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Abstract
Background: Defining reliable brain markers for the prediction of abnormal behav-
ioral outcomes remains an urgent but extremely challenging task in neuroscience 
research. This is particularly important for infant studies given the most dramatic 
brain and behavioral growth during infancy.
Methods: In this study, we proposed a novel prediction scheme through abstract-
ing individual newborn's whole-brain functional connectivity pattern to three outlier 
measures (Triple O) and tested the hypothesis that neonates identified as “brain out-
liers” based on Triple O were more likely to develop as IQ outliers at 4 years of age. 
Without need for training with behavioral data, Triple O represents a novel proof-of-
concept approach to predict later IQ outcomes based on neonatal brain data.
Results: Triple O correctly identified 42.1% true IQ outliers among a mixed cohort 
of 175 newborns with different term, twin, and maternal disorder statuses. Triple O 
also reached a high level of specificity (96.2%) and overall accuracy (90.3%). Further 
incorporating a demographic information indicator, the enhanced Triple O+ could 
further differentiate between high and low 4YR IQ outliers. Validation tests against 
seven independent reference samples revealed highly consistent results and a mini-
mum sample size of ~50 for robust performance.
Conclusions: Considering that postnatal brain growth and various environmental fac-
tors likely also contribute to 4YR IQ, the fact that Triple O, based purely on neona-
tal functional connectivity data, could identify >40% of 4YR IQ outliers is striking. 
Together with the very high level of specificity, each outlier predicted by Triple O rep-
resents a meaningful risk but future efforts are needed to explore ways to identify 
the rest of outliers. Overall, with no need for training, a high level of robustness, and 
a minimal requirement on sample size, the proposed Triple O approach demonstrates 
great potential to predict later outlying IQ performances using neonatal functional 
connectivity data.
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1  | INTRODUC TION

Over the past two decades, the successful application of resting-state 
functional magnetic resonance imaging (rsfMRI) technique (Biswal, 
Yetkin, Haughton, & Hyde,  1995) in the infant population has dra-
matically improved our understanding of the fast-paced, nonlinear, 
and patterned development of the brain's functional networks during 
the first years of life (Doria et al., 2011; Fransson, Aden, Blennow, & 
Lagercrantz, 2011; Gao, Lin, Grewen, & Gilmore, 2016; Gao et al., 2009; 
Smyser et al., 2010; Thomason et al., 2013). Plastic and modifiable by 
a range of beneficial and risk factors (Gao et al., 2016), functional brain 
development during this period harbors both great opportunity and 
vulnerability, consistent with the developmental origins of health and 
disease (DOHaD) hypothesis (Monk, Lugo-Candelas, & Trumpff, 2019; 
Silveira, Portella, Goldani, & Barbieri,  2007). Therefore, one of the 
most important goals for developmental imaging research is to explore 
whether and how early brain-based biomarkers could identify risks for 
later adverse developmental outcomes. To this aim, promising asso-
ciations between early brain functional connectivity and later behav-
ioral outcomes have been reported (Alcauter, Lin, Smith, Short, et al., 
2014; Ball et al., 2015; He et al., 2018; Salzwedel et al., 2019; Strahle 
et al., 2019), supporting a positive answer to the “if” question but “how” 
exactly accurate prediction can be achieved remains elusive.

Due to the interconnected, coordinated, and network nature of 
brain function (Achard & Bullmore, 2007; Bressler, 1995), one po-
tential barrier underlying the brain–behavioral prediction challenge 
relates to a “many-to-one” problem as there are likely a wide range of 
brain processes involved in any single behavioral output (Atzil, Gao, 
Fradkin, & Barrett, 2018; Atzil, Hendler, & Feldman, 2014; Lindquist, 
Wager, Kober, Bliss-Moreau, & Barrett,  2012; Song et  al.,  2008). 
Supporting this notion, previous reports on brain–behavioral rela-
tionships in infants often report weak to moderate correlations be-
tween a number of functional connections and a single behavioral 
output (Alcauter, Lin, Smith, Short, et al., 2014; He et  al.,  2018; 
Salzwedel et al., 2019), suggesting that individual functional connec-
tions/processes likely only contribute a small percentage of variance 
to a given behavioral phenotype. Adding to the challenge, the col-
lection of functional connections/processes may show both positive 
and negative associations with the same behavioral output and may 
act in both additive and interactive ways, making efforts to combine 
them for prediction even more challenging. Intuitively, these issues 
may seem to suggest advanced machine learning-based algorithms 
as a suitable solution but the need for “big data” for training of such 
algorithms make them impractical at this point, given the sparsity of 
available data due to inherent challenges in research-based infant 
MRI imaging.

An alternative solution lies in hypothesis-driven prediction 
through informed feature selection and dimension reduction. The 
key for the success of such approaches lies in the way of abstraction 
so that the selected features could capture the most salient informa-
tion that are predictive of the later behavioral output in question. In 
this paper, we sought to derive a novel abstraction-prediction frame-
work based on neonatal functional connectivity pattern and test its 

predictive values for 4-year IQ (4YR IQ) performance. As a com-
posite measure of general cognitive capability, IQ covers multiple 
functional domains including fluid reasoning, verbal and nonverbal 
knowledge, quantitative skills, visual–spatial processing, and work-
ing memory (Roid, 2003). Each of these functional domains is sup-
ported by a distributed set of brain regions and/or networks; thus, 
the brain basis of IQ is likely represented by a complex whole-brain 
system composed of widely distributed but coordinating functional 
networks (Goriounova & Mansvelder,  2019). Given this integrated 
and global nature of the potential brain basis of IQ, we propose a 
“Triple Outliers (Triple O)” approach to reduce the neonatal whole-
brain functional connectivity pattern into three global outlier 
measures and applied them to 175 study participants to categori-
cally predict their 4-year IQ performances as being or not being an 
“outlying” performer. Given the DOHaD (Monk et al., 2019; Silveira 
et al., 2007) and the developmental cascading hypothesis (Masten 
& Cicchetti, 2010), we hypothesize that newborns characterized as 
“global brain outliers” would more likely manifest later outlying IQ 
performances. This hypothesis is empirically supported by previous 
studies reporting a number of functional connections showing linear 
correlations with composite cognitive outcomes later in life (Alcauter, 
Lin, Smith, Goldman, et al., 2014; Alcauter, Lin, Smith, Short, et al., 
2014; Salzwedel et  al.,  2019). These studies suggest that subjects 
more frequently lying on the two ends of the functional connectivity 
continuum should also be more likely to appear at the two ends of 
the behavioral spectrum. We propose sign-insensitive outlier mea-
sures in Triple O since both positive and negative associations at 
the individual connection level have been observed (Alcauter, Lin, 
Smith, Goldman, et al., 2014; Alcauter, Lin, Smith, Short, et al., 2014; 
Salzwedel et al., 2019). Similarly, the sign-insensitive nature of Triple 
O may also mitigate the recently reported heterogeneity in brain–
behavior relationships within the neonate population (Chen et al., 
2020) through equally accounting the absolute deviations from the 
population mean regardless of the different directions of brain–be-
havior associations in different subgroups. Note, however, there are 
likely other postnatal brain (both structural and functional) and en-
vironmental factors (e.g., parenting, family environment/enrichment 
activity, adverse life events, and nutrition) that also contribute to 
4YR IQ outcomes so we do not expect the proposed Triple O to cap-
ture all 4YR IQ outliers. Overall, as a novel hypothesis-driven predic-
tion approach with no need for training with IQ outcome data, we do 
anticipate the proposed Triple O approach and its future extensions 
to have high translational potential to aid clinical identification of 
newborns at risk for adverse developmental outcomes later in life 
due to abnormal functional brain growth before the neonatal stage.

2  | MATERIAL S AND METHODS

2.1 | Participants and Image Acquisition

Three hundred and ninety three infant participants were retrospec-
tively identified from the UNC-Chapel Hill Early Brain Development 
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Study, characterizing early childhood brain and behavior develop-
ment (Gao et al., 2016; Gilmore, Knickmeyer, & Gao, 2018). Based 
on whether there was an available 4-year-old IQ (4YR IQ) score, 
these infants were separated into two groups: SAMPLE 1 (N = 175) 
with both available neonate MRI scans and 4-year-old IQ scores, and 
SAMPLE 2 (N = 218) with only available neonate MRI scans but no 
4YR IQ. Both SAMPLE 1 and SAMPLE 2 were composed of mixed 
samples with respect to sex, term status (i.e., either full-term or pre-
term), twin status (i.e., either singleton or twins), and maternal men-
tal disorder status (i.e., with or without maternal disorder diagnosis, 
including schizophrenia, bipolar disorder, and other nonspecified 
psychiatric disorders). Besides these three categorical variables, we 
also have continuous measures of gestational age (GA) at birth, GA 
at MRI scan/4YR IQ assessment, birthweight, birth length, mater-
nal/paternal age, maternal/paternal education in years, and total an-
nual family income. The detailed demographic information for both 
SAMPLE 1 and SAMPLE 2 is listed in Table 1. These heterogeneous 
samples were selected to enrich developmental outcomes as well as 
to test the practical applicability of our prediction approach.

IQ scores at 4 years of age were measured using the Stanford–
Binet Intelligence Scales, 5th edition (Roid,  2003). The Stanford–
Binet is a series of tasks administered individually in a structured 
setting. These scales were designed to assess intelligence across 
the life span, with focuses on five major domains, including fluid 

reasoning, knowledge, quantitative, visual–spatial processing, and 
working memory. In the current study, the Abbreviated IQ (ABIQ) 
score was used as a measure of general cognitive ability. This IQ 
score is calculated from performance on two routing subtests: a non-
verbal test involving object or sequence/pattern recognition and a 
verbal test of vocabulary. The Abbreviated IQ score provides a quick 
estimate of a child's general cognitive ability and as it requires the 
administration of only two subtests. Therefore, it is easier to obtain 
than the full-scale IQ, especially for 4-year-old children. The ABIQ 
score has shown strong test–retest (r = .87) reliability. The Stanford–
Binet scales also have strong interrater reliability (ranging from 0.74 
to 0.97 across all scales). The overall study protocols were approved 
by both the UNC at Chapel Hill and Cedars-Sinai Institutional Review 
Boards.

MRI data were acquired using two scanners: a 3T Siemens Allegra 
scanner with a circular polarization head coil (330 neonatal scans) 
and a 3T Siemens Tim Trio with a 32-channel head coil (63 neonatal 
scans). Functional images were acquired with a T2* weighted echo 
planar imaging (EPI) sequence: TR/TE = 2,000 ms/ 32 ms, 33 slices, 
voxel size  =  4  mm3, 150 volumes of repetition. Structural images 
were acquired using a 3D MPRAGE sequence: TR/TE = 1,820 ms/ 
4.38 ms, TI = 1,100 ms, voxel size = 1 mm3. Infant subjects were 
fed, swaddled, and fitted with ear protection prior to imaging. All 
subjects were in a natural sleep state during the imaging session.

SAMPLE 1 (N = 175) SAMPLE 2 (N = 218)

p-values 
comparing 
SAMPLE 1/2

Sex (male/female) 87/88 108/110 .973

Twin status (single/
twin birth)

81/94 81/137 .068

Term status 
(full-term/preterm)

112/63 130/88 .378

Maternal disorder 
diagnosis (disorder/
no disorder)

21/154 30/188 .607

Scanner (1/2) 149/26 181/37 .451

Gestational age at 
birth (days)

261 ± 18.27 259.15 ± 20.66 .353

Gestational age at 
scan (days)

293.93 ± 13.91 294.47 ± 14.82 .714

Maternal education 
(years)

15.3 ± 3.33 14.95±±3.84 .340

Paternal education 
(years)

15.10 ± 3.28 15.07 ± 3.84 .944

Maternal age at birth 
(years)

30.13 ± 6.03 29.64 ± 5.63 .403

Paternal age at birth 
(years)

32.69 ± 6.73 32.33 ± 6.74 .606

Birth weight (g) 2,805.61 ± 685.42 2,720.80 ± 704.43 .231

Birth length (mm) 48.23 ± 3.89 47.97 ± 3.76 .522

Total household 
income ($)

74,845.72 ± 56,303.35 74,489.76 ± 60,177.71 .954

TA B L E  1   Demographic information 
of SAMPLE 1 and SAMPLE 2 and their 
comparisons
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2.2 | Image processing

Functional images were preprocessed using the FMRIB's Software 
Libraries (FSL) (Smith et  al.,  2004) and AFNI (Cox,  1996), including 
discarding the first 10 volumes, slice timing and head motion correc-
tion, band-pass filtering (0.01–0.08 Hz), and nuisance signal regression. 
The 24 motion-related parameters (six motion correction parameters, 
derivative, and their quadratic terms), white matter, CSF, and global 
signals (also including their derivative and quadratic terms) were in-
cluded as nuisance signals. All the nuisance signals were band-pass-
filtered (0.01–0.08 Hz) before regression to match the frequency of 

the BOLD signal. Data scrubbing was performed as an added motion 
correction step in addition to the standard rigid-body motion cor-
rection procedures. Specifically, volumes with global signal changes 
>0.5% and/or framewise displacements (FD) >0.3 mm (Power et al., 
2014) were excluded (plus one before and two after). Subjects with 
<90 volumes (=3 min) were excluded from the study. After functional 
images preprocessing, all functional images were registered to the 
age-specific anatomical template space (Shi et al., 2011) for each age 
group using the combined transformation field from a two-step regis-
tration, namely an affine transformation from individual functional im-
ages to anatomical images and a nonlinear registration from individual 

F I G U R E  1  Distribution of 4-year IQ (4YR IQ) scores across different groups and correlations with demographic variables. (a) Left: 
4YR IQ histogram of SAMPLE 1 (N = 175); middle: comparisons of 4YR IQ between males and females (M/F), subjects with and without 
maternal disorder (D/nD), full-term and preterm (P/F), and twins/singletons (T/S) within SAMPLE 1. The right most bar represents 
the comparison between the composite CONTROL group (i.e., full-term, singleton birth, and no maternal disorder diagnosis) and the 
RISK group (i.e., subjects with one of the three risk factors including twin, preterm birth, and maternal disorder diagnosis. (C/R); right: 
comparison of 4YR IQ histograms within the CONTROL and RISK subsamples of SAMPLE 1 (vertical lines indicating the p < .05 lines 
used to operationally define 4YR IQ outliers in this study). (b) Scatter plots showing correlations between all continuous demographic 
variables and 4YR IQ. Solid black regression lines indicate significant correlations, while those dashed lines do not. The high/low outlying 
4YR IQ performers as shown in (a) right panel were highlighted in all scatter plots as red/green dots to show their distribution against 
each and every demographic variable. The three demographic variables on which we have data on all 175 subjects of SAMPLE 1 and show 
significant correlations (i.e., maternal education (Medu), birthweight (BW), and gestational age at birth (GA at birth)) were highlighted and 
listed in the first three panels. Gestational age at birth (GA at birth), gestational age at IQ assessment (GA at 4YR IQ), gestational age at 
MRI scan (GA at MRI scan), birthweight, birth length, maternal/paternal age, maternal (Medu)/paternal education (Pedu) in years, and total 
annual household income (THI)
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anatomical images to the target images. Spatial transformations were 
performed in FSL. The amount of volumes scrubbed and residual 
framewise FD (rFD) were compared cross-sectionally to ensure there 
were no differences in motion and included as motion covariates in 
statistical analysis. Finally, the images were spatially smoothed with 
Gaussian kernel (FWHM = 6 mm) and truncated into 90 volumes to 
increase consistency across subjects. Finally, UNC-CEDARS functional 
parcellation atlas for neonate brains (Shi, Salzwedel, Lin, Gilmore, & 
Gao, 2017), including 223 regions, was used to create the whole-brain 
functional connectivity matrix. One region was lost when downsam-
pling into 4-mm spatial resolution resulting in a final matrix size of 
222 × 222 for each subject. The correlation of fMRI signals between 
paired regions was Fisher-Z-transformed for subsequent analysis.

2.3 | IQ outlier detection

The 4-year-old IQ scores were normalized into Z-scores (Z_IQ). A 
one-tailed significance of p = .05 (i.e., Z > 1.645) was selected as the 
threshold to define positive (Z_IQ > 1.645) and negative behavior 
outliers (Z_IQ < −1.645). There are 13 positive and 6 negative outli-
ers detected in SAMPLE 1 (Figure 1a).

2.4 | Brain outlier detection

To define brain outliers, we propose to abstract the whole-brain 
222  ×  222 functional connectivity matrix to three simple measures 
quantifying three different, but related, aspects of being “outlying” 
against a reference population. The first measure directly counts the 
number of “outlying” connections against the reference group mean. 
Similar to IQ outlier definition, a one-tailed significance of p < .05 was 
used as the threshold to define connection-level outliers. The rationale 
for the first measure is intuitive and straightforward; if multiple func-
tional connections linearly correlate with a later behavioral outcome, 
then the number of times a particular subject sits on the extreme of 
these connections would likely be associated with the chance of the 
subject appearing on the extreme of the behavioral outcome given the 
underlying linear relationships. In other words, the number of “outly-
ing” connections may be viewed as an index of the number of “at-risk” 
brain features that may contribute to later abnormal IQ outcomes. 
Therefore, the number of “outlying” connections was chosen as the 
first measure. Considering that there could be other subthreshold de-
viations from the group mean, a second measure was defined as the 
average Euclidean distance of one subject's vectorized connectivity 
matrix to every subject's vectorized matrix in the reference group, 
which summarized the overall deviation of one subject's whole-brain 
connectivity pattern to the reference group regardless of any thresh-
old. The second measure represents a complementary measure to the 
first one to further include those subjects that may show connection-
level subthreshold deviations from the group mean but the sum of 
which is sufficient to put them at the extreme at the whole-brain level. 
Since both the first two measures evaluate subject-level deviations 

from the group mean, we proposed another within-subject measure-
the standard deviation across all individual connections as a third 
within-subject measure with the expectation that subjects showing 
extreme level of functional connectivity variability across the whole 
brain may also be more likely to manifest as IQ outliers.

We chose to use these whole-brain level outlier measures in the 
proposed approach since both positive and negative associations at 
the individual connection level have been observed (Alcauter, Lin, 
Smith, Short, et al., 2014; He et  al.,  2018; Salzwedel et  al.,  2019). 
Through identifying global “outliers” relative to the group mean, the 
proposed Triple O approach would summarize extreme deviations 
from the population mean regardless of whether they are at the 
low or high end of the functional connectivity strength spectrums. 
Therefore, Triple O is not sensitive to positive or negative associ-
ations; rather, it “harmonizes” and summarizes absolute deviations 
from the population mean in both types of brain–behavioral asso-
ciations for better prediction. More importantly, recent evidences 
(Chen et al., 2020) suggest that even within an otherwise “homog-
enous” neonate population, different subgroups of neonates may 
possess qualitatively different brain–behavior associations (i.e., in 
different directions). A typical way to address such relational hetero-
geneity in prediction would likely require subgroup-specific predic-
tion models to better utilize the differential information. However, 
the proposed global brain outlier-based Triple O approach would 
mitigate such heterogeneity since regardless of the different direc-
tions/sings of brain–behavior correlations, the outlier measure will 
equally capture the absolute deviations of a subject with respect to 
the group mean for effective prediction.

After the calculation of all three measures, they were normalized 
to Z-scores based on the mean and standard deviations from the ref-
erence group and any values >1.645 standard deviations above the 
mean (i.e., one-tailed p < .05) were defined as an “outlier.” Therefore, 
each subject would have three outlier indicators (i.e., Triple O) and 
those with two or more “outliers” indicators detected to be true was 
finally defined as a “brain outlier.”

Based on neonatal functional connectivity data from SAMPLE 1, 
brain outliers were defined using the proposed Triple O scheme as 
described above. The correspondence between the detected “brain 
outliers” and 4YR IQ outliers was examined to test Triple O’s per-
formance in terms of sensitivity, specificity, and overall accuracy. 
Note for Triple O, all three brain outliers were defined purely based 
on brain rsfMRI data and no training with 4YR IQ data was needed. 
Instead, the 4YR IQ outcome data were only used to test the perfor-
mance of the Triple O model. Therefore, Triple O represents a da-
ta-based prediction scheme with no need of training with outcome 
data.

2.5 | Comparison with demographic information-
based outlier detection

Based on the continuous measures of gestational age (GA) at birth, 
GA at MRI scan/4YR IQ assessment, birthweight, birth length, 
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maternal/paternal age, maternal/paternal education in years, and 
total annual family income, their correlations with 4YR IQ were cal-
culated. Among all demographic variables, we identified three that 
(a). we have data on all the 175 subjects in SAMPLE 1; and (b) showed 
significant positive correlations with 4YR IQ. These three variables 
were maternal education, birthweight, and gestational age at birth. 
All three measures were Z-transformed and tested through a similar 
outlier detection pipeline as did the three brain outliers to define 
demographic information-based outliers. The performance of these 
“demographic outliers” in detecting 4YR IQ outliers was compared 
with the brain-based Triple O results.

2.6 | Demographic information-enriched Triple O 
(Triple O+)

To explore whether incorporating demographic information would 
help specify the polarity of brain-based outlier prediction, we calcu-
lated the average of the three demographics identified as meeting 
the two criteria above (i.e., GA at birth, birthweight, and maternal 
education in years) as a Cumulative Demographic Risk Index (CDRI) 
in SAMPLE 1. Given their consistent positive correlations with 4YR 
IQ, we predicted that the detected brain “outliers” with above-aver-
age CDRI would correspond to high 4YR IQ performers, while those 
with below-average CDRI would correspond to low 4YR IQ perform-
ers. Therefore, CDRI was used to further provide a “sign” for Triple O 
prediction and this enriched model was termed as Triple O+.

2.7 | Validation based on SAMPLE 2 and 
its subsamples

To test the robustness of the Triple O+ prediction, the 218-sub-
ject SAMPLE 2 and six subsamples from SAMPLE 2 (i.e., only males 
(N = 108), only females (N = 110), data from one of the two scanners 
(N = 181/37 for Scanner 1/2), and two randomly selected 100-sub-
ject subsamples) were used as independent reference samples to 
identify brain outlier from SAMPLE 1. The corresponding perfor-
mances were compared with the one using SAMPLE 1 as its own 
reference to examine Triple O+’s robustness against different refer-
ence samples.

2.8 | The sample size limit and underlying 
mechanism of Triple O+ prediction

With the validation analyses suggesting that the sample size of the 
reference group may be a limiting factor for robust performance, we 
performed a set of random sampling analyses to explore the per-
formance of Triple O+ with different sample sizes of the reference 
group. Specifically, we randomly selected 10–216 subjects 1,000 
times from the SAMPLE 2 (N = 218) and tested the prediction per-
formances on the independent SAMPLE 1 (N = 175) data. Sensitivity, 

specificity, and accuracy were calculated at each sample size step. 
Moreover, we also calculated the mean and standard deviations of 
the three brain outlier measures (i.e., the number of connection-level 
outliers, the Euclidean distance of the overall matrix with the ref-
erence group, and the within-subject standard deviation) to further 
reveal the underling mechanisms of the performance.

3  | RESULTS

3.1 | Participants and 4YR IQ distribution

The detailed demographic information for both SAMPLE 1 and 
SAMPLE 2 is listed in Table 1. Note both SAMPLE 1 and SAMPLE 2 
were composed of mixed samples with respect to sex, term status, 
twin status, and maternal mental disorder status, and no significant 
differences were observed against the relative percentages of either 
of the four categorical variables (Table 1). Moreover, the two sam-
ples were also matched against each and every of the 10 continu-
ous demographic variables (i.e., gestational age (GA) at birth, GA at 
MRI scan/4YR IQ assessment, birthweight, birth length, maternal/
paternal age, maternal/paternal education in years, and total annual 
family income) and no significant difference was observed for any 
of these variables (Table 1). The mean and standard deviation of the 
4YR IQ scores of the 175 study participants in SAMPLE 1 are 106.9 
and 11.8, respectively. The actual distribution is shown in Figure 1a 
(left panel). When compared between females/males, singleton/
twin birth, full-term/preterm, and with/without maternal disorders, 
significant differences were observed between term–preterm (P/F, 
p =  .039) and singleton–twin birth (T/S, p =  .018), while marginally 
significant differences were observed between children with and 
without maternal disorder diagnosis (D/nD, p = .103, Figure 1a, mid-
dle panel), suggesting that twin status, preterm birth, and maternal 
disorder diagnosis can be viewed as potential risk factors for lower 
IQ. Therefore, in the following discussions, we primarily separate 
SAMPLE 1 into two cohorts: 1. the CONTROL group (i.e., singleton 
birth, full-term, and no maternal disorder diagnosis, N = 56) and the 
RISK group (i.e., meeting at least one of the three criteria, includ-
ing twin, preterm birth, and maternal disorder diagnosis, N = 119). 
When comparing these two groups, their 4YR IQ difference was 
highly significant (C/R, p = 1.379 × 10–4; Figure 1a, middle panel). 
When splitting the whole histogram into the two groups, it is ap-
parent that there were more CONTROLs at the right end (high IQ) 
but more RISK participants at the left end of the overall 4YR IQ dis-
tribution (Figure 1a, right panel). When correlating the 10 continu-
ous demographic variables with 4YR IQ, GA at birth, birthweight, 
birth length, maternal and paternal education, as well as total annual 
family income showed significant positive correlations (r ~  .17–.40, 
Figure 1b), supporting reasonable predictive power of these demo-
graphic and environmental variables for 4YR IQ.

There were 13 “High IQ outliers” (i.e., IQ >  127, 7.43%, corre-
sponding to the “Superior” and “Gifted” categories in SB5 classifi-
cation (Roid,  2003)) and 6 “Low IQ outliers” (i.e., IQ <  85, 3.43%, 
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corresponding to the “Low Average” and “Borderline/Mildly impaired 
or delayed” categories according to SB5 classification (Roid, 2003)). 
Among the 13 high IQ outliers, 7 were from the CONTROL group and 
6 were from the RISK group, while all 6 low IQ outliers were from the 
RISK group, reaffirming a higher risk of lower 4YR IQ performance 
from the RISK group. The detailed breakdown of the 13 high/low per-
formers against all demographic categories is listed in Table S1, which 
shows a mixed distribution, and none of the IQ outliers could be iden-
tified simply by his/her demographic classification. Similarly, when the 
defined IQ outliers were highlighted in the scatter plots of quantitative 
demographic variable–4YR IQ relationships (Figure 1b), it is apparent 
that despite significant quantitative correlations with a subset of de-
mographic variables, the IQ outliers could not be readily identified 
through simple thresholding of any of the demographic variables.

3.2 | Prediction performance of Triple O

Triple O’s performance on SAMPLE 1 is shown in Figure 1. The results 
showed brain outliers defined based on Triple O could identify 8 out 
of 19 4YR IQ outliers, translating to a 42.1% detection rate (Figure 2a). 
Specifically, 2 out of 7 high IQ outliers from the CONTROL group (i.e., 

full-term, singleton birth, no maternal mental disorder diagnosis), 3 
out of 6 high IQ outliers from the RISK group (i.e., 1 preterm, 1 twin 
birth, 1 preterm + twin birth, Table S1), and 3 out 6 low IQ outliers 
from the RISK group (i.e., 1 with maternal mental disorder diagnosis, 
2 preterm + twin birth, Table S1) were correctly identified based on 
Triple O (Figure 2a, Table S1). There were also 6 false positives and 11 
false negatives, translating to an overall sensitivity of 42.1%, specific-
ity of 96.2%, and accuracy of 90.3% as measured by conventional 
prediction terms. If we broke down the statistics into CONTROL 
and RISK groups, the sensitivity/specificity/accuracy for detect-
ing IQ outliers from brain outliers were 28.6%/100%/91.1% for the 
CONTROL group and 50%/94.4%/89.9% for the RISK group. All three 
predictions from Triple O (i.e., whole group, within CONTROL and 
RISK subgroups) were highly significant (p < .001) based on Fisher's 
exact test. However, as expected, Triple O identified both high and 
low IQ outliers without distinguishing them at this stage.

3.3 | Prediction performance of Triple O+

The prediction performance of the three demographic variables 
showing significant positive correlations with 4YR IQ outcomes (i.e., 

F I G U R E  2   Performances of Triple O and Triple O+ on predicting 4YR IQ outliers based on neonatal functional connectivity outliers. 
(a) Triple O performance. The X-axis represents individual subjects, while the Y-axis indicates Z-scores of either 4YR IQ performance (blue 
line) or the three neonatal functional connectivity outlier measures (i.e., Triple O, gray lines). The idea is to examine whether brain outliers 
(defined as one-way t test of p < .05 (the gray horizontal line) for at least 2 out of three brain outlier measures) correspond to 4YR IQ outliers 
as defined in Figure 1a. As shown in (a), there is a general correspondence between gray line peaks and blue line peaks (either high or low 
peaks). The solid black dotes indicate true positives (i.e., 4YR IQ outliers that were correctly identified as brain outliers based on Triple O), 
the crosses indicate false positives (i.e., subjects detected as brain outliers based on Triple O but not 4YR IQ outliers), and the empty circles 
indicate false negatives (i.e., 4YR IQ outliers that were not detected as brain outliers based on Triple O). The belongings of each true positive 
to either the CONTROL or RISK group were also noted. (b) Triple O+ performance. Similar curve plots for the three brain outlier measures 
(gray lines) and their 4YR IQ (blue line) but the detected brain outliers were given either a positive (red) or negative (green) sign depending 
on whether the individual's Cumulative Demographic Risk Index (CDRI) was above or below the average of the reference group (i.e., 
incorporating Triple O with CDRI to form Triple O+). Also included in this plot were the individual functional connectivity matrices for the 
identified true positives, as well as the mean matrices for the true positive (high IQ), true positive (low IQ), and the true negative groups
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GA at birth, birthweight, and maternal education in years) based on 
the same Triple O procedure is shown in Figure S1. The results (1 
true positive, 8 false positives, and 18 false negatives, Figure S1) are 
not above chance (p = .537) and much worse than the brain-based 
“Triple O.”

When we further incorporated the signs of the standardized 
CDRI scores (i.e., + for above-average and −for below-average) into 
Triple O, the 14 detected brain outliers split into 8 with a positive 

sign and 6 with a negative sign (Figure 2b). As expected, all 5 true 
high 4YR IQ outliers were among the positive sign ones and all 3 true 
low 4YR IQ outliers were among the 6 negative sign ones. Therefore, 
Triple O+ was able to separate the detected brain outliers into high 
IQ/low IQ categories with more specific predictions.

In practice, without information from Triple O+ (Table  S2a), 
there would be 12.50%/0% chance for a CONTROL baby to develop 
high/low outlying 4YR IQ, while there was 5.04%/5.04% chance for 

F I G U R E  3   Validation of Triple O+ performances using seven testing reference samples from SAMPLE 2 for prediction of 4YR IQ from 
SAMPLE 1: including the SAMPLE 2 as a whole, the male/female subsamples, the Scanner 1/2 subsamples, and two random subsamples of 
100 subjects. The curve plots are similar to those in Figure 2b
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a RISK baby to develop high/low outlying 4YR IQ. However, with 
Triple O+ (Table S2b), for a CONTROL baby, if he/she was detected 
as a positive brain outlier (i.e., detected as an outlier based on Triple 
O and with a positive sign on CDRI), then he/she has a 100% chance 
to develop high 4YR IQ (0% chance to develop low IQ), while if he/
she was not detected to be a brain outlier, then his/her chance to 
develop high 4YR IQ decreases from 12.50% to 9.26%. More im-
portantly, for a RISK baby, if she/he was detected as a positive brain 
outlier, then she/he has a 50% chance to develop high 4YR IQ (com-
pared to 5.04% without Triple O+) but 0% chance to develop low 
4YR IQ based on the Triple O+ prediction (compared to the 5.04% 
risk without Triple O+). On the other hand, if she/he was detected 
to be a negative brain outlier (i.e., detected as an outlier based on 
Triple O and with a negative sign on CDRI), then she/he has a 50% 
chance to develop low 4YR IQ (compared to 5.04% without Triple 
O+) and 0% chance to develop high 4YR IQ (compared to 5.04% 
without Triple O+), representing the case that needs the most atten-
tion. Finally, if a RISK baby was not detected as a brain outlier, then 
his/her chances to develop high/low 4YR IQ were both decreased 
to 2.80%, compared to 5.04% without Triple O+. Overall, compared 
to a general 5.04% chance without Triple O+ information, the pre-
dicted possibilities for the RISK group to develop either high or low 
outlying 4YR IQ with Triple O+ improved ~2 (i.e., 5.04% to 2.80%) to 
~10 fold (i.e., 5.04%–50%), which may significantly improve clinical 
decision making in practice.

3.4 | Robustness of Triple O+ prediction

The prediction performances from all seven testing samples (i.e., 
the whole SAMPLE 2, only males (N = 108), only females (N = 110), 
data from one of the two scanners (N = 181/37 for Scanner 1/2), 
and two randomly selected 100-subject subsamples) are sum-
marized in Table S3. It is striking that 6 out of 7 testing samples 
produced highly significant (p  <  .001) and consistent prediction 
performances with those obtained using SAMPLE 1 as its own ref-
erence (Figure 3). Specifically, the male-only subsample (N = 108) 
and the first of the 100-subject random subsample achieved 
identical prediction (8/6/11 for true positive/false positive/false 
negative, with an overall accuracy of 90.3%); the 218 whole sam-
ple, the Scanner 1 subsample (N = 181), and the second 100-sub-
ject random subsample missed one true positive (7/6/12 for true 
positive/false positive/false negative, with an overall accuracy of 
89.7%), while the female-only subsample (N = 110) produced two 
more false positives (8/8/11 for true positive/false positive/false 
negative, with an overall accuracy of 89.1%). The only exception 
was the Scanner 2 subsample with a much smaller sample size of 
37 subjects. When using this small subsample as the reference, 
Triple O+ caught 15 out of 19 true IQ outliers but also yielded 79 
false positives, making it the worst performance (15/79/4 for true 
positive/false positive/false negative, with an overall accuracy of 
52.6%).

F I G U R E  4  The effects of sample size of the reference group for Triple O prediction performance of 4YR IQ scores. (a) A random 
resampling (1,000 times at each sample size step) of 10–216 (step size 1) subjects from SAMPLE 2 was done at each step to form the 
respective reference sample, and the corresponding Triple O performance on predicting 4YR IQ scores in SAMPLE 1 was calculated and 
shown. (b) The means and standard deviations of the three brain outlier measures for the corresponding reference sample at each step size 
were calculated and shown. Blue curves represent the mean, while the gray areas represent the standard deviation across the 1,000 random 
samplings at each sample size step for curves in both (a) and (b). Red line corresponds the step of 50
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3.5 | The practical limit underlying Triple 
O+ prediction

Results from the testing analyses seemed to suggest that variabili-
ties related to sex and scanner were not significant contributors to 
prediction performance since the male-alone, female-alone, and 
Scanner 1 subsamples were all able to produce highly consistent 
prediction results in the mixed testing sample of SAMPLE 1. Indeed, 
the two randomly selected 100 subsamples also produced equiva-
lent results. However, when the sample size dropped to 37 with the 
Scanner 2 subsample, performance dramatically degraded. These 
observations suggested that the sample size of the reference group 
may be a limiting factor for robust performance. To test this hypoth-
esis and reveal the limit, we randomly selected 10–216 subjects 
1,000 times from SAMPLE 2 as the reference sample and tested 
their prediction performances on SAMPLE 1. As expected, the sen-
sitivity, specificity, and accuracy quickly rose with increasing sample 
size till around 50, after which all three measures reached plateaus 
(Figure 4a), suggesting that a sample size of ~50 is needed for a ro-
bust prediction based on Triple O. Based on the same resampling, 
we further calculated the mean and standard deviations of the three 
brain outlier measures at different sample size steps. It is again ap-
parent that the first two brain outlier measures (i.e., the number of 
connection-level outliers and the Euclidean distance of the overall 
matrix with the reference group) stabilized at around sample size 50 
(the third one (i.e., within-subject standard deviation) showed little 
changes across the spectrum), providing the underlying functional 
connectivity stability basis for the observed prediction performance 
curves.

4  | DISCUSSION

In this study, we showed that a novel Triple O framework could ab-
stract the neonatal whole-brain functional connectivity pattern to 
three Z-scores measuring the degrees of being “outliers” against a 
reference population. The resulting brain-based “outlier” indicator 
could correctly predict 42.1% of 4YR IQ outliers with high speci-
ficity (96.2%) and accuracy (90.3%) in 175 subjects with mixed 
demographic makeup (SAMPLE 1). After combining demographic in-
formation, Triple O+ could further differentiate prediction between 
high and low IQ outliers making it more informative for translational 
applications. With no need for training, the proposed Triple O+ ap-
proach demonstrates high levels of robustness and generalizability 
underscored by consistent results obtained using a range of inde-
pendent datasets as the reference sample (i.e., SAMPLE 2 and its five 
subsamples). Our results further showed a lower limit of 50 on the 
reference sample size for successful Triple O+ performance.

4.1 | The importance of early prediction and Triple 
O/Triple O+ performances

The importance of early identification of risks for adverse develop-
mental outcomes is well agreed upon in the field as the develop-
mental origins of various mental disorders have been increasingly 
recognized (Monk et  al.,  2019; Silveira et  al.,  2007; Swanson & 
Wadhwa, 2008). The most direct benefits of early prediction include 
the possibility for early intervention given the widely reported better 
outcomes associated with earlier initiation of intervention strategies 
(Guralnick, 2011). In neuroimaging-based predictions, the neonatal 
stage may represent the earliest possible timepoint given technical/
practical difficulties associated with prenatal MRI imaging (Gao, Lin, 
Grewen, & Gilmore, 2017), although there are encouraging develop-
ment in this front in recent years (Thomason et al., 2013). Therefore, 
the derivation of neonatal brain image-based prediction schemes, as 
explored in this study, represents an urgent and important direction 
that aligns well with our ultimate goal of helping all at-risk children to 
reach their greatest potential.

However, one has to recognize that in addition to the neonatal 
brain developmental status, there are likely a range of other post-
natal factors that also contribute to later developmental outcomes 
(e.g., the 4YR IQ in this study). These may include later structural and 
functional brain growth, family environment/enrichment activity, 
parenting, nutrition, adverse life events, among others. Therefore, 
in the context of this study, one has to be mindful that the neonatal 
brain may only contain part of the predictive information for 4-year 
IQ outcomes, while later brain development and other postnatal 
environmental factors likely contribute to the rest. As a result, we 
may not expect that neonatal brain-based predictions, such as Triple 
O, to be able to predict all 4YR IQ outliers and this may help ex-
plain the 42.1% sensitivity observed in this study. Taking together 
these considerations, it is actually striking that a simple abstraction 
scheme such as Triple O, which was based purely on functional con-
nectivity measures at the neonatal stage, could identify >40% of 
IQ outliers 4  years down the road. This observation reaffirms the 
developmental cascading hypothesis stating that early brain devia-
tions could cascade and potentially lead to far-reaching behavioral 
consequences. We do want to stress that combined with the very 
high level of specificity (i.e., 96.1%), each and every child identified 
as a potential “Low IQ outliers” by Triple O likely represents a mean-
ingful risk. If independently validated, Triple O/Triple O+ and their 
future extensions could significantly aid in clinical decision making, 
particularly among those infants at higher risk for adverse develop-
mental outcomes (e.g., infants with prenatal drug exposure (Grewen 
et al., 2020; Salzwedel, Grewen, Goldman, & Gao, 2016; Salzwedel 
et al., 2015), maternal mental health problems (Qiu et al., 2015), pov-
erty (Kim et al., 2013), and maternal obesity (Salzwedel et al., 2018), 
among others). Note it is in the RISK group that Triple O actually has a 
higher detection rate (i.e., 50% in our RISK group compared to 28.6% 
in our CONTROL group), making its application in at-risk infant pop-
ulation more justified. Through the earliest possible identification of 
risks based on Triple O, early intervention becomes possible in this 
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population to potentially rectify early abnormal growth for better 
outcomes.

Besides postnatal factors beyond the neonatal brain features 
that may have contributed to 4YR IQ performance, there could be 
other factors that, if successfully addressed, may help improve the 
current prediction. These may include (a) other kinds of predictive 
brain outliers that are not covered by Triple O; and (b) other non-
brain outlier-based mechanisms/features. Therefore, future stud-
ies are needed to explore these possibilities for better prediction. 
Besides false negatives, the false positives may arise if these sub-
jects possess both “good” outliers and “bad” outliers at the individual 
connection level whose effects on IQ might cancel each other, thus 
resulting in “middle” performances. Indeed, when examining the in-
dividual and mean group matrices for the high IQ and low IQ outli-
ers, they showed clearly different patterns (Figure 2b). However, the 
limited sample size from each category prevented us from deriving 
connectivity signatures for “good” and “bad” outliers. This limita-
tion points to the need for future studies with larger sample sizes to 
further characterize different types of connection-level outliers for 
more accurate prediction.

4.2 | The rationales behind Triple O/Triple O+

The proposed Triple O approach was inspired by the developmental 
cascading hypothesis (Masten & Cicchetti, 2010; Monk et al., 2019; 
Silveira et  al.,  2007) stating that early changes in the brain could 
cascade and evolve with age leading to abnormal developmental 
outcomes. Driven by these hypotheses and our previous empiri-
cal results showing significant associations between early func-
tional brain connectivity measures and later behavioral outcomes 
(Alcauter, Lin, Smith, Short, et al., 2014; Salzwedel et al., 2019), we 
hypothesize that neonates identified as “brain outliers” would also 
more likely manifest as “behavioral outliers” four years down the 
road. This hypothesis serves as the foundation for the Triple O ap-
proach. Indeed, the detection of the three low IQ outliers all of whom 
were in the RISK group, including one with maternal mental disorder 
diagnosis and two with premature and twin birth status, echoes with 
this hypothesis and suggests that the genetical factors underlying 
the disorder diagnosis/potential maternal distress associated with 
it and premature/twin birth may have contributed to the detected 
outlying brain connectivity patterns and the subsequent outlying 
low IQ performance at 4 years of age (Monk et al., 2019). A detailed 
examination of all eight true positives against the 10 demographic 
variables failed to show clear signs of extremes that could potentially 
explain their outlying neonatal brain and 4YR IQ patterns (Figure S2). 
Future studies with genetic modeling and more comprehensive en-
vironmental monitoring are needed to more rigorously examine the 
potential underlying factors leading to the detected “brain outliers” 
at the neonatal stage and the later outlying (both high and low) IQ 
performances.

Empirically, the choices of abstraction measures are almost un-
limited, but we chose the three global abstraction measures given 

the multifaceted nature of IQ performance that covers a multitude 
of different functional domains (e.g., fluid reasoning, verbal and 
nonverbal knowledge, quantitative skills, visual–spatial processing, 
working memory) (Roid, 2003). These functions likely require coor-
dinated functioning of a complex set of distributed functional net-
works throughout the whole brain (Goriounova & Mansvelder, 2019). 
Note these three measures were chosen in this proof-of-concept 
study to demonstrate the link between brain outliers and IQ outli-
ers. Future expansions/revisions of the proposed approach, such as 
including more sophisticated graph theoretical measures (Rubinov & 
Sporns, 2010), are possible and deserve further exploration. As pre-
viously mentioned, another important rationale to use brain outlier 
measures for prediction relates to its insensitivity to signs of brain–
behavioral relationships that are either homogeneous (Alcauter, 
Lin, Smith, Goldman, et al., 2014; Alcauter, Lin, Smith, Short, et al., 
2014; Salzwedel et al., 2019) or heterogeneous (Chen et al., 2020) 
within the examined population. While prediction schemes directly 
using functional connectivity strength measures would inevitably 
be affected/complicated by the different signs of brain–behavior 
associations between connections and/or the heterogeneity across 
different subgroups of subjects, the proposed Triple O approach 
captures the absolute deviations of different functional connectiv-
ity strength measures against the population mean regardless of the 
relative signs and subgroup differences. This sign insensitivity may 
partly contribute to the observed high level of generalizability to dif-
ferent reference samples as discussed below.

The observed significant quantitative correlations between a 
range of demographic/participant variables, including parental ed-
ucation, birth outcomes, gestational age, family income, maternal 
age, and 4YR IQ outcomes (Figure 1b), are consistent with previ-
ous findings (Bacharach & Baumeister, 1998; Elgen, Sommerfelt, 
& Ellertsen, 2003; Eriksen et al., 2013; Tong, Baghurst, Vimpani, 
& McMichael, 2007). Leveraging these quantitative associations, 
we derived a Cumulative Demographic Risk Index (CDRI) and pre-
dicted that the detected brain “outliers” with above-average CDRI 
would correspond to high 4YR IQ outliers, while those with be-
low-average CDRI would correspond to low 4YR IQ outliers. Our 
results confirmed this prediction, and the addition of the CDRI 
indicator enabled the resulting Triple O+ approach to distinguish 
between high and low IQ outliers (Figure 2b). Therefore, by com-
bining Triple O with demographic information as implemented in 
Triple O+, the translational potential of the proposed abstraction 
scheme is further improved by the identification of those at risk to 
develop as low IQ outliers. As mentioned above, the identification 
of risks for low IQ outliers may be especially important and pro-
ductive among vulnerable infant populations including those with 
prenatal drug exposure, maternal mental health problems, pov-
erty, maternal obesity, among others. For the CONTROL group, 
since none of them develop as low IQ outliers in SAMPLE 1, the 
main benefit is the knowledge that the detected “brain outliers” 
have a higher chance of developing as high IQ outliers (Figure 2b). 
This information, although not as clinically critical as predictions 
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of low IQ outliers, could still be helpful and beneficial to identify 
potential gifted children.

4.3 | The high level of robustness and 
generalizability of Triple O+

The Triple O+ approach proposed in this study comes from a hy-
pothesis-driven understanding of the infant brain and brain–behav-
ioral relationships specifically designed to promote robustness and 
generalizability of prediction. In particular, the three most salient 
features of Triple O lie in its high level of abstraction, insensitivity to 
signs of brain–behavioral associations either homogenous or hetero-
geneous within the examined population, and no need for training 
with behavioral outcome data. All three features promote robust-
ness and generalizability and could potentially avoid the commonly 
encountered “overfitting” problem in training-based machine learn-
ing approaches. Indeed, highly consistent prediction performances 
were observed when using the independent SAMPLE 2 data as 
the reference sample. Importantly, even when using the male-only 
or female-only subsamples within SAMPLE 2 as reference, highly 
consistent predictions were observed for SAMPLE 1 with mixed 
sexes, suggesting that the proposed scheme is not sex-depend-
ent. Moreover, similar prediction performances could be achieved 
even when using data from one scanner to predict data from two 
scanners. These observations are encouraging and support future 
cross-institutional applications of Triple O. To add to its practical 
applications, a low limit of 50 in sample size was demonstrated to 
achieve similar performances as shown in Figure 4. Taken together, 
the demonstrated robustness and a relatively minimal requirement 
of sample size (i.e., ~50) support Triple O as a promising and practical 
way of identifying newborns at risk for adverse IQ outcomes.

4.4 | Limitations

Several additional limitations of this study are worth discussing. The 
first one reiterates the undetected 4YR IQ outliers. Other types of 
brain outliers, non-outlier-based brain mechanisms, and postnatal 
factors (e.g., brain development, family environment, adverse life 
events, education, and nutrition) could all underlie this observation, 
and future studies are needed to explore/validate these possibilities. 
In particular, future studies further incorporating postnatal environ-
mental factors may prove particularly effective for better prediction 
but this inclusion may inevitably delay the timing of prediction and 
considerations have to be given to balance between higher sensitiv-
ity and earlier detection. Related, in the current study, the demo-
graphic information was reduced to a sign indicator and incorporated 
in our Triple O+ to only help identify the sign of IQ outliers (i.e., high 
and low IQ outliers) but future efforts are needed to further explore 
best ways to incorporate quantitative demographic information 
for potential improvement in prediction sensitivity/accuracy. The 

second limitation relates to the relatively small number of IQ outli-
ers (19 from 175) for prediction, reflecting a limited degree of vari-
ability in 4YR IQ outcomes in the current population. Future studies 
with a larger sample size and/or a larger degree of IQ variability are 
needed to independently validate the current results. Moreover, our 
validation SAMPLE 2 does not have 4YR IQ data, which prevented us 
from performing a complete validation test within SAMPLE 2. Future 
studies with samples that have both neonatal brain and 4YR IQ data 
are thus needed to further validate the current findings. In addition, 
efforts could be spent on distinguishing between “good” and “bad” 
functional connectivity outliers for potential improvement in predic-
tion. Third, we only tested the performance of Triple O/Triple O+ 
on 4YR IQ outcome measures. Future efforts are needed to test 
whether variants of Triple O/Triple O+ could predict other domains 
of behavior outcomes at the same or other ages. Finally, although 
our tests on male-only, female-only, and one scanner-only reference 
samples revealed highly consistent results (as long as sample sizes 
are larger than 50) promoting cross-institutional application of Triple 
O+, actual tests with data from different institutions are needed to 
confirm this potential.

5  | CONCLUSIONS

In conclusion, we propose a Triple O+ approach to use brain-based 
outlier indicators in neonates, enriched by demographic information, 
to predict high and low outlying IQ performers at 4  years of age. 
Our results revealed an 42.1% identification rate of 4YR IQ outliers 
(i.e., 8 out of 19) among a mixed cohort of 175 newborns with dif-
ferential term, twin, and maternal disorder statuses. Together with 
a high specificity of 96.2%, Triple O reached an overall accuracy of 
90.3% in identifying 4YR IQ outliers. High levels of robustness and 
generalizability were also observed when using independent data-
sets as the reference samples. Featured by no need for training, a 
“small-data” requirement (lower limit of 50), straightforward inter-
pretations, and high levels of robustness and generalizability, Triple 
O+ may have the potential for translational applications as a novel 
way for brain-based identification of newborns at risk for adverse IQ 
outcomes years down the road. However, one should also be mindful 
of the ~60% 4YR IQ outliers that were not detected using Triple O 
based on the neonatal functional connectivity data. Other types of 
neonatal brain outliers, other-than-outlier-based mechanisms, post-
natal brain growth, or other postnatal family/environmental factors 
could all have contributed to these false negatives, and future ef-
forts are needed to improve upon Triple O for a higher rate of risk 
identification.
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