zoning of slope geological disasters in
Cairns area. He et al.’s [10] probabilistic analysis and
forecasting models show that these models have their own
advantages but also have certain shortcomings. For example,
the models established by index analysis methods, proba-
bility statistical methods, and fuzzy prediction methods are
generally only suitable for specific research. At the same
time, it is difficult to extract information related to the
geology, mechanics, and other environmental conditions of
the sliding mass. Liu [11] applied a genetic algorithm to the
neural network to form the GA-ANN method to collabo-
ratively solve optimization problems in complex engineer-
ing. -is method not only uses the functions of neural
network’s nonlinear mapping, network reasoning, and
prediction but also uses the global optimization character-
istics of genetic algorithm. It can be widely used in many
complex projects where the objective function is difficult to
express in the form of explicit function of decision variables.
Peng [12] applied the genetic algorithm to the artificial
neural network model to determine the maintenance
strategy of the parts and analyzed it in combination with
examples. After experimental verification, the system se-
lected the maintenance strategy and the actual value is in full
compliance with the relative error between the predicted
value of the maintenance cost and the actual value. Within
the allowable range, the model is credible. Afan [13] applied
the genetic algorithm to optimize the parameters of the
controller based on the neural network structure and used
the controller to control the objects with pure lag. -e
experiment proved that the control system optimized by the
genetic algorithm has good static performance and dy-
namics. Performance hasmade a new exploration for solving
this problem in the control field. -e background factors
include engineering rock formations, topography, geological
structure, seismic intensity, human engineering activities,
and atmospheric precipitation [14–16].

-is study takes the regional geological disaster survey
project of the autonomous region as the background, based
on abundant actual data, deeply researches various factors
affecting the occurrence of geological disasters, compre-
hensively analyzes the relationship between the distribution
of geological disasters and various factors, and explores the
determination of regional geological disasters. -ey should
have the same or similar spectral information features and
spatial information features, so the feature vectors of the
pixels of the same type of features will be clustered in a
unified feature space area, and different features will be due
to different spectral information features or spatial infor-
mation features. -e method of risk has established a risk
assessment system for regional geological disasters. Studies
have shown that the regional layered soft phyllite interca-
lated with hard sandstone rock formations, a slope of
20°–40°, and an elevation range of 320–800m above sea level
are most prone to geological disasters. -e key factors af-
fecting the risk of geological disasters are elevation, rock
formations, road construction, and slope. According to the
calculated cell geological hazard probability value, the re-
gional geological hazard risk is divided into 4 levels, namely,
extremely unstable, unstable, basically stable, and stable.

2. GIS Technology Based on RBFNN-GA
Algorithm in the Delineation Model
Construction of Geological Hazard
Prone Areas

2.1. GIS Technology Level Classification. Geographic infor-
mation system (GIS) is a decision support system that
collects, stores, manages, analyzes, and reproduces infor-
mation related to geographic spatial distribution and has
various characteristics of an information system [17]. -e
main difference between geographic information system and
other information systems is that the information stored and
processed by it is geocoded. Geographic location and related
feature information become an important part of infor-
mation retrieval. Figure 1 shows the hierarchical topology of
GIS technology.

-e most important part of the geographic information
system is spatial data. Spatial data can effectively express
spatial location information and attribute data, while GIS
spatial database is a collection of spatial data reasonably
stored. -e spatial database management system developed
on this basis can effectively provide spatial query and
analysis [18–20]:

p(x(1), x(2), . . . , x(n)) � 􏽙
n

i�1
p x(n)|x(n − i + 1){ }. (1)

In MapX, all the features in a layer constitute a feature
set. Each graphic element is a feature object (Feature), and
many methods of the layer object (Layer) return the feature
set of the layer. You can search and locate geographic
features such as lines, symbols, or regional characteristics
[21–24]. In order to be able to use this method, there must be
an index field in the MapInfo table of the search layer:
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-e basic building blocks of MapX components are a
single object and a collection. -e collection includes
objects, which is a combination of multiple objects. Each
kind of alignment and collection is responsible for pro-
cessing a certain aspect of the map. In the model structure
of MapX, the Map object exists at the top, and each MapX
object, attribute, and method are derived from the Map
object.
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(3)

Each attribute and method under the Map object will
have an impact on the generation of the entire Map object.
Each Map object is mainly defined by DataSets, Layers, and
Annotations objects. Among them, Layers are mainly used
to manipulate the layers of the map, DataSets are used to
access spatial data tables, and Annotations are used to add
text and symbols on the map:

S(x, m) −
(1/2) × x(m)p(n) +(2/3) × x(n)p(m)

p(m) + p(n)
� 0,

I � C(x, y), x ∈ (0, 1, 2, . . . , n), y ∈ (0, 1, 2, . . . , n − 1), n ∈ N􏼈 􏼉.

(4)

-e basic idea of GIS is to divide the main functional
modules of GIS into several components, and each com-
ponent performs different functions. Various GIS compo-
nents, as well as between GIS components and other non-
G1S components, can be easily integrated through visual
software development tools to realize the final GIS appli-
cation [25–27]:

L(x, y) �

��������������������

􏽘 Ca(x, y) − Cb(x, y)􏼂 􏼃
2

􏽱

. (5)

Each map has a data set. -rough the data collection, the
user’s attribute data can be connected with the map spatial
data. Data binding is the process of introducing external data
into MapX. External data can be multiple types of databases.

K(x, y) �
k(x) × cos x 1

1 k(y) × sin y
􏼢 􏼣. (6)

After data binding, you can browse the data on the map
as primitives or create a thematic rendering map based on
these data. -e learning process consists of three stages. -e
first stage uses unsupervised methods to determine the
center of the RBF; the second stage determines the width of
the RBF based on the determined center of the RBF; and the
third stage determines the distance between the intermediate
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Figure 1: Hierarchical topology of GIS technology.
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layer and the output layer. Generally speaking, these stages
are carried out separately.

2.2. +e Composition of Geological Hazards. Geological di-
saster refers to a disaster related to geological action caused
by natural factors or human engineering economic activities,
which damages the ecological environment and endangers
the safety of human life and property. It is in the shape of an
inverted stone cone, with a loose and disorderly structure.
-e dangerous rock mass is a dangerous mountain mass that
is cracking and deforming, and may collapse. Landslide
refers to the phenomenon that the rock and soil on the slope
lose the original balance condition and move downward
along a certain weak surface as a whole or scattered along a
certain weak surface under the influence of river erosion,
groundwater activity (heavy rain), earthquake, and artificial
slope cutting. -e tendency of the weak structure surface is
consistent with the slope direction, and the slope angle is
most likely to occur when the slope angle is greater than the
inclination angle of the weak surface. -e material can be a
loose layer, soft rock, and hard rock. A complete landslide
should have a sliding surface (slide bed), landslide surface
cracks and steps, trailing and lateral sliding walls, cracks, and
front bulging. -e influencing factors and formation con-
ditions of geological disasters are extremely complex. -ey
act independently, but also influence and overlap each other.
According to their active forms, they are summarized as
influencing factors and basic conditions; influencing factors
include atmospheric rainfall, hydrogeology, neotectonic
movement, and human activities; the basic conditions in-
clude topography and geomorphology conditions, stratum
lithology conditions, and geological structure conditions.
-e spatial database of this project includes spatial databases
of engineering geology and geological disasters. Figure 2
shows the fan chart of the factors of geological hazards.

-is database system is constructed in accordance with the
relevant provisions.-e system includes geological hazard field
survey data, result data, its spatial graphic database, and da-
tabase structure, and the naming of format, layer, view project
file, and the structure of primitive number are all carried out in
accordance with regulations. -e research area has a relatively
complete range of disasters. Based on the geological envi-
ronmental conditions formed in the area, the degree of disaster
susceptibility, the degree of harm, and the integrated social
development plan, a comprehensive analysis is made. -e
research area is divided into key prevention and control areas,
subkey prevention and control areas, and general prevention
area. We adopt measures such as restoring vegetation, cutting
slopes, clearing dangerous rocks, strengthening supports,
monitoring and forecasting of ground collapse disaster areas,
strengthening of the survey of building foundations, assess-
ment of the risk of geological disasters in disaster areas, and
dredging of debris flow disaster areas. For river courses, ex-
cavation of water-cutting ditches around mountains, con-
struction of slope protection, valleys, blocking dams, etc., the
long term should be based on biological engineering and
engineering treatment. According to geological survey data, the
probability of geological disasters on concave slopes in the

study area is low, and the probability of geological disasters on
linear and convex slopes is greater. When the slope of convex
slopes in the area is more curved, the relatively concentrated
stress of the slope ultimately affects the stability of the slope.
-erefore, the shape of the slope directly affects the possibility
of geological disasters in the study area.

2.3. RBFNN-GAAlgorithmDesign. -e RBF neural network
is a forward neural network that combines a parameterized
statistical distribution model and a nonparametric linear
perceptron model. -e essence of the RBF neural network is
the combination of unsupervised clustering method and
supervised single-layer linear perceptron to realize the
neural network model of nonlinear mapping. -e RBF
neural network is composed of 3 layers, namely, the input
layer, the middle RBF layer, and the output layer. For
hyperspectral images, it is difficult to get so many pixels in a
limited space for certain classes, and as the dimensionality of
the feature space increases, the accuracy degradation called
the Hughes phenomenon also requires more training
samples. Generally, the number of nodes in the input layer is
equal to the dimension of the selected data in the application
field, and the number of nodes in the output layer is equal to
the number of categories to be classified. For a specific
application, the number of nodes in the input layer and
output layer is determined. -erefore, the design of the RBF
network structure is mainly to determine the number of
nodes in the middle RBF layer. It uses the connection
strength and the nonlinear input-output relationship of
neurons to realize the nonlinear mapping from the input
state space to the output state space. Feedforward networks
are widely used in pattern classification and feature ex-
traction. Another mode of operation is evolutionary, in
which the input is equivalent to the initial state, and the final
state of network evolution is the output. -is kind of net-
work is similar to a dissipative nonlinear dynamic system.

Figure 3 shows the RBFNN-GA algorithm architecture.
-e state space shrinks continuously during evolution and
finally shrinks to a small attracting subset, and each
attracting subset has a certain attraction domain. -e energy
function is a basic quantity of this type of network. Using the
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Figure 2: Fan-shaped diagrams of geological hazard factors.
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local minima of the energy function, operations such as
associative memory, information compression, and coding
can be performed: only the global minima of the energy
function can be used to solve combinatorial optimization
problems, such as TP problems, visual matching, and
problem-solving. Output layer learning is a kind of super-
vised learning. In supervised learning, the attributes of the
pattern samples to be classified are known, and for each
sample input and output, there is a corresponding guidance
signal that matches its nature. Based on the network output
supervision, the various objective function criteria of the
signal and the actual output adjust the weights accordingly
until the accuracy reaches the best requirements. -e da-
tabase is based on the implementation project, the standard
map sheet is the spatial index, and the geological disaster
professional data are classified as the first-level processing
object. According to the storage form, it is divided into two
parts: the graphic database and the attribute database. Re-
spective graphic elements and associated fields of records (or
unified numbers) realize the two-way dynamic connection,
combined with multimedia database and graphical legend
data, to lay the foundation for environmental geological
survey and evaluation as the application goal. -e specific
operation is carried out in strict accordance with the input
direction and input sequence in the technical requirements
of spatial database construction and the method of dis-
tinguishing different line elements with different colors to
form a comprehensive graphic line file in order to facilitate
the hierarchical extraction of line files.

2.4. Delineation of Regional Features. -e Permian and
Triassic strata are the most widely distributed in the area.
Among them, the Triassic strata are the most well developed.

Carbonate rocks account for about 68% of the total thickness
of the strata. Carbonatite and clastic rocks are multilayered
in vertical distribution and are also called interbedded
carbonate rocks. -e interbedded carbonate rocks are dis-
tributed in a strip-like plane. -at is to say, except for the
Yanshan Movement, which is an obvious fold orogenic
movement, the rest of the crustal movement is slowly as-
cending and descending. -erefore, the regional crust is
relatively stable. In order to apply the projection transfor-
mation of GIS, we first transform the data format in the
database. Figure 4 shows a quantitative histogram of the
susceptibility of geological disasters.

-e grid map of the susceptibility of geological hazards is
obtained through spatial analysis and superposition based on
the changing trend of geological hazard points. -e stability of
regional landslides, avalanches, ground subsidences, and un-
stable slopes is divided into three categories: unstable, basically
stable, and stable using expert assessment methods; for debris
flows, the integral method is used, and the evaluation factor is
determined to be 15 items.-e integral valuemethod is used to
assess the susceptibility of debris flow geological hazards.
Taking the 1 :100,000 topographic map of the study area as the
basic base map, it is divided by the raster data processing
method. Taking into account the geological environment and
disaster development status of an area, the standard area grid is
2 km× 2km. -e area is divided into 66 rows and 6l columns,
with a total of 1,856 cells. Compared with traditional computer
remote sensing classification, its classification accuracy is sig-
nificantly improved, providing technical reserves and refer-
ences for land use dynamic monitoring and land use
management. Using the face-to-point intersection function of
GIS spatial analysis, the face-to-point intersection calculation is
performed between the surface file of the divided grid and the
point file of various disaster points (with the attribute of
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proneness degree) to obtain different levels of disasters. Each
cell is assigned a value based on the highest level of a type of
disaster point that appears in the range. Using the method of
GIS spatial analysis, the surface files of the divided grid and
the point files of various geological disaster points (with the
attribute of proneness degree) are calculated to obtain the
partition files of different levels of various disasters. -e
partition files of different levels of various disasters obtained
above are superimposed according to the following formula,
which is the result of the scoring area. First, we superimpose
the files in various unstable or high-prone areas. When there
are two or more geological hazard high-prone areas over-
lapping, the value is 5. Second, we intersect all kinds of
basically stable or medium-prone surface files with the
merged unstable or high-prone surface files, subtract the
common parts, and superimpose andmerge according to the
above formula to obtain the medium-prone layer. -ird, we
intersect all kinds of stable or low-prone surface files with the
merged high- and medium-prone files and subtract the
intersecting part, superimpose, and merge according to the
above formula to get the low-prone layer. Finally, we sub-
tract the high-, medium-, and low-prone areas from the
whole picture, and the remaining areas are less prone areas.
After merging, the zoning grid map of the susceptibility of
the whole area can be obtained.

3. Application and Analysis of GIS Technology
Based on RBFNN-GA Algorithm in the
Delineation Model of Geological Hazard
Prone Areas

3.1. RBFNN-GA Algorithm Data Extraction. -e hardware
requirements of this system are as follows: CPU Pentium
1.5 GHz, memory 512M, hard disk 20 G and above

running on computers, Windows 2000/XP/2003 oper-
ating system, and software platforms that mainly include
ERDAS IMAGINE 8.7, MATLAB 6.5, and Visual Studio
2005. -rough field surveys and referring to the current
land use map, we select typical land use plots and record
their latitude and longitude coordinates. We use the
remote sensing image file and text file conversion tool
provided by ERDAS IMAGINE to convert the established
training sample area into a text file; use the text file
reading function provided by MATLAB to write the band
values of each land use type into the matrix; and build a
network model through the newrb function. -e results
of the network simulation are output in the form of a
matrix, and when the accuracy analysis and classification
results are evaluated, the image map is used as the basic
data. -erefore, the classification results in the matrix
form should be converted and restored into remote
sensing images. -is work can be done through remote
sensing.

Figure 5 shows the normalized comparison line chart of
RBFNN network evaluation indicators. We integrate the
normalized results of the aforementioned various evaluation
index data analysis and then use all the indicator inputs by
the spatial overlay and analysis function in ArcGIS to obtain
the digital matrix result; in ArcGIS, the Raster Calculator
distributes the index data in the study area according to the
weight. After the stacking calculation, the results need to be
reclassified. Using the natural discontinuity grading method
in the classical tool in ArcGIS, the stacking results are di-
vided into three levels, and the regional geological hazard
risk assessment result map is obtained. -e system function
mainly includes the selection of training sample area and the
establishment of RBFNN algorithm and simulation.
According to the scores in the result map superimposed by
various indicators of the region, the geological hazard risk is

0 5 10 15 20 25 30 35 40 45 50
Test point

0

1

2

3

4

5

6

7

8

9

10
Q

ua
nt

ifi
ca

tio
n 

of
 th

e s
us

ce
pt

ib
ili

ty
 o

f d
isa

ste
rs

 (%
)

Figure 4: Quantitative histogram of the susceptibility of geological disasters.
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divided into three levels, namely, high, medium, and low,
and then according to the actual situation, the repeated
operation of grid or merging small redundant areas is
performed. Finally, an artificially modified and integrated
geological hazard risk zoning map can be obtained. -e data
calculated by GIS technology have been obtained by statistics
of 16 villages and towns in the region. -e requirement of
consistency requires the establishment of a new judgment
matrix through the relationships at all levels until the cal-
culation and judgment results are reasonable. According to
the principle of checking the consistency of the judgment
matrix, matrix 1, matrix 2, matrix 3, and matrix 4 are cal-
culated and tested, respectively, and the average CR< 0.1 is
obtained. It is known that the constructed regional geo-
logical disaster risk assessment judgment matrix meets the
consistency requirements.

3.2. Realization of GIS Delineation in Areas Prone to Geo-
logical Hazards. In this study, the neural network was set
with 6 input nodes and 1 output node, and the initial value
of the hidden node was 20. We used the control force to
train the network parameters. -e number of SGA implicit
function nodes is fixed as 6, and the crossover probability is
0.7. -e probability of variation is 0.05. -e maximum
fitness value changes during the training process as de-
scribed in the text. As the core part of the geographic
information system, the design quality of the database will
not only affect the cost and quality of the system con-
struction but also affect the operation, maintenance, and
data update of the system. At the same time, the content
and structure of the database determine the quality of the

system and will have a direct impact on the integration of
GIS and other application technologies. When designing
the system, we fully consider the scalability and compat-
ibility of the system. In terms of the encoding of disaster-
type information, the selection of the base map coordinate
system, the design of the database, and the system interface
functions, as much as possible, there is room for further
development to facilitate the expansion of the system. With
database migration, when new modules are added, the
functional structure of existing modules and the entire
system will not be greatly affected.

Figure 6 shows the distribution of curvature of geological
hazards in the GIS system. According to the survey of
geological disasters, the probability of geological disasters on
concave slopes is relatively small, while the probability of
geological disasters on straight and convex slopes is greater.
-e more curved the slopes of convex slopes are, the more
concentrated the stress on the slope is. -erefore, for the
slope curvature, when the curvature of a certain area is less
than 0, the possibility of geological disasters is smaller. A
large number of human engineering activities have a direct
or indirect impact on the formation and development of
landslides, collapses, and unstable slopes in the study area.
Considering that traffic construction such as roads and
railways is the most representative human engineering ac-
tivity in the region, it has the most impact on geological
disasters. Obviously, it has the characteristics of penetration
and full coverage, so the analysis of human engineering
activities in this study takes the regional secondary road as
the baseline and makes buffer analysis. A value close to 0
means that the prior probability is very close to the con-
ditional probability, and the certainty of the occurrence of
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the event is close to the regional average.When the curvature
is greater than 0, the possibility of geological disasters is high,
and the greater the curvature is, the more unstable the slope
is. We use the Raster Calculator in ArcGIS to do the dif-
ference to calculate the slope height index map of the study
area. Finally, it can be normalized by Raster Calculator in
ArcGIS. Table 1 shows normalized processing of GIS disaster
indicators.

-e improved HANHGA-trained neural network con-
troller and the SGA-trained neural network controller were
used to control the double-stage inverted pendulum, and the
simulation block diagram of the entire control system was
built in Simulink using MATLAB. It can be seen that the
improved HANHGA has a faster convergence speed and
higher accuracy. -e improved HANHGA training neural
network has an error of 4.2% when it is trained for 100
generations, while the error of the SGA training neural
network is only at the end of 200 generations. It reaches
1.2%, so the improved genetic algorithm has greater ad-
vantages than a simple genetic algorithm in convergence
speed and in finding the global optimal solution. As a
comparison between the improved HANHGA’s RBFNN
control method and the SGA neural network control
method, it can be seen that the improved RBFNN control
method can restore the inverted pendulum to a stable state
faster, which proves the superiority of the improved algo-
rithm. -e data in the figure represent the control effect of
the improved algorithm. It can be seen that it has a smaller
overshoot and a shorter settling time, which proves the
superiority of the improved algorithm.

3.3. Example Application and Analysis. On the ERDAS
IMAGINE platform, using the Image Interpreter function
provided by it, in the Utilities menu, the layer overlay
module completes the overlay of each monochrome band,

the data type is output as unsigned 8-bit data, and image
fusion is mainly performed in the Spatial Enhancement
menu. -e fusion method uses a principal component
(principal component analysis), and the resampling aspect is
cubic convolution sampling. -e key technologies for image
geometric correction mainly include the selection of digital
geometric correction calculation models and ground control
points. For the determination of the gray value of the digital
image and the resampling of the gray value of the digital
image, the selection of the resampling method is particularly
important. -e commonly used gray value resampling
methods mainly include the nearest point method, the bi-
linear interpolation method, and the cubic convolution
method.-e essence of the nearest point method resampling
is to take the gray value of the known pixel point closest to
the conjugate position in the original distorted image as the
gray value of the output pixel. Figure 7 shows the gray value
interpolation of the output pixel fitting.

Based on the powerful spatial analysis capabilities of GIS,
for various geological disaster risk evaluation indicators in a
certain area, it is necessary to normalize each indicator to
achieve the final comprehensive risk evaluation. In this
study, DEM images are downloaded from the geospatial data
cloud of the National Academy of Sciences. We use the
ArcGIS automatic stitching function to get the DEM map.
After SPSS software completes logistic regression analysis,
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Figure 6: -eGIS system geological hazard influence curvature distribution.

Table 1: Normalized processing of GIS disaster indicators

Indicator index Raster calculator Weight Curvature (%)
1 Landslides 0.32 13.5
2 Collapses 0.17 22.1
3 Slopes 0.42 31.2
4 Mudslides 0.09 26.4
5 Cracks 0.11 19.6
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the output digital matrix can also be converted into raster
graphics in GIS software, thus solving the problem of mutual
import of data in GIS and professional statistical analysis
software. In order to unify the coordinates and facilitate the
postprocessing, the DEM is converted into general coor-
dinates. According to the distribution of geological hazards,
we use Spatial Analyst in ArcGIS density tool to designate a
circular area and use a field radius of 1,000m to analyze the
point density of geological hazards. -e higher the point
density in the area is, the more it reflects, the higher the
probability of geological disasters in this area, and the greater
the risk of geological disasters is. -e data sample set is
divided into two parts: the modeling sample set (1,056 data

samples) used to build the RBF neural network model and
the test sample set (168 data samples). -rough calculation,
the performance value convergence curve can be drawn
when constructing the network. It can be seen that it can
converge to the target value after 126 generations.

Figure 8 shows the standard deviation line chart of the
RBFNN network band. -e data show that the order of the
standard deviation of each band is shown in the figure. It is
generally believed that there is good agreement between the
amount of information of remote sensing images and the
image standard deviation; that is, the larger the standard
deviation is, the richer the information is. -e standard
deviation of each band of the image is greater than 3, the
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Figure 8: -e standard deviation line chart of the RBFNN network band.
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Figure 7: Gray value interpolation of output pixel fitting.
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largest is 18, the smallest is 3.4, and the average is 9.4,
indicating that the information contained in the features is
more enriched, and it is feasible to extract land types. -e
social attribute factors mainly include important engi-
neering facilities such as reservoirs and a small number of
oil extraction plants. In some areas, there are a small
amount of urban construction and roads, and human en-
gineering activities are relatively weak, so its social attri-
butes are low. -e development density of geological
disasters and landslides in this area is about 0.3 places/
100 km2. Among them, there are only 11 unstable slopes in
the southern part of the area, which are of low risk.
Considering various factors, the geological hazard risk in
this area is positioned as medium, which is the risk area in
the regional risk assessment.

4. Conclusions

-is study comprehensively analyzes the main influencing
factors that induce regional geological disasters. Based on
the theoretical experience and field investigations, the
evaluation index system for geological hazards and the re-
gional geological environment quality evaluation index
system are established, and the quality characteristics of the
regional geological environment are determined. According
to the characteristics of the regional geological disaster risk
assessment problem, two simple and practical mathematical
methods, GIS technology and neural network, are selected to
establish the RBFNN-GA algorithm evaluation model, and
the final evaluation results are analyzed and compared.
Based on ArcGIS as the underlying platform, a spatial
graphic database is established. -e attribute database is
linked by an external database. -e evaluation is obtained
through secondary development on the basis of the geo-
logical spatial database. -e analysis module realizes the
spatial analysis function. Finally, the fuzzy comprehensive
judgment method is used to optimize and select the eval-
uation index, and the neural network method is used to
determine the weight of the evaluation index. A set of
scoring standards based on quantitative indicators is formed,
and membership functions are used to obtain values;
qualitative indicators are evaluated using expert scoring
methods to quantify indicators. At the same time, the main
geological disasters in the region are the evaluation objects,
combined with GIS technology to comprehensively evaluate
the susceptibility and zoning of regional urban geological
disasters, and the study area is divided into four levels:
excellent, good, medium, and poor.-e result shows that the
evaluation model is reasonable and the system has strong
practicability.
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