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Abstract: The present study investigates the involvement of the L-arginine-Nitric Oxide-cGMP-K+

ATP pathways responsible for the action of anti-allodynic and antihyperalgesic activities of
zerumbone in chronic constriction injury (CCI) induced neuropathic pain in mice. The role of
L-arginine-NO-cGMP-K+ was assessed by the von Frey and the Randall-Selitto tests. Both allodynia
and hyperalgesia assessments were carried out on the 14th day post CCI, 30 min after treatments
were given for each respective pathway. Anti-allodynic and antihyperalgesic effects of zerumbone
(10 mg/kg, i.p) were significantly reversed by the pre-treatment of L-arginine (10 mg/kg), 1H
[1,2,4]Oxadiazole[4,3a]quinoxalin-1-one (ODQ), a soluble guanosyl cyclase blocker (2 mg/kg i.p.) and
glibenclamide (ATP-sensitive potassium channel blocker) (10 mg/kg i.p.) (p < 0.05). Taken together,
these results indicate that systemic administration of zerumbone produces significant anti-allodynic
and antihyperalgesic activities in neuropathic pain in mice possibly due to involvement of the
L-arginine-NO-cGMP-PKG-K+ ATP channel pathways in CCI model.

Keywords: zerumbone; chronic constriction injury (CCI); neuropathic pain; nitric oxide;
NO-cGMP pathway

1. Introduction

Neuropathic pain has become a common issue that affects millions of people around the world [1].
Moreover, the Quick Reference Guide on Management of Cancer Pain, 2010, from the Ministry of
Health in Malaysia, classified neuropathic pain as a challenging pain syndrome critically in need of
adjuvant analgesics and additional interventions. The International Association Study of Pain (IASP)
defines neuropathic pain as a pain that is caused by a lesion or disease on the somatosensory system.
Thus, this type of pain is often associated with diseases or injuries to the peripheral and central nervous
system that usually causes abnormal processing of sensory input [2,3].

Existing treatments such as non-steroidal anti-inflammatory drugs (NSAIDs) and opiates show
little success with a limited response to neuropathic pain [4]. Additionally, commonly used medications

Molecules 2017, 22, 555; doi:10.3390/molecules22040555 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/journal/molecules


Molecules 2017, 22, 555 2 of 14

for neuropathic pain result in numerous side effects, have unpredictable effectiveness, require complex
dosing, with delayed analgesic onset, and also somehow reduces the patient’s quality of life [2,5].

Zerumbone is a bioactive sesquiterpene isolated from Zingiber zerumbet Smith. Zerumbone has
been studied extensively in both in vivo and in vitro models [6]. Zerumbone has medicinal properties,
with reports on its anti-nociceptive [7], anti-inflammatory [8] and, anti-tumor activities [9,10]. Our
previous report showed that zerumbone possesses anti-allodynic and antihyperalgesic activities
in chronic constriction injury (CCI) in animal models of neuropathic pain [11]. Other than that,
we have recently reported the involvement of the serotonergic system in the anti-allodynic and
antihyperalgesic activities of zerumbone in neuropathic pain [12]. Therefore, these findings suggest that
the mechanism of action of zerumbone may also be linked to pathways associated with the neuropathic
pain mechanism, one of which is the L-arginine-nitric oxide-cyclic guanosine monophosphate
(cGMP)-K+ATP pathway.

L-arginine synthesizes nitric oxide (NO) from calcium-dependent constitutive isoforms of NO
synthases (NOS)—neuronal NOS (nNOS), endothelial NOS (eNOS), or calcium-independent inducible
NOS (iNOS) [13]. Previous reports have shown the involvement of NO in nociceptive synaptic
transmission in both the central (CNS) and peripheral nervous systems (PNS) [13,14]. Increase in
NO synthesis leads to release of excitatory neuropeptides, cytokines, and neurotransmitters. Indeed,
NO is said to be involved in the maintenance of allodynia and hyperalgesia as NO synthases are
up-regulated after nerve injury [14–24]. The enzyme guanylate cyclase (GC) is activated by NO,
whereby its activation promotes the production of cGMP from GTP [25]. Previous studies have
also suggested the possible role of the NO-cGMP pathway in activating other targets such as cGMP
dependent protein kinase (PKG) and potassium channels (K+) [26–29]. Opening of potassium channels
due to the L-arginine-NO-cGMP pathway allows regulation of the neuronal excitability through K+

ions permeating the membrane [30]. Studies have shown that opening of potassium channels results
in antinociception [31,32].

On the basis of our previous work, zerumbone has shown to induce the antinociceptive
effect in the chemical model of nociception in mice through the inhibition of the L-arginine-nitric
oxide-cGMP-K+ATP channel pathways [7]. Hence, we hypothesized similar involvement of this
pathway in the mechanism of action of zerumbone in neuropathic pain. This study attempts to verify
the possible mechanisms of action of zerumbone through the involvement of NO/cGMP/K+ATP
pathway linked to the anti-allodynic and antihyperalgesic activities of zerumbone, which could be a
good prospect for the development of a new treatment in relieving neuropathic pain.

2. Results

2.1. L-Arginine-Nitric Oxide Pathway

The role of L-arginine-Nitric Oxide-Cyclic Guanosine Monophosphate-Potassium channel
pathway in the anti-allodynic and antihyperalgesic effects of zerumbone were assessed by von Frey
and Randall-Selitto tests. Both allodynic and hyperalgesic assessments were carried out on the 14th
day post CCI, 30 min after their respective treatments were given.

For the von Frey test, pre-treatment of L-arginine (10 mg/kg) 15 min before L-NOARG (10 mg/kg)
showed significant effect in reversing anti-allodynic effect caused by L-NOARG alone (p < 0.001).
Consequently, pre-treatment of L-arginine (10 mg/kg) intraperitoneally prior to zerumbone treatment
significantly reversed the anti-allodynic effect of zerumbone (p < 0.001) (Figure 1).

Pre-treatment of L-arginine (10 mg/kg) with L-NOARG (10 mg/kg) for the Randall-Selitto test
showed the similar effect to the von Frey test, as the hyperalgesic response was significantly increased
(p < 0.001) when compared to the treatment of L-arginine alone. Similarly, pre-treatment of L-arginine
(10 mg/kg) inhibited the antihyperalgesic effect of zerumbone (10 mg/kg) (p < 0.001) (Figure 2).
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Figure 1. Effect of pre-treatment with L-arginine (10 mg/kg, i.p.) and L-NOARG (10 mg/kg, i.p.) on the 
anti-allodynic effect of zerumbone (10 mg/kg, i.p.) in CCI-induced neuropathic pain in mice.  
*** p < 0.001 comparing zerumbone to L-arginine + zerumbone treated groups and L-NOARG to  
L-arginine + L-NOARG treated groups. + or − indicate presence or absence of the respective treatment. 

 
Figure 2. Effect of pre-treatment with L-arginine (10 mg/kg, i.p.) and L-NOARG (10 mg/kg, i.p.) on the 
antihyperalgesic effect of zerumbone (10 mg/kg, i.p.) in CCI-induced neuropathic pain in mice.  
*** p < 0.001 comparing zerumbone to L-arginine + zerumbone treated groups and L-NOARG to  
L-arginine + L-NOARG treated groups. + or − indicate presence or absence of the respective treatment. 

2.2. Cyclic Guanosine Monophosphate (cGMP) Pathway 

The cyclic GMP involvement was investigated by using the soluble guanosyl cyclase blocker (ODQ) 
and it demonstrated that cGMP is associated with the zerumbone anti-allodynic and antihyperalgesic 
effect. Pre-treatment of ODQ (2 mg/kg) with zerumbone significantly blocked the anti-allodynic effect 
of zerumbone (10 mg/kg) (p < 0.001) (Figure 3). Similarly, pre-treatment of ODQ (2 mg/kg) also 
reversed the antihyperalgesic effect caused by zerumbone (10 mg/kg) (p < 0.001) (Figure 4). 

Figure 1. Effect of pre-treatment with L-arginine (10 mg/kg, i.p.) and L-NOARG (10 mg/kg, i.p.)
on the anti-allodynic effect of zerumbone (10 mg/kg, i.p.) in CCI-induced neuropathic pain in mice.
*** p < 0.001 comparing zerumbone to L-arginine + zerumbone treated groups and L-NOARG to
L-arginine + L-NOARG treated groups. + or − indicate presence or absence of the respective treatment.
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Figure 2. Effect of pre-treatment with L-arginine (10 mg/kg, i.p.) and L-NOARG (10 mg/kg, i.p.)
on the antihyperalgesic effect of zerumbone (10 mg/kg, i.p.) in CCI-induced neuropathic pain in
mice. *** p < 0.001 comparing zerumbone to L-arginine + zerumbone treated groups and L-NOARG to
L-arginine + L-NOARG treated groups. + or − indicate presence or absence of the respective treatment.

2.2. Cyclic Guanosine Monophosphate (cGMP) Pathway

The cyclic GMP involvement was investigated by using the soluble guanosyl cyclase blocker
(ODQ) and it demonstrated that cGMP is associated with the zerumbone anti-allodynic and
antihyperalgesic effect. Pre-treatment of ODQ (2 mg/kg) with zerumbone significantly blocked
the anti-allodynic effect of zerumbone (10 mg/kg) (p < 0.001) (Figure 3). Similarly, pre-treatment of
ODQ (2 mg/kg) also reversed the antihyperalgesic effect caused by zerumbone (10 mg/kg) (p < 0.001)
(Figure 4).
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Figure 3. Effect of pre-treatment with ODQ (2 mg/kg, i.p.) on the anti-allodynic effect of zerumbone 
(10 mg/kg, i.p.) in CCI-induced neuropathic pain in mice. *** p < 0.001 comparing zerumbone to  
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Figure 4. Effect of pre-treatment with ODQ (2 mg/kg, i.p.) on the antihyperalgesic effect of zerumbone 
(10 mg/kg, i.p.) in CCI-induced neuropathic pain in mice. *** p < 0.001 comparing zerumbone to  
ODQ + zerumbone treated groups. + or − indicate presence or absence of the respective treatment. 

2.3. Potassium (K+) Channel Pathway 

In order to evaluate the role of the potassium K+ATP channel in effect of zerumbone, glibenclamide 
(10 mg/kg, i.p.), an ATP-sensitive K+ channel blocker, was injected 15 min prior to zerumbone. The 
data recorded clearly showed the involvement of the K+ATP channel in the anti-allodynic effect of 
zerumbone (10 mg/kg), where glibenclamide significantly reversed the effect of zerumbone (p < 0.001) 
(Figure 5). In the similar experimental design, pre-treatment of glibenclamide (10 mg/kg, i.p.) significantly 
reversed the antihyperalgesic effect of zerumbone (10 mg/kg, i.p.) (p < 0.001) (Figure 6). 

Figure 3. Effect of pre-treatment with ODQ (2 mg/kg, i.p.) on the anti-allodynic effect of zerumbone
(10 mg/kg, i.p.) in CCI-induced neuropathic pain in mice. *** p < 0.001 comparing zerumbone to
ODQ + zerumbone treated groups. + or − indicate presence or absence of the respective treatment.
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Figure 4. Effect of pre-treatment with ODQ (2 mg/kg, i.p.) on the antihyperalgesic effect of zerumbone
(10 mg/kg, i.p.) in CCI-induced neuropathic pain in mice. *** p < 0.001 comparing zerumbone to
ODQ + zerumbone treated groups. + or − indicate presence or absence of the respective treatment.

2.3. Potassium (K+) Channel Pathway

In order to evaluate the role of the potassium K+ATP channel in effect of zerumbone, glibenclamide
(10 mg/kg, i.p.), an ATP-sensitive K+ channel blocker, was injected 15 min prior to zerumbone.
The data recorded clearly showed the involvement of the K+ATP channel in the anti-allodynic
effect of zerumbone (10 mg/kg), where glibenclamide significantly reversed the effect of zerumbone
(p < 0.001) (Figure 5). In the similar experimental design, pre-treatment of glibenclamide (10 mg/kg,
i.p.) significantly reversed the antihyperalgesic effect of zerumbone (10 mg/kg, i.p.) (p < 0.001)
(Figure 6).
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(10 mg/kg, i.p.) groups, were tested for their ability to balance on the rotating bar. The figure (Figure 7) 
clearly depicts that all the mice from the three groups were able to maintain their balance throughout 
the entire length of testing. 
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respective treatment.

2.4. Rota Rod Analysis

In order to evaluate the sedative effect of treatments, mice from the sham, vehicle and zerumbone
(10 mg/kg, i.p.) groups, were tested for their ability to balance on the rotating bar. The figure (Figure 7)
clearly depicts that all the mice from the three groups were able to maintain their balance throughout
the entire length of testing.
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Figure 7. Rota rod analysis to test the possible sedative effect following the treatment of zerumbone
(10 mg/kg; i.p).

3. Discussion

The detail and exact mechanisms that underlies both anti-allodynic and antihyperalgesic effects
of zerumbone has not yet been elucidated. However, it seems that different pathways may be involved
in the antineuropathic activity of zerumbone. In our current study, we further characterize the
mechanisms involved in the effects of zerumbone and demonstrated the involvement of NO-cGMP-K+

in the antihyperalgesic and anti-allodynic effects of zerumbone.
Even though NO modulators are known to play an important role in neuropathic conditions,

the detailed mechanisms are still unclear. Nitric oxide synthesis has been reported to produce
hyperalgesia after the activation of NMDA receptors [33]. Synthesis of NO is crucial in the maintenance
of neuropathic pain. Research has shown that compression or inflammation at the nerve tissue causes
an up-regulation of NOS and NO formation in the spinal cord [34]. In pathologic conditions, the
three well-characterized isoforms of NO synthase—nNOS, eNOS, iNOS could also be up-regulated in
nervous tissues [35–37]. The expression of nNOS in sensory neurons and iNOS in macrophages and
Schwann cells are up-regulated following peripheral nerve injury [38,39].

L-arginine is a basic semi-essential amino acid [40] and is a precursor for the production of nitric
oxide (NO). NO is produced from the oxidation of terminal guanidine nitrogen of L-arginine, which is
then converted to L-citrulline by NOS in mammalian cells [41]. Previously, it has been reported that
administration of L-arginine caused increased hyperalgesia and enhanced nociceptive or inflammatory
responses evoked by bradykinin, substance P, and dextran [42,43]. Based on the current findings, the
analgesic action of zerumbone was reversed when the animals were pre-treated with L-arginine, at a
dose that did not produce any significant changes to the CCI-induced nociception, clearly indicating
the involvement of nitric oxide in the antineuropathic effects of zerumbone.

We supported the experiment by using inhibitors of NOS, which cause a decrease in NO synthesis.
NG-nitro-L-arginine (L-NOARG), is an active eNOS and nNOS inhibitor that has been widely used to
attenuate constitutive NO [44]. The pharmacokinetics of L-NOARG showed that the drug has a mean
residence time of about 30 h. The plasma concentration of L-NOARG declines in a biexponential trend
with the average half-life of 11.0 ± 3.1 min (rapid declining phase) and 20.0 ± 4.9 h (slowly declining
phase). L-NOARG has a volume distribution of 2.5 L/kg, causing it to be extensively distributed
to extravascular tissues even though it insignificantly binds to the plasma protein. The prolonged
duration of action of L-NOARG that is reported in some in vivo studies is due to the slow elimination.
L-NOARG has minimal urinary excretion of unchanged L-NOARG whereby its excretion is mainly by
the metabolism or biliary excretion [45].

At the dose of 10 mg/kg, L-NOARG produced significant anti-allodynic and antihyperalgesic
effects on the CCI model, however, the pre-administration of L-arginine significantly reversed its
anti-allodynic and antihyperalgesic activities. Administration of zerumbone produced a similar
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pattern as with L-NOARG. The results are supported by previous studies whereby a NOS inhibitor
systemically reduces thermal hyperalgesia produced by glutamate [46], and relieves mechanical
allodynia in CCI-induced neuropathic rats [47]. NOS inhibitors have also been shown to be involved
in many other compounds investigated as analgesics for neuropathic pain [48,49]. This further implies
the involvement of NO in mediating the anti-allodynic and antihyperalgesic effects of zerumbone by
inhibiting the synthesis of NO.

The production of NO consequently stimulates an increase in the production of intracellular
cGMP through soluble guanylate cyclase activation [50]. Soluble guanylate cyclase converts guanosine
triphosphate to cGMP. The NO-cGMP pathway modulates intracellular processes through activation
of protein kinases, phosphodiesterases, and ion channels, which results in alterations to the K+ and
Ca2+ currents [51–55]. Our present study managed to demonstrate the involvement of the cGMP
pathway through the reversal of the anti-allodynic and antihyperalgesic activities of zerumbone using
ODQ, a soluble guanylate cylcase inhibitor. Similar effects have been reported with analgesics such as
dipyrone and diclofenac [56,57].

Experimental data have indicated a link between the activation of the NO-cGMP pathway and
the opening of the ATP-sensitive K+ channels[58]. From the results observed, the ATP-sensitive K+

channel is suggested to be involved in the mechanism of action of zerumbone. Pre-treatment with
glibenclamide, an ATP-sensitive K+ channel blocker, significantly reversed both anti-allodynic and
antihyperalgesic activities of zerumbone. Zerumbone possibly acts by modulating K+ currents through
the efflux of K+ ions permeating the membrane. Increase in K+ ion efflux alters the membrane potential
to avert from action potential generation, which results in the decrease of neurotransmitter release [30].
Other than that, the effect of zerumbone through the activation of the NO-dependent pathway is
similar to some pharmacological studies that have evaluated NO/cGMP activation and the opening
K+ channels, which relates to the opioidergic pathway [59].

These results are in agreement with the recent article reported by our group stating the possible
involvement of nitric oxide-cGMP pathways in the antinociceptive effects of zerumbone [7,60]. This
displays the potent inhibition of zerumbone towards NO through inhibition of NOS which enlightens
us on the mechanism of action of zerumbone in neuropathic pain. In addition, previous research has
reported that zerumbone managed to reduce the overexpression of inducible nitric oxide synthase
(iNOS) and consecutively, reduce the production of NO [9,61]. Most data from previous studies has
reported the importance of iNOS [62] in the pathogenesis of nerve injury-induced neuropathic pain.
Local expression of iNOS starts as early as the third day and maintains expression for at least 26 days
at the constriction sites after nerve injury [22,63–65]. Moreover, it slows down the regeneration of
myelinated and smaller fibres at the site of the injury [63]. Therefore, zerumbone possibly exerts its
effects by inhibition of iNOS, which might help in the nerve reparation process after nerve injury.

Nitric oxide can be classified as a free radical that can be dangerously combined with superoxide
anions to form hydroxyl free radicals [66]. Several journals have reported that locally applied L-NAME
may possibly reduce the levels of these toxic free radicals at the site of CCI, resulting in the reduction of
thermal hyperalgesia [67]. Similarly, we speculate that zerumbone reduces these free radicals due to its
dual anti-oxidant and anti-inflammatory properties [68]. Indeed, zerumbone was able to suppress free
radicals (superoxide anion) generation from NADPH oxidase xanthine oxidase, expression of iNOS
(inducible nitric oxide synthase) and COX (cyclooxygenase)-2, as well as the release of TNF-α [9].

Zerumbone was administered intraperitoneally and the presence of this compound is able
to systemically alleviate the symptoms of allodynia and hyperalgesia. However, the exact site
of action is relatively unclear, due to the lack of reports on the pharmacological properties of
zerumbone. Speculation could be made that zerumbone might act by reducing inflammation,
lowering the sensitivity at nerve terminals, or might be directly involved in the inhibition of signal
transduction at the different levels of the pain pathway which includes peripheral nociceptors,
dorsal root ganglion on the spinal cord. This represents a new approach in discovering new
therapeutics for neuropathic pain [69,70]. Therefore, taking previous findings and our current data
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into account, we suggest that the analgesic effect of zerumbone is partly due to the activation of the
L-arginine/NO/cGMP/ATP-sensitive K+ channel pathway in the CCI-induced neuropathic pain in
animal model.

4. Materials and Methods

4.1. Experimental Animals

Male ICR mice (25–35 g) were used in this study. All mice (n = 8 mice in each group) were housed
under 12 h light-dark cycles with the environment maintained at 20–24◦C. The animals were allowed
free access to tap water and commercial pellet. All experiments were conducted between 8:00 a.m. and
5:00 p.m. The handling of mice was based on Zimmermann [71] in accordance with Ethical Guidelines
for Investigation of Experimental Pain in Conscious Animals as issued by the International Association
for the Study of Pain. The protocol and procedure of the experiment has been approved by Institutional
Animal Care and Use Committee (IACUC) UPM (UPM/IACUC/AUP-R060/2013).

4.2. Surgical Procedure

Neuropathic pain was induced in mice by performing chronic constriction injury (CCI) of the
common sciatic nerve as previously described by Bennett and Xie [72,73]. The CCI model has proven
to be the best animal model, compared to other models, as it produces the most sustained response in
peripheral nerve injury [4]. Briefly, mice were deeply anesthetized with tribromoethanol (250 mg/kg,
i.p.) and the fur on the left thigh region was shaved. The left common sciatic nerve was isolated from
adherent tissue and exposed at the mid-thigh by blunt dissection through the biceps femoris.

The common sciatic nerve that is proximal to the trifurcation was loosely ligated with one ligature
using chromic silk suture Deme Tech until a slight twitch was observed in the expected hind limb.
Then, the skin layer was immediately sutured with the absorbable synthetic braided suture Vigilenz
(Brilon, Germany). Lastly, iodine was applied externally with a cotton swab on the site of the incision.
Another group that consisted of sham mice were used for lesion-injured mice or the control group.
This group of animals were subjected to the same procedure, excluding the ligation of the sciatic nerve.

4.3. Preparation of Zerumbone for Experiments

Zerumbone was prepared by dissolving in dimethylsulfoxide (DMSO), Tween 20 and normal
saline (0.99% NaCl) in a 5:5:90 (v/v/v) fraction. The final concentration of DMSO did not exceed 5%
and caused no detectable effect by itself.

4.4. Preparation of Drugs and Chemicals

Nω-nitro-L-arginine (L-NOARG), L-arginine hydrochloride (L-arginine), glibenclamide, DMSO,
and 1-H-[1,2,4]Oxadiazole[4,3-a] quinoxaline-1-one (ODQ) were purchased from Sigma-Aldrich
Chemical Co. (St. Louis, MO, USA). All chemicals were dissolved in saline solution (0.99% NaCl). All
drugs were freshly prepared before experiments and administered intraperitoneally in a volume of 10
mL/kg unless stated otherwise.

4.5. Groups and Timeline

A total of 96 mice with 8 mice per group was used. The response for tactile allodynia and
mechanical hyperalgesia for every group (Table 1) was recorded for every mouse before CCI (baseline)
and on post-surgery day 14 (Figure 8). On the 14th day the pre-treatment substances were administered
according to its respective groups which were L-arginine (10 mg/kg, i.p.), L-NOARG (10 mg/kg, i.p.),
ODQ (2 mg/kg, i.p.), and Glibenclamide (10 mg/kg, i.p.). The administration of the drugs by injection
was 15 min prior to the administration of 10 mg/kg of zerumbone. Data for both of the behavioural
tests were recorded 30 min after the administration of the final treatment.
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Table 1. Experimental Groups.

Experimental Groups (n = 6) Dose Experimental Conditions

Sham - Without ligature to the nerve and no treatment

Vehicle (mL/kg, i.p.) 10 Subjected to CCI and treated with vehicle

Zerumbone (mg/kg, i.p.) 10 Subjected to CCI and treated with zerumbone

L-arginine (mg/kg, i.p.) 10

Subjected to CCI and pre-treated with different
antagonist and agonist

L-NOARG (mg/kg, i.p.) 10
L-arginine + L-NOARG 10 + 10

L-arginine + Zerumbone 10 + 10
L-NOARG + Zerumbone 10 + 10

ODQ (mg/kg, i.p.) 2 Subjected to CCI and pre-treated with ODQ
ODQ + Zerumbone 2 + 10

Glibenclamide (mg/kg, i.p.) 10 Subjected to CCI and pre-treated
with GlibenclamideGlibenclamide + Zerumbone 10 + 10

Molecules 2017, 22, 555 9 of 14 

 

Table 1. Experimental Groups. 

Experimental Groups (n = 6) Dose Experimental Conditions 
Sham - Without ligature to the nerve and no treatment 

Vehicle (mL/kg, i.p.) 10 Subjected to CCI and treated with vehicle 
Zerumbone (mg/kg, i.p.) 10 Subjected to CCI and treated with zerumbone 
L-arginine (mg/kg, i.p.) 10 

Subjected to CCI and pre-treated with different 
antagonist and agonist 

L-NOARG (mg/kg, i.p.) 10 
L-arginine + L-NOARG 10 + 10 

L-arginine + Zerumbone 10 + 10 
L-NOARG + Zerumbone 10 + 10 

ODQ (mg/kg, i.p.) 2 Subjected to CCI and pre-treated with ODQ ODQ + Zerumbone 2 + 10 
Glibenclamide (mg/kg, i.p.) 10 Subjected to CCI and pre-treated with Glibenclamide Glibenclamide + Zerumbone 10 + 10 

 
Figure 8. Timeline for the involvement of the L-arginine-Nitric Oxide-cGMP-K+ATP pathway in 
zerumbone anti-allodynic and antihyperalgesic activities. 

4.6. Allodynia Effect 

Tactile allodynia was evaluated by measuring the hind paw withdrawal response to a  
semi-flexible von Frey filament using an Electronic von Frey Anesthesiometer (IITC, Woodland Hills, 
CA, USA). Mice were placed individually in clear Plexiglas boxes on top of a wire mesh grid to allow 
the access to the ventral surface of the hind paws. Prior to the test, mice were allowed to habituate 
for at least 10 min, until their exploratory behaviour diminished before stimulation was initiated.  
A semi-flexible probe was applied vertically to the midplantar left and right hind paws with a gradual 
increase in pressure until the paw was withdrawn or elevated slowly which indicated a maximal 
force. Hence, the maximum applied pressure was noted when the probe was retracted. Both 
ipsilateral and contralateral hind paws were tested. These steps were repeated three times and the 
average measurement was calculated and recorded [74]. Mice that exhibited motor deficits during 
the pre-operative day and the post-operative days were excluded from further study. 

4.7. Hyperalgesia Effect 

The response towards mechanical hyperalgesia was assessed according to a Randall-Selitto Pressure 
Analgesiometer (IITC, Woodland Hills, CA, USA) based on the method previously described by [75]. 
The mice were habituated to the testing procedure a day before the experiment. They were restrained 
using a clean cloth and one paw at a time was placed in between the pressure applicator.  
An incremental pressure was applied gently onto the dorsal surface of the ipsilateral and contralateral 
paw, and the pressure (g) that showed the first nociceptive response such as squealing or paw 

Figure 8. Timeline for the involvement of the L-arginine-Nitric Oxide-cGMP-K+ATP pathway in
zerumbone anti-allodynic and antihyperalgesic activities.

4.6. Allodynia Effect

Tactile allodynia was evaluated by measuring the hind paw withdrawal response to a semi-flexible
von Frey filament using an Electronic von Frey Anesthesiometer (IITC, Woodland Hills, CA, USA).
Mice were placed individually in clear Plexiglas boxes on top of a wire mesh grid to allow the access
to the ventral surface of the hind paws. Prior to the test, mice were allowed to habituate for at least
10 min, until their exploratory behaviour diminished before stimulation was initiated. A semi-flexible
probe was applied vertically to the midplantar left and right hind paws with a gradual increase in
pressure until the paw was withdrawn or elevated slowly which indicated a maximal force. Hence, the
maximum applied pressure was noted when the probe was retracted. Both ipsilateral and contralateral
hind paws were tested. These steps were repeated three times and the average measurement was
calculated and recorded [74]. Mice that exhibited motor deficits during the pre-operative day and the
post-operative days were excluded from further study.

4.7. Hyperalgesia Effect

The response towards mechanical hyperalgesia was assessed according to a Randall-Selitto
Pressure Analgesiometer (IITC, Woodland Hills, CA, USA) based on the method previously described
by [75]. The mice were habituated to the testing procedure a day before the experiment. They
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were restrained using a clean cloth and one paw at a time was placed in between the pressure
applicator. An incremental pressure was applied gently onto the dorsal surface of the ipsilateral and
contralateral paw, and the pressure (g) that showed the first nociceptive response such as squealing or
paw withdrawal was recorded as the pain threshold. The stimulus was applied on both paws with
a cut-off pressure of 250 g. Mice that exhibited motor deficits during the pre-operative day or the
post-operative days were excluded from further study.

4.8. Rota Rod Analysis

Rota rod analysis was carried out to test the possible sedative effect of zerumbone treatment. Mice
in the sham, vehicle, and zerumbone groups were placed on the rota rod (UgoBasile, Varese, Italy) bar
rotating at 20 rpm, 30 min after drug administration. The time spent by the mice on the rotating bar
was recorded and a cut-off time of 3 min was employed after which the mice were returned to their
respective home cages.

4.9. Statistical Analysis

Results are reported as mean ± standard error (S.E.) for each group. Parametric values were
analysed using one way analysis of variance (ANOVA) followed by Tukey’s pos hoc test using
GraphPad-Prism v5.0 software (GraphPad, San Diego, CA, USA). The significance difference is
indicated as * p < 0.05, ** p < 0.01, *** p < 0.001.

5. Conclusions

Zerumbone displayed inhibition to nitric oxide production, which can indirectly reduce the
activation of NOS. The presence of cGMP is essential for zerumbone to exhibit its anti-allodynic and
antihyperalgesic activities. Zerumbone is also suggested to exert its activity by the opening of K+

channels that help in reducing membrane excitability. In brief, we conclude that the anti-allodynic and
antihyperalgesic activity of zerumbone is mediated through the L-arginine/NO-cGMP/ATP-sensitive
K+ channel pathway. These findings suggest that zerumbone acts as a promising novel therapeutic
agent for neuropathic pain. More extensive studies are needed to elucidate the detailed mechanism of
action involved in zerumbone.
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