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Abstract
Background: Defining reliable brain markers for the prediction of abnormal behav-
ioral outcomes remains an urgent but extremely challenging task in neuroscience 
research. This is particularly important for infant studies given the most dramatic 
brain and behavioral growth during infancy.
Methods: In	 this	study,	we	proposed	a	novel	prediction	scheme	through	abstract-
ing	individual	newborn's	whole-brain	functional	connectivity	pattern	to	three	outlier	
measures (Triple O) and tested the hypothesis that neonates identified as “brain out-
liers” based on Triple O were more likely to develop as IQ outliers at 4 years of age. 
Without	need	for	training	with	behavioral	data,	Triple	O	represents	a	novel	proof-of-
concept approach to predict later IQ outcomes based on neonatal brain data.
Results: Triple O correctly identified 42.1% true IQ outliers among a mixed cohort 
of	175	newborns	with	different	term,	twin,	and	maternal	disorder	statuses.	Triple	O	
also	reached	a	high	level	of	specificity	(96.2%)	and	overall	accuracy	(90.3%).	Further	
incorporating	 a	 demographic	 information	 indicator,	 the	 enhanced	Triple	O+ could 
further differentiate between high and low 4YR IQ outliers. Validation tests against 
seven independent reference samples revealed highly consistent results and a mini-
mum sample size of ~50	for	robust	performance.
Conclusions: Considering that postnatal brain growth and various environmental fac-
tors	likely	also	contribute	to	4YR	IQ,	the	fact	that	Triple	O,	based	purely	on	neona-
tal	functional	connectivity	data,	could	identify	>40% of 4YR IQ outliers is striking. 
Together	with	the	very	high	level	of	specificity,	each	outlier	predicted	by	Triple	O	rep-
resents a meaningful risk but future efforts are needed to explore ways to identify 
the	rest	of	outliers.	Overall,	with	no	need	for	training,	a	high	level	of	robustness,	and	
a	minimal	requirement	on	sample	size,	the	proposed	Triple	O	approach	demonstrates	
great potential to predict later outlying IQ performances using neonatal functional 
connectivity data.
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1  | INTRODUC TION

Over	the	past	two	decades,	the	successful	application	of	resting-state	
functional	 magnetic	 resonance	 imaging	 (rsfMRI)	 technique	 (Biswal,	
Yetkin,	 Haughton,	 &	 Hyde,	 1995)	 in	 the	 infant	 population	 has	 dra-
matically	 improved	 our	 understanding	 of	 the	 fast-paced,	 nonlinear,	
and patterned development of the brain's functional networks during 
the	first	years	of	life	(Doria	et	al.,	2011;	Fransson,	Aden,	Blennow,	&	
Lagercrantz,	2011;	Gao,	Lin,	Grewen,	&	Gilmore,	2016;	Gao	et	al.,	2009;	
Smyser	et	al.,	2010;	Thomason	et	al.,	2013).	Plastic	and	modifiable	by	
a	range	of	beneficial	and	risk	factors	(Gao	et	al.,	2016),	functional	brain	
development during this period harbors both great opportunity and 
vulnerability,	consistent	with	the	developmental	origins	of	health	and	
disease	(DOHaD)	hypothesis	(Monk,	Lugo-Candelas,	&	Trumpff,	2019;	
Silveira,	 Portella,	 Goldani,	 &	 Barbieri,	 2007).	 Therefore,	 one	 of	 the	
most important goals for developmental imaging research is to explore 
whether	and	how	early	brain-based	biomarkers	could	identify	risks	for	
later	 adverse	developmental	outcomes.	To	 this	 aim,	promising	asso-
ciations between early brain functional connectivity and later behav-
ioral	outcomes	have	been	reported	(Alcauter,	Lin,	Smith,	Short,	et	al.,	
2014;	Ball	et	al.,	2015;	He	et	al.,	2018;	Salzwedel	et	al.,	2019;	Strahle	
et	al.,	2019),	supporting	a	positive	answer	to	the	“if”	question	but	“how”	
exactly accurate prediction can be achieved remains elusive.

Due	to	the	interconnected,	coordinated,	and	network	nature	of	
brain	 function	 (Achard	&	Bullmore,	2007;	Bressler,	1995),	one	po-
tential barrier underlying the brain–behavioral prediction challenge 
relates	to	a	“many-to-one”	problem	as	there	are	likely	a	wide	range	of	
brain	processes	involved	in	any	single	behavioral	output	(Atzil,	Gao,	
Fradkin,	&	Barrett,	2018;	Atzil,	Hendler,	&	Feldman,	2014;	Lindquist,	
Wager,	 Kober,	 Bliss-Moreau,	 &	 Barrett,	 2012;	 Song	 et	 al.,	 2008).	
Supporting	 this	notion,	 previous	 reports	on	brain–behavioral	 rela-
tionships in infants often report weak to moderate correlations be-
tween a number of functional connections and a single behavioral 
output	 (Alcauter,	 Lin,	 Smith,	 Short,	 et	 al.,	 2014;	 He	 et	 al.,	 2018;	
Salzwedel	et	al.,	2019),	suggesting	that	individual	functional	connec-
tions/processes likely only contribute a small percentage of variance 
to	a	given	behavioral	phenotype.	Adding	to	the	challenge,	the	col-
lection of functional connections/processes may show both positive 
and negative associations with the same behavioral output and may 
act	in	both	additive	and	interactive	ways,	making	efforts	to	combine	
them	for	prediction	even	more	challenging.	Intuitively,	these	issues	
may	seem	to	suggest	advanced	machine	learning-based	algorithms	
as a suitable solution but the need for “big data” for training of such 
algorithms	make	them	impractical	at	this	point,	given	the	sparsity	of	
available	data	due	 to	 inherent	 challenges	 in	 research-based	 infant	
MRI imaging.

An	 alternative	 solution	 lies	 in	 hypothesis-driven	 prediction	
through informed feature selection and dimension reduction. The 
key for the success of such approaches lies in the way of abstraction 
so that the selected features could capture the most salient informa-
tion that are predictive of the later behavioral output in question. In 
this	paper,	we	sought	to	derive	a	novel	abstraction-prediction	frame-
work based on neonatal functional connectivity pattern and test its 

predictive	 values	 for	 4-year	 IQ	 (4YR	 IQ)	 performance.	 As	 a	 com-
posite	measure	 of	 general	 cognitive	 capability,	 IQ	 covers	multiple	
functional	domains	 including	fluid	reasoning,	verbal	and	nonverbal	
knowledge,	quantitative	skills,	visual–spatial	processing,	and	work-
ing	memory	(Roid,	2003).	Each	of	these	functional	domains	is	sup-
ported	by	a	distributed	set	of	brain	regions	and/or	networks;	thus,	
the	brain	basis	of	IQ	is	likely	represented	by	a	complex	whole-brain	
system composed of widely distributed but coordinating functional 
networks	 (Goriounova	&	Mansvelder,	 2019).	Given	 this	 integrated	
and	global	nature	of	 the	potential	brain	basis	of	 IQ,	we	propose	a	
“Triple	Outliers	(Triple	O)”	approach	to	reduce	the	neonatal	whole-
brain functional connectivity pattern into three global outlier 
measures	 and	applied	 them	 to	175	 study	participants	 to	 categori-
cally	predict	their	4-year	IQ	performances	as	being	or	not	being	an	
“outlying”	performer.	Given	the	DOHaD	(Monk	et	al.,	2019;	Silveira	
et	al.,	2007)	and	the	developmental	cascading	hypothesis	 (Masten	
&	Cicchetti,	2010),	we	hypothesize	that	newborns	characterized	as	
“global brain outliers” would more likely manifest later outlying IQ 
performances. This hypothesis is empirically supported by previous 
studies reporting a number of functional connections showing linear 
correlations	with	composite	cognitive	outcomes	later	in	life	(Alcauter,	
Lin,	Smith,	Goldman,	et	al.,	2014;	Alcauter,	Lin,	Smith,	Short,	et	al.,	
2014;	 Salzwedel	 et	 al.,	 2019).	 These	 studies	 suggest	 that	 subjects	
more frequently lying on the two ends of the functional connectivity 
continuum should also be more likely to appear at the two ends of 
the	behavioral	spectrum.	We	propose	sign-insensitive	outlier	mea-
sures in Triple O since both positive and negative associations at 
the	 individual	 connection	 level	have	been	observed	 (Alcauter,	 Lin,	
Smith,	Goldman,	et	al.,	2014;	Alcauter,	Lin,	Smith,	Short,	et	al.,	2014;	
Salzwedel	et	al.,	2019).	Similarly,	the	sign-insensitive	nature	of	Triple	
O may also mitigate the recently reported heterogeneity in brain–
behavior	 relationships	within	 the	 neonate	 population	 (Chen	 et	 al.,	
2020) through equally accounting the absolute deviations from the 
population mean regardless of the different directions of brain–be-
havior	associations	in	different	subgroups.	Note,	however,	there	are	
likely other postnatal brain (both structural and functional) and en-
vironmental	factors	(e.g.,	parenting,	family	environment/enrichment	
activity,	 adverse	 life	 events,	 and	 nutrition)	 that	 also	 contribute	 to	
4YR IQ outcomes so we do not expect the proposed Triple O to cap-
ture	all	4YR	IQ	outliers.	Overall,	as	a	novel	hypothesis-driven	predic-
tion	approach	with	no	need	for	training	with	IQ	outcome	data,	we	do	
anticipate the proposed Triple O approach and its future extensions 
to have high translational potential to aid clinical identification of 
newborns at risk for adverse developmental outcomes later in life 
due to abnormal functional brain growth before the neonatal stage.

2  | MATERIAL S AND METHODS

2.1 | Participants and Image Acquisition

Three hundred and ninety three infant participants were retrospec-
tively	identified	from	the	UNC-Chapel	Hill	Early	Brain	Development	
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Study,	 characterizing	 early	 childhood	 brain	 and	 behavior	 develop-
ment	 (Gao	et	al.,	2016;	Gilmore,	Knickmeyer,	&	Gao,	2018).	Based	
on	 whether	 there	 was	 an	 available	 4-year-old	 IQ	 (4YR	 IQ)	 score,	
these	infants	were	separated	into	two	groups:	SAMPLE	1	(N =	175)	
with	both	available	neonate	MRI	scans	and	4-year-old	IQ	scores,	and	
SAMPLE	2	(N = 218) with only available neonate MRI scans but no 
4YR	IQ.	Both	SAMPLE	1	and	SAMPLE	2	were	composed	of	mixed	
samples	with	respect	to	sex,	term	status	(i.e.,	either	full-term	or	pre-
term),	twin	status	(i.e.,	either	singleton	or	twins),	and	maternal	men-
tal	disorder	status	(i.e.,	with	or	without	maternal	disorder	diagnosis,	
including	 schizophrenia,	 bipolar	 disorder,	 and	 other	 nonspecified	
psychiatric	disorders).	Besides	these	three	categorical	variables,	we	
also	have	continuous	measures	of	gestational	age	(GA)	at	birth,	GA	
at	MRI	 scan/4YR	 IQ	 assessment,	 birthweight,	 birth	 length,	mater-
nal/paternal	age,	maternal/paternal	education	in	years,	and	total	an-
nual family income. The detailed demographic information for both 
SAMPLE	1	and	SAMPLE	2	is	listed	in	Table	1.	These	heterogeneous	
samples were selected to enrich developmental outcomes as well as 
to test the practical applicability of our prediction approach.

IQ	scores	at	4	years	of	age	were	measured	using	the	Stanford–
Binet	 Intelligence	 Scales,	 5th	 edition	 (Roid,	 2003).	 The	 Stanford–
Binet is a series of tasks administered individually in a structured 
setting. These scales were designed to assess intelligence across 
the	 life	 span,	 with	 focuses	 on	 five	 major	 domains,	 including	 fluid	

reasoning,	 knowledge,	 quantitative,	 visual–spatial	 processing,	 and	
working	memory.	 In	 the	current	 study,	 the	Abbreviated	 IQ	 (ABIQ)	
score was used as a measure of general cognitive ability. This IQ 
score is calculated from performance on two routing subtests: a non-
verbal test involving object or sequence/pattern recognition and a 
verbal	test	of	vocabulary.	The	Abbreviated	IQ	score	provides	a	quick	
estimate of a child's general cognitive ability and as it requires the 
administration	of	only	two	subtests.	Therefore,	it	is	easier	to	obtain	
than	the	full-scale	IQ,	especially	for	4-year-old	children.	The	ABIQ	
score has shown strong test–retest (r =	.87)	reliability.	The	Stanford–
Binet scales also have strong interrater reliability (ranging from 0.74 
to	0.97	across	all	scales).	The	overall	study	protocols	were	approved	
by	both	the	UNC	at	Chapel	Hill	and	Cedars-Sinai	Institutional	Review	
Boards.

MRI	data	were	acquired	using	two	scanners:	a	3T	Siemens	Allegra	
scanner with a circular polarization head coil (330 neonatal scans) 
and	a	3T	Siemens	Tim	Trio	with	a	32-channel	head	coil	(63	neonatal	
scans). Functional images were acquired with a T2* weighted echo 
planar imaging (EPI) sequence: TR/TE =	2,000	ms/	32	ms,	33	slices,	
voxel size = 4 mm3,	 150	 volumes	 of	 repetition.	 Structural	 images	
were	acquired	using	a	3D	MPRAGE	sequence:	TR/TE	=	1,820	ms/	
4.38	ms,	TI	=	1,100	ms,	voxel	 size	= 1 mm3. Infant subjects were 
fed,	 swaddled,	 and	 fitted	with	 ear	protection	prior	 to	 imaging.	All	
subjects were in a natural sleep state during the imaging session.

SAMPLE 1 (N = 175) SAMPLE 2 (N = 218)

p-values 
comparing 
SAMPLE 1/2

Sex	(male/female) 87/88 108/110 .973

Twin status (single/
twin birth)

81/94 81/137 .068

Term status 
(full-term/preterm)

112/63 130/88 .378

Maternal disorder 
diagnosis (disorder/
no disorder)

21/154 30/188 .607

Scanner	(1/2) 149/26 181/37 .451

Gestational age at 
birth (days)

261 ± 18.27 259.15	± 20.66 .353

Gestational age at 
scan (days)

293.93	±	13.91 294.47	± 14.82 .714

Maternal education 
(years)

15.3	± 3.33 14.95±±3.84 .340

Paternal education 
(years)

15.10	± 3.28 15.07	± 3.84 .944

Maternal age at birth 
(years)

30.13 ± 6.03 29.64	±	5.63 .403

Paternal age at birth 
(years)

32.69	± 6.73 32.33 ± 6.74 .606

Birth weight (g) 2,805.61	±	685.42 2,720.80	± 704.43 .231

Birth length (mm) 48.23 ±	3.89 47.97	± 3.76 .522

Total household 
income ($)

74,845.72	±	56,303.35 74,489.76	±	60,177.71 .954

TA B L E  1   Demographic information 
of	SAMPLE	1	and	SAMPLE	2	and	their	
comparisons
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2.2 | Image processing

Functional	 images	 were	 preprocessed	 using	 the	 FMRIB's	 Software	
Libraries	 (FSL)	 (Smith	 et	 al.,	 2004)	 and	 AFNI	 (Cox,	 1996),	 including	
discarding	the	first	10	volumes,	slice	timing	and	head	motion	correc-
tion,	band-pass	filtering	(0.01–0.08	Hz),	and	nuisance	signal	regression.	
The	24	motion-related	parameters	(six	motion	correction	parameters,	
derivative,	 and	 their	 quadratic	 terms),	white	matter,	CSF,	 and	global	
signals (also including their derivative and quadratic terms) were in-
cluded	as	nuisance	signals.	All	 the	nuisance	signals	were	band-pass-
filtered (0.01–0.08 Hz) before regression to match the frequency of 

the	BOLD	signal.	Data	scrubbing	was	performed	as	an	added	motion	
correction	 step	 in	 addition	 to	 the	 standard	 rigid-body	 motion	 cor-
rection	 procedures.	 Specifically,	 volumes	with	 global	 signal	 changes	
>0.5%	and/or	framewise	displacements	 (FD)	>0.3	mm	(Power	et	al.,	
2014)	were	excluded	 (plus	one	before	and	 two	after).	Subjects	with	
<90	volumes	(=3	min)	were	excluded	from	the	study.	After	functional	
images	 preprocessing,	 all	 functional	 images	 were	 registered	 to	 the	
age-specific	anatomical	template	space	(Shi	et	al.,	2011)	for	each	age	
group	using	the	combined	transformation	field	from	a	two-step	regis-
tration,	namely	an	affine	transformation	from	individual	functional	im-
ages to anatomical images and a nonlinear registration from individual 

F I G U R E  1  Distribution	of	4-year	IQ	(4YR	IQ)	scores	across	different	groups	and	correlations	with	demographic	variables.	(a)	Left:	
4YR	IQ	histogram	of	SAMPLE	1	(N =	175);	middle:	comparisons	of	4YR	IQ	between	males	and	females	(M/F),	subjects	with	and	without	
maternal	disorder	(D/nD),	full-term	and	preterm	(P/F),	and	twins/singletons	(T/S)	within	SAMPLE	1.	The	right	most	bar	represents	
the	comparison	between	the	composite	CONTROL	group	(i.e.,	full-term,	singleton	birth,	and	no	maternal	disorder	diagnosis)	and	the	
RISK	group	(i.e.,	subjects	with	one	of	the	three	risk	factors	including	twin,	preterm	birth,	and	maternal	disorder	diagnosis.	(C/R);	right:	
comparison	of	4YR	IQ	histograms	within	the	CONTROL	and	RISK	subsamples	of	SAMPLE	1	(vertical	lines	indicating	the	p <	.05	lines	
used	to	operationally	define	4YR	IQ	outliers	in	this	study).	(b)	Scatter	plots	showing	correlations	between	all	continuous	demographic	
variables	and	4YR	IQ.	Solid	black	regression	lines	indicate	significant	correlations,	while	those	dashed	lines	do	not.	The	high/low	outlying	
4YR IQ performers as shown in (a) right panel were highlighted in all scatter plots as red/green dots to show their distribution against 
each	and	every	demographic	variable.	The	three	demographic	variables	on	which	we	have	data	on	all	175	subjects	of	SAMPLE	1	and	show	
significant	correlations	(i.e.,	maternal	education	(Medu),	birthweight	(BW),	and	gestational	age	at	birth	(GA	at	birth))	were	highlighted	and	
listed	in	the	first	three	panels.	Gestational	age	at	birth	(GA	at	birth),	gestational	age	at	IQ	assessment	(GA	at	4YR	IQ),	gestational	age	at	
MRI	scan	(GA	at	MRI	scan),	birthweight,	birth	length,	maternal/paternal	age,	maternal	(Medu)/paternal	education	(Pedu)	in	years,	and	total	
annual household income (THI)
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anatomical	images	to	the	target	images.	Spatial	transformations	were	
performed	 in	 FSL.	 The	 amount	 of	 volumes	 scrubbed	 and	 residual	
framewise	FD	(rFD)	were	compared	cross-sectionally	to	ensure	there	
were no differences in motion and included as motion covariates in 
statistical	 analysis.	 Finally,	 the	 images	were	 spatially	 smoothed	with	
Gaussian kernel (FWHM =	6	mm)	and	truncated	 into	90	volumes	to	
increase	consistency	across	subjects.	Finally,	UNC-CEDARS	functional	
parcellation	 atlas	 for	 neonate	brains	 (Shi,	 Salzwedel,	 Lin,	Gilmore,	&	
Gao,	2017),	including	223	regions,	was	used	to	create	the	whole-brain	
functional connectivity matrix. One region was lost when downsam-
pling	 into	 4-mm	 spatial	 resolution	 resulting	 in	 a	 final	matrix	 size	 of	
222 × 222 for each subject. The correlation of fMRI signals between 
paired	regions	was	Fisher-Z-transformed	for	subsequent	analysis.

2.3 | IQ outlier detection

The	 4-year-old	 IQ	 scores	were	 normalized	 into	Z-scores	 (Z_IQ).	 A	
one-tailed	significance	of	p =	.05	(i.e.,	Z >	1.645)	was	selected	as	the	
threshold to define positive (Z_IQ >	1.645)	and	negative	behavior	
outliers (Z_IQ <	−1.645).	There	are	13	positive	and	6	negative	outli-
ers	detected	in	SAMPLE	1	(Figure	1a).

2.4 | Brain outlier detection

To	 define	 brain	 outliers,	 we	 propose	 to	 abstract	 the	 whole-brain	
222 × 222 functional connectivity matrix to three simple measures 
quantifying	 three	 different,	 but	 related,	 aspects	 of	 being	 “outlying”	
against a reference population. The first measure directly counts the 
number of “outlying” connections against the reference group mean. 
Similar	to	IQ	outlier	definition,	a	one-tailed	significance	of	p <	.05	was	
used	as	the	threshold	to	define	connection-level	outliers.	The	rationale	
for the first measure is intuitive and straightforward; if multiple func-
tional	connections	linearly	correlate	with	a	later	behavioral	outcome,	
then the number of times a particular subject sits on the extreme of 
these connections would likely be associated with the chance of the 
subject appearing on the extreme of the behavioral outcome given the 
underlying	linear	relationships.	In	other	words,	the	number	of	“outly-
ing”	connections	may	be	viewed	as	an	index	of	the	number	of	“at-risk”	
brain features that may contribute to later abnormal IQ outcomes. 
Therefore,	 the	number	of	 “outlying”	connections	was	chosen	as	 the	
first measure. Considering that there could be other subthreshold de-
viations	from	the	group	mean,	a	second	measure	was	defined	as	the	
average Euclidean distance of one subject's vectorized connectivity 
matrix	 to	 every	 subject's	 vectorized	 matrix	 in	 the	 reference	 group,	
which	summarized	the	overall	deviation	of	one	subject's	whole-brain	
connectivity pattern to the reference group regardless of any thresh-
old. The second measure represents a complementary measure to the 
first	one	to	further	include	those	subjects	that	may	show	connection-
level subthreshold deviations from the group mean but the sum of 
which	is	sufficient	to	put	them	at	the	extreme	at	the	whole-brain	level.	
Since	 both	 the	 first	 two	measures	 evaluate	 subject-level	 deviations	

from	the	group	mean,	we	proposed	another	within-subject	measure-
the standard deviation across all individual connections as a third 
within-subject	measure	with	 the	 expectation	 that	 subjects	 showing	
extreme level of functional connectivity variability across the whole 
brain may also be more likely to manifest as IQ outliers.

We	chose	to	use	these	whole-brain	level	outlier	measures	in	the	
proposed approach since both positive and negative associations at 
the	 individual	 connection	 level	have	been	observed	 (Alcauter,	 Lin,	
Smith,	 Short,	 et	 al.,	 2014;	He	et	 al.,	 2018;	 Salzwedel	 et	 al.,	 2019).	
Through	identifying	global	“outliers”	relative	to	the	group	mean,	the	
proposed Triple O approach would summarize extreme deviations 
from the population mean regardless of whether they are at the 
low or high end of the functional connectivity strength spectrums. 
Therefore,	Triple	O	 is	 not	 sensitive	 to	positive	or	negative	 associ-
ations;	 rather,	 it	 “harmonizes”	and	summarizes	absolute	deviations	
from the population mean in both types of brain–behavioral asso-
ciations	 for	 better	 prediction.	More	 importantly,	 recent	 evidences	
(Chen	et	al.,	2020)	suggest	that	even	within	an	otherwise	“homog-
enous”	 neonate	 population,	 different	 subgroups	 of	 neonates	 may	
possess	 qualitatively	 different	 brain–behavior	 associations	 (i.e.,	 in	
different	directions).	A	typical	way	to	address	such	relational	hetero-
geneity	in	prediction	would	likely	require	subgroup-specific	predic-
tion	models	to	better	utilize	the	differential	 information.	However,	
the	 proposed	 global	 brain	 outlier-based	 Triple	 O	 approach	 would	
mitigate such heterogeneity since regardless of the different direc-
tions/sings	of	brain–behavior	correlations,	 the	outlier	measure	will	
equally capture the absolute deviations of a subject with respect to 
the group mean for effective prediction.

After	the	calculation	of	all	three	measures,	they	were	normalized	
to Z-scores	based	on	the	mean	and	standard	deviations	from	the	ref-
erence group and any values >1.645	standard	deviations	above	the	
mean	(i.e.,	one-tailed	p <	.05)	were	defined	as	an	“outlier.”	Therefore,	
each	subject	would	have	three	outlier	indicators	(i.e.,	Triple	O)	and	
those with two or more “outliers” indicators detected to be true was 
finally defined as a “brain outlier.”

Based	on	neonatal	functional	connectivity	data	from	SAMPLE	1,	
brain outliers were defined using the proposed Triple O scheme as 
described above. The correspondence between the detected “brain 
outliers” and 4YR IQ outliers was examined to test Triple O’s per-
formance	 in	 terms	 of	 sensitivity,	 specificity,	 and	 overall	 accuracy.	
Note	for	Triple	O,	all	three	brain	outliers	were	defined	purely	based	
on brain rsfMRI data and no training with 4YR IQ data was needed. 
Instead,	the	4YR	IQ	outcome	data	were	only	used	to	test	the	perfor-
mance	of	the	Triple	O	model.	Therefore,	Triple	O	represents	a	da-
ta-based	prediction	scheme	with	no	need	of	training	with	outcome	
data.

2.5 | Comparison with demographic information-
based outlier detection

Based	on	the	continuous	measures	of	gestational	age	(GA)	at	birth,	
GA	 at	 MRI	 scan/4YR	 IQ	 assessment,	 birthweight,	 birth	 length,	
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maternal/paternal	 age,	 maternal/paternal	 education	 in	 years,	 and	
total	annual	family	income,	their	correlations	with	4YR	IQ	were	cal-
culated.	Among	all	demographic	variables,	we	identified	three	that	
(a).	we	have	data	on	all	the	175	subjects	in	SAMPLE	1;	and	(b)	showed	
significant positive correlations with 4YR IQ. These three variables 
were	maternal	education,	birthweight,	and	gestational	age	at	birth.	
All	three	measures	were	Z-transformed	and	tested	through	a	similar	
outlier detection pipeline as did the three brain outliers to define 
demographic	information-based	outliers.	The	performance	of	these	
“demographic outliers” in detecting 4YR IQ outliers was compared 
with	the	brain-based	Triple	O	results.

2.6 | Demographic information-enriched Triple O 
(Triple O+)

To explore whether incorporating demographic information would 
help	specify	the	polarity	of	brain-based	outlier	prediction,	we	calcu-
lated the average of the three demographics identified as meeting 
the	 two	criteria	above	 (i.e.,	GA	at	birth,	birthweight,	and	maternal	
education in years) as a Cumulative Demographic Risk Index (CDRI) 
in	SAMPLE	1.	Given	their	consistent	positive	correlations	with	4YR	
IQ,	we	predicted	that	the	detected	brain	“outliers”	with	above-aver-
age	CDRI	would	correspond	to	high	4YR	IQ	performers,	while	those	
with	below-average	CDRI	would	correspond	to	low	4YR	IQ	perform-
ers.	Therefore,	CDRI	was	used	to	further	provide	a	“sign”	for	Triple	O	
prediction and this enriched model was termed as Triple O+.

2.7 | Validation based on SAMPLE 2 and 
its subsamples

To test the robustness of the Triple O+	 prediction,	 the	 218-sub-
ject	SAMPLE	2	and	six	subsamples	from	SAMPLE	2	(i.e.,	only	males	
(N =	108),	only	females	(N =	110),	data	from	one	of	the	two	scanners	
(N =	181/37	for	Scanner	1/2),	and	two	randomly	selected	100-sub-
ject subsamples) were used as independent reference samples to 
identify	 brain	 outlier	 from	 SAMPLE	 1.	 The	 corresponding	 perfor-
mances	were	 compared	with	 the	one	using	 SAMPLE	1	 as	 its	 own	
reference to examine Triple O+’s robustness against different refer-
ence samples.

2.8 | The sample size limit and underlying 
mechanism of Triple O+ prediction

With the validation analyses suggesting that the sample size of the 
reference	group	may	be	a	limiting	factor	for	robust	performance,	we	
performed a set of random sampling analyses to explore the per-
formance of Triple O+ with different sample sizes of the reference 
group.	 Specifically,	 we	 randomly	 selected	 10–216	 subjects	 1,000	
times	from	the	SAMPLE	2	(N = 218) and tested the prediction per-
formances	on	the	independent	SAMPLE	1	(N =	175)	data.	Sensitivity,	

specificity,	and	accuracy	were	calculated	at	each	sample	size	step.	
Moreover,	we	also	calculated	the	mean	and	standard	deviations	of	
the	three	brain	outlier	measures	(i.e.,	the	number	of	connection-level	
outliers,	 the	Euclidean	distance	of	 the	overall	matrix	with	 the	 ref-
erence	group,	and	the	within-subject	standard	deviation)	to	further	
reveal the underling mechanisms of the performance.

3  | RESULTS

3.1 | Participants and 4YR IQ distribution

The	 detailed	 demographic	 information	 for	 both	 SAMPLE	 1	 and	
SAMPLE	2	is	listed	in	Table	1.	Note	both	SAMPLE	1	and	SAMPLE	2	
were	composed	of	mixed	samples	with	respect	to	sex,	term	status,	
twin	status,	and	maternal	mental	disorder	status,	and	no	significant	
differences were observed against the relative percentages of either 
of	the	four	categorical	variables	(Table	1).	Moreover,	the	two	sam-
ples were also matched against each and every of the 10 continu-
ous	demographic	variables	(i.e.,	gestational	age	(GA)	at	birth,	GA	at	
MRI	scan/4YR	 IQ	assessment,	birthweight,	birth	 length,	maternal/
paternal	age,	maternal/paternal	education	in	years,	and	total	annual	
family income) and no significant difference was observed for any 
of these variables (Table 1). The mean and standard deviation of the 
4YR	IQ	scores	of	the	175	study	participants	in	SAMPLE	1	are	106.9	
and	11.8,	respectively.	The	actual	distribution	is	shown	in	Figure	1a	
(left	 panel).	 When	 compared	 between	 females/males,	 singleton/
twin	birth,	full-term/preterm,	and	with/without	maternal	disorders,	
significant	differences	were	observed	between	term–preterm	(P/F,	
p =	 .039)	and	singleton–twin	birth	(T/S,	p =	 .018),	while	marginally	
significant differences were observed between children with and 
without	maternal	disorder	diagnosis	(D/nD,	p =	.103,	Figure	1a,	mid-
dle	panel),	suggesting	that	twin	status,	preterm	birth,	and	maternal	
disorder diagnosis can be viewed as potential risk factors for lower 
IQ.	 Therefore,	 in	 the	 following	 discussions,	 we	 primarily	 separate	
SAMPLE	1	into	two	cohorts:	1.	the	CONTROL	group	(i.e.,	singleton	
birth,	full-term,	and	no	maternal	disorder	diagnosis,	N =	56)	and	the	
RISK	group	 (i.e.,	meeting	at	 least	one	of	 the	 three	criteria,	 includ-
ing	twin,	preterm	birth,	and	maternal	disorder	diagnosis,	N =	119).	
When	 comparing	 these	 two	 groups,	 their	 4YR	 IQ	 difference	 was	
highly	significant	 (C/R,	p =	1.379	× 10–4;	Figure	1a,	middle	panel).	
When	 splitting	 the	whole	histogram	 into	 the	 two	groups,	 it	 is	 ap-
parent	that	there	were	more	CONTROLs	at	the	right	end	(high	IQ)	
but	more	RISK	participants	at	the	left	end	of	the	overall	4YR	IQ	dis-
tribution	(Figure	1a,	right	panel).	When	correlating	the	10	continu-
ous	 demographic	 variables	with	 4YR	 IQ,	GA	 at	 birth,	 birthweight,	
birth	length,	maternal	and	paternal	education,	as	well	as	total	annual	
family income showed significant positive correlations (r ~	 .17–.40,	
Figure	1b),	supporting	reasonable	predictive	power	of	these	demo-
graphic and environmental variables for 4YR IQ.

There	 were	 13	 “High	 IQ	 outliers”	 (i.e.,	 IQ	>	 127,	 7.43%,	 corre-
sponding	 to	 the	 “Superior”	 and	 “Gifted”	 categories	 in	 SB5	 classifi-
cation	 (Roid,	 2003))	 and	 6	 “Low	 IQ	 outliers”	 (i.e.,	 IQ	<	 85,	 3.43%,	
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corresponding	to	the	“Low	Average”	and	“Borderline/Mildly	impaired	
or	delayed”	 categories	 according	 to	SB5	classification	 (Roid,	2003)).	
Among	the	13	high	IQ	outliers,	7	were	from	the	CONTROL	group	and	
6	were	from	the	RISK	group,	while	all	6	low	IQ	outliers	were	from	the	
RISK	group,	 reaffirming	 a	 higher	 risk	of	 lower	4YR	 IQ	performance	
from	the	RISK	group.	The	detailed	breakdown	of	the	13	high/low	per-
formers	against	all	demographic	categories	is	listed	in	Table	S1,	which	
shows	a	mixed	distribution,	and	none	of	the	IQ	outliers	could	be	iden-
tified	simply	by	his/her	demographic	classification.	Similarly,	when	the	
defined IQ outliers were highlighted in the scatter plots of quantitative 
demographic	variable–4YR	IQ	relationships	(Figure	1b),	it	is	apparent	
that despite significant quantitative correlations with a subset of de-
mographic	 variables,	 the	 IQ	 outliers	 could	 not	 be	 readily	 identified	
through simple thresholding of any of the demographic variables.

3.2 | Prediction performance of Triple O

Triple	O’s	performance	on	SAMPLE	1	is	shown	in	Figure	1.	The	results	
showed brain outliers defined based on Triple O could identify 8 out 
of	19	4YR	IQ	outliers,	translating	to	a	42.1%	detection	rate	(Figure	2a).	
Specifically,	2	out	of	7	high	IQ	outliers	from	the	CONTROL	group	(i.e.,	

full-term,	 singleton	birth,	no	maternal	mental	disorder	diagnosis),	3	
out	of	6	high	IQ	outliers	from	the	RISK	group	(i.e.,	1	preterm,	1	twin	
birth,	1	preterm	+	twin	birth,	Table	S1),	and	3	out	6	low	IQ	outliers	
from	the	RISK	group	(i.e.,	1	with	maternal	mental	disorder	diagnosis,	
2 preterm +	twin	birth,	Table	S1)	were	correctly	identified	based	on	
Triple	O	(Figure	2a,	Table	S1).	There	were	also	6	false	positives	and	11	
false	negatives,	translating	to	an	overall	sensitivity	of	42.1%,	specific-
ity	 of	 96.2%,	 and	 accuracy	of	 90.3%	as	measured	by	 conventional	
prediction	 terms.	 If	 we	 broke	 down	 the	 statistics	 into	 CONTROL	
and	 RISK	 groups,	 the	 sensitivity/specificity/accuracy	 for	 detect-
ing	IQ	outliers	from	brain	outliers	were	28.6%/100%/91.1%	for	the	
CONTROL	group	and	50%/94.4%/89.9%	for	the	RISK	group.	All	three	
predictions	 from	Triple	O	 (i.e.,	whole	 group,	within	CONTROL	and	
RISK	subgroups)	were	highly	significant	(p < .001) based on Fisher's 
exact	test.	However,	as	expected,	Triple	O	identified	both	high	and	
low IQ outliers without distinguishing them at this stage.

3.3 | Prediction performance of Triple O+

The prediction performance of the three demographic variables 
showing	significant	positive	correlations	with	4YR	IQ	outcomes	(i.e.,	

F I G U R E  2   Performances of Triple O and Triple O+ on predicting 4YR IQ outliers based on neonatal functional connectivity outliers. 
(a) Triple O performance. The X-axis	represents	individual	subjects,	while	the	Y-axis	indicates	Z-scores	of	either	4YR	IQ	performance	(blue	
line)	or	the	three	neonatal	functional	connectivity	outlier	measures	(i.e.,	Triple	O,	gray	lines).	The	idea	is	to	examine	whether	brain	outliers	
(defined	as	one-way	t test of p <	.05	(the	gray	horizontal	line)	for	at	least	2	out	of	three	brain	outlier	measures)	correspond	to	4YR	IQ	outliers	
as	defined	in	Figure	1a.	As	shown	in	(a),	there	is	a	general	correspondence	between	gray	line	peaks	and	blue	line	peaks	(either	high	or	low	
peaks).	The	solid	black	dotes	indicate	true	positives	(i.e.,	4YR	IQ	outliers	that	were	correctly	identified	as	brain	outliers	based	on	Triple	O),	
the	crosses	indicate	false	positives	(i.e.,	subjects	detected	as	brain	outliers	based	on	Triple	O	but	not	4YR	IQ	outliers),	and	the	empty	circles	
indicate	false	negatives	(i.e.,	4YR	IQ	outliers	that	were	not	detected	as	brain	outliers	based	on	Triple	O).	The	belongings	of	each	true	positive	
to	either	the	CONTROL	or	RISK	group	were	also	noted.	(b)	Triple	O+	performance.	Similar	curve	plots	for	the	three	brain	outlier	measures	
(gray lines) and their 4YR IQ (blue line) but the detected brain outliers were given either a positive (red) or negative (green) sign depending 
on	whether	the	individual's	Cumulative	Demographic	Risk	Index	(CDRI)	was	above	or	below	the	average	of	the	reference	group	(i.e.,	
incorporating Triple O with CDRI to form Triple O+).	Also	included	in	this	plot	were	the	individual	functional	connectivity	matrices	for	the	
identified	true	positives,	as	well	as	the	mean	matrices	for	the	true	positive	(high	IQ),	true	positive	(low	IQ),	and	the	true	negative	groups
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GA	at	birth,	birthweight,	and	maternal	education	in	years)	based	on	
the	same	Triple	O	procedure	 is	 shown	 in	Figure	S1.	The	 results	 (1	
true	positive,	8	false	positives,	and	18	false	negatives,	Figure	S1)	are	
not above chance (p =	.537)	and	much	worse	than	the	brain-based	
“Triple O.”

When we further incorporated the signs of the standardized 
CDRI	scores	(i.e.,	+	for	above-average	and	−for	below-average)	into	
Triple	O,	 the	14	detected	brain	outliers	split	 into	8	with	a	positive	

sign	and	6	with	a	negative	sign	(Figure	2b).	As	expected,	all	5	true	
high 4YR IQ outliers were among the positive sign ones and all 3 true 
low	4YR	IQ	outliers	were	among	the	6	negative	sign	ones.	Therefore,	
Triple O+ was able to separate the detected brain outliers into high 
IQ/low IQ categories with more specific predictions.

In	 practice,	 without	 information	 from	 Triple	 O+	 (Table	 S2a),	
there	would	be	12.50%/0%	chance	for	a	CONTROL	baby	to	develop	
high/low	outlying	4YR	IQ,	while	there	was	5.04%/5.04%	chance	for	

F I G U R E  3   Validation of Triple O+	performances	using	seven	testing	reference	samples	from	SAMPLE	2	for	prediction	of	4YR	IQ	from	
SAMPLE	1:	including	the	SAMPLE	2	as	a	whole,	the	male/female	subsamples,	the	Scanner	1/2	subsamples,	and	two	random	subsamples	of	
100 subjects. The curve plots are similar to those in Figure 2b
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a	RISK	baby	 to	 develop	 high/low	outlying	4YR	 IQ.	However,	with	
Triple O+	(Table	S2b),	for	a	CONTROL	baby,	if	he/she	was	detected	
as	a	positive	brain	outlier	(i.e.,	detected	as	an	outlier	based	on	Triple	
O	and	with	a	positive	sign	on	CDRI),	then	he/she	has	a	100%	chance	
to	develop	high	4YR	IQ	(0%	chance	to	develop	low	IQ),	while	if	he/
she	was	not	detected	to	be	a	brain	outlier,	 then	his/her	chance	to	
develop	 high	 4YR	 IQ	 decreases	 from	12.50%	 to	 9.26%.	More	 im-
portantly,	for	a	RISK	baby,	if	she/he	was	detected	as	a	positive	brain	
outlier,	then	she/he	has	a	50%	chance	to	develop	high	4YR	IQ	(com-
pared	 to	5.04%	without	Triple	O+) but 0% chance to develop low 
4YR IQ based on the Triple O+	prediction	(compared	to	the	5.04%	
risk without Triple O+).	On	the	other	hand,	if	she/he	was	detected	
to	be	a	negative	brain	outlier	 (i.e.,	detected	as	an	outlier	based	on	
Triple	O	and	with	a	negative	sign	on	CDRI),	then	she/he	has	a	50%	
chance	to	develop	 low	4YR	 IQ	 (compared	to	5.04%	without	Triple	
O+)	 and	 0%	 chance	 to	 develop	 high	 4YR	 IQ	 (compared	 to	 5.04%	
without Triple O+),	representing	the	case	that	needs	the	most	atten-
tion.	Finally,	if	a	RISK	baby	was	not	detected	as	a	brain	outlier,	then	
his/her chances to develop high/low 4YR IQ were both decreased 
to	2.80%,	compared	to	5.04%	without	Triple	O+.	Overall,	compared	
to	a	general	5.04%	chance	without	Triple	O+	information,	the	pre-
dicted	possibilities	for	the	RISK	group	to	develop	either	high	or	low	
outlying 4YR IQ with Triple O+ improved ~2	(i.e.,	5.04%	to	2.80%)	to	
~10	fold	(i.e.,	5.04%–50%),	which	may	significantly	improve	clinical	
decision making in practice.

3.4 | Robustness of Triple O+ prediction

The	prediction	performances	from	all	seven	testing	samples	(i.e.,	
the	whole	SAMPLE	2,	only	males	(N =	108),	only	females	(N =	110),	
data from one of the two scanners (N =	181/37	for	Scanner	1/2),	
and	 two	 randomly	 selected	 100-subject	 subsamples)	 are	 sum-
marized	 in	Table	S3.	 It	 is	striking	that	6	out	of	7	testing	samples	
produced highly significant (p < .001) and consistent prediction 
performances	with	those	obtained	using	SAMPLE	1	as	its	own	ref-
erence	(Figure	3).	Specifically,	the	male-only	subsample	(N = 108) 
and	 the	 first	 of	 the	 100-subject	 random	 subsample	 achieved	
identical prediction (8/6/11 for true positive/false positive/false 
negative,	with	an	overall	accuracy	of	90.3%);	the	218	whole	sam-
ple,	the	Scanner	1	subsample	(N =	181),	and	the	second	100-sub-
ject random subsample missed one true positive (7/6/12 for true 
positive/false	positive/false	negative,	with	an	overall	accuracy	of	
89.7%),	while	the	female-only	subsample	(N = 110) produced two 
more false positives (8/8/11 for true positive/false positive/false 
negative,	with	an	overall	accuracy	of	89.1%).	The	only	exception	
was	the	Scanner	2	subsample	with	a	much	smaller	sample	size	of	
37	 subjects.	When	 using	 this	 small	 subsample	 as	 the	 reference,	
Triple O+	caught	15	out	of	19	true	IQ	outliers	but	also	yielded	79	
false	positives,	making	it	the	worst	performance	(15/79/4	for	true	
positive/false	positive/false	negative,	with	an	overall	accuracy	of	
52.6%).

F I G U R E  4  The	effects	of	sample	size	of	the	reference	group	for	Triple	O	prediction	performance	of	4YR	IQ	scores.	(a)	A	random	
resampling	(1,000	times	at	each	sample	size	step)	of	10–216	(step	size	1)	subjects	from	SAMPLE	2	was	done	at	each	step	to	form	the	
respective	reference	sample,	and	the	corresponding	Triple	O	performance	on	predicting	4YR	IQ	scores	in	SAMPLE	1	was	calculated	and	
shown. (b) The means and standard deviations of the three brain outlier measures for the corresponding reference sample at each step size 
were	calculated	and	shown.	Blue	curves	represent	the	mean,	while	the	gray	areas	represent	the	standard	deviation	across	the	1,000	random	
samplings	at	each	sample	size	step	for	curves	in	both	(a)	and	(b).	Red	line	corresponds	the	step	of	50



10 of 14  |     GAO et Al.

3.5 | The practical limit underlying Triple 
O+ prediction

Results from the testing analyses seemed to suggest that variabili-
ties related to sex and scanner were not significant contributors to 
prediction	 performance	 since	 the	 male-alone,	 female-alone,	 and	
Scanner	 1	 subsamples	 were	 all	 able	 to	 produce	 highly	 consistent	
prediction	results	in	the	mixed	testing	sample	of	SAMPLE	1.	Indeed,	
the two randomly selected 100 subsamples also produced equiva-
lent	results.	However,	when	the	sample	size	dropped	to	37	with	the	
Scanner	 2	 subsample,	 performance	 dramatically	 degraded.	 These	
observations suggested that the sample size of the reference group 
may be a limiting factor for robust performance. To test this hypoth-
esis	 and	 reveal	 the	 limit,	 we	 randomly	 selected	 10–216	 subjects	
1,000	 times	 from	 SAMPLE	 2	 as	 the	 reference	 sample	 and	 tested	
their	prediction	performances	on	SAMPLE	1.	As	expected,	the	sen-
sitivity,	specificity,	and	accuracy	quickly	rose	with	increasing	sample	
size	till	around	50,	after	which	all	three	measures	reached	plateaus	
(Figure	4a),	suggesting	that	a	sample	size	of	~50	is	needed	for	a	ro-
bust	prediction	based	on	Triple	O.	Based	on	the	same	resampling,	
we further calculated the mean and standard deviations of the three 
brain outlier measures at different sample size steps. It is again ap-
parent	that	the	first	two	brain	outlier	measures	(i.e.,	the	number	of	
connection-level	outliers	and	the	Euclidean	distance	of	the	overall	
matrix	with	the	reference	group)	stabilized	at	around	sample	size	50	
(the	third	one	(i.e.,	within-subject	standard	deviation)	showed	little	
changes	across	 the	 spectrum),	providing	 the	underlying	 functional	
connectivity stability basis for the observed prediction performance 
curves.

4  | DISCUSSION

In	this	study,	we	showed	that	a	novel	Triple	O	framework	could	ab-
stract	 the	neonatal	whole-brain	 functional	connectivity	pattern	 to	
three Z-scores	measuring	 the	degrees	of	being	 “outliers”	against	a	
reference	 population.	 The	 resulting	 brain-based	 “outlier”	 indicator	
could correctly predict 42.1% of 4YR IQ outliers with high speci-
ficity	 (96.2%)	 and	 accuracy	 (90.3%)	 in	 175	 subjects	 with	 mixed	
demographic	makeup	(SAMPLE	1).	After	combining	demographic	in-
formation,	Triple	O+ could further differentiate prediction between 
high and low IQ outliers making it more informative for translational 
applications.	With	no	need	for	training,	the	proposed	Triple	O+ ap-
proach demonstrates high levels of robustness and generalizability 
underscored by consistent results obtained using a range of inde-
pendent	datasets	as	the	reference	sample	(i.e.,	SAMPLE	2	and	its	five	
subsamples).	Our	results	further	showed	a	lower	limit	of	50	on	the	
reference sample size for successful Triple O+ performance.

4.1 | The importance of early prediction and Triple 
O/Triple O+ performances

The importance of early identification of risks for adverse develop-
mental outcomes is well agreed upon in the field as the develop-
mental origins of various mental disorders have been increasingly 
recognized	 (Monk	 et	 al.,	 2019;	 Silveira	 et	 al.,	 2007;	 Swanson	 &	
Wadhwa,	2008).	The	most	direct	benefits	of	early	prediction	include	
the possibility for early intervention given the widely reported better 
outcomes associated with earlier initiation of intervention strategies 
(Guralnick,	2011).	 In	neuroimaging-based	predictions,	the	neonatal	
stage may represent the earliest possible timepoint given technical/
practical	difficulties	associated	with	prenatal	MRI	imaging	(Gao,	Lin,	
Grewen,	&	Gilmore,	2017),	although	there	are	encouraging	develop-
ment	in	this	front	in	recent	years	(Thomason	et	al.,	2013).	Therefore,	
the	derivation	of	neonatal	brain	image-based	prediction	schemes,	as	
explored	in	this	study,	represents	an	urgent	and	important	direction	
that	aligns	well	with	our	ultimate	goal	of	helping	all	at-risk	children	to	
reach their greatest potential.

However,	one	has	to	recognize	that	in	addition	to	the	neonatal	
brain	developmental	status,	 there	are	 likely	a	 range	of	other	post-
natal factors that also contribute to later developmental outcomes 
(e.g.,	the	4YR	IQ	in	this	study).	These	may	include	later	structural	and	
functional	 brain	 growth,	 family	 environment/enrichment	 activity,	
parenting,	nutrition,	 adverse	 life	events,	 among	others.	Therefore,	
in	the	context	of	this	study,	one	has	to	be	mindful	that	the	neonatal	
brain	may	only	contain	part	of	the	predictive	information	for	4-year	
IQ	 outcomes,	 while	 later	 brain	 development	 and	 other	 postnatal	
environmental	 factors	 likely	contribute	to	the	rest.	As	a	result,	we	
may	not	expect	that	neonatal	brain-based	predictions,	such	as	Triple	
O,	 to	 be	 able	 to	 predict	 all	 4YR	 IQ	outliers	 and	 this	may	help	 ex-
plain the 42.1% sensitivity observed in this study. Taking together 
these	considerations,	it	is	actually	striking	that	a	simple	abstraction	
scheme	such	as	Triple	O,	which	was	based	purely	on	functional	con-
nectivity	measures	 at	 the	 neonatal	 stage,	 could	 identify	>40% of 
IQ outliers 4 years down the road. This observation reaffirms the 
developmental cascading hypothesis stating that early brain devia-
tions	could	cascade	and	potentially	 lead	to	far-reaching	behavioral	
consequences. We do want to stress that combined with the very 
high	level	of	specificity	(i.e.,	96.1%),	each	and	every	child	identified	
as	a	potential	“Low	IQ	outliers”	by	Triple	O	likely	represents	a	mean-
ingful	risk.	If	independently	validated,	Triple	O/Triple	O+ and their 
future	extensions	could	significantly	aid	in	clinical	decision	making,	
particularly among those infants at higher risk for adverse develop-
mental	outcomes	(e.g.,	infants	with	prenatal	drug	exposure	(Grewen	
et	al.,	2020;	Salzwedel,	Grewen,	Goldman,	&	Gao,	2016;	Salzwedel	
et	al.,	2015),	maternal	mental	health	problems	(Qiu	et	al.,	2015),	pov-
erty	(Kim	et	al.,	2013),	and	maternal	obesity	(Salzwedel	et	al.,	2018),	
among	others).	Note	it	is	in	the	RISK	group	that	Triple	O	actually	has	a	
higher	detection	rate	(i.e.,	50%	in	our	RISK	group	compared	to	28.6%	
in	our	CONTROL	group),	making	its	application	in	at-risk	infant	pop-
ulation more justified. Through the earliest possible identification of 
risks	based	on	Triple	O,	early	intervention	becomes	possible	in	this	
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population to potentially rectify early abnormal growth for better 
outcomes.

Besides postnatal factors beyond the neonatal brain features 
that	may	have	contributed	to	4YR	IQ	performance,	there	could	be	
other	factors	that,	if	successfully	addressed,	may	help	improve	the	
current prediction. These may include (a) other kinds of predictive 
brain	outliers	 that	are	not	covered	by	Triple	O;	and	 (b)	other	non-
brain	 outlier-based	 mechanisms/features.	 Therefore,	 future	 stud-
ies are needed to explore these possibilities for better prediction. 
Besides	 false	negatives,	 the	 false	positives	may	arise	 if	 these	sub-
jects possess both “good” outliers and “bad” outliers at the individual 
connection	level	whose	effects	on	IQ	might	cancel	each	other,	thus	
resulting	in	“middle”	performances.	Indeed,	when	examining	the	in-
dividual and mean group matrices for the high IQ and low IQ outli-
ers,	they	showed	clearly	different	patterns	(Figure	2b).	However,	the	
limited sample size from each category prevented us from deriving 
connectivity signatures for “good” and “bad” outliers. This limita-
tion points to the need for future studies with larger sample sizes to 
further	characterize	different	types	of	connection-level	outliers	for	
more accurate prediction.

4.2 | The rationales behind Triple O/Triple O+

The proposed Triple O approach was inspired by the developmental 
cascading	hypothesis	(Masten	&	Cicchetti,	2010;	Monk	et	al.,	2019;	
Silveira	 et	 al.,	 2007)	 stating	 that	 early	 changes	 in	 the	 brain	 could	
cascade and evolve with age leading to abnormal developmental 
outcomes. Driven by these hypotheses and our previous empiri-
cal results showing significant associations between early func-
tional brain connectivity measures and later behavioral outcomes 
(Alcauter,	Lin,	Smith,	Short,	et	al.,	2014;	Salzwedel	et	al.,	2019),	we	
hypothesize that neonates identified as “brain outliers” would also 
more likely manifest as “behavioral outliers” four years down the 
road. This hypothesis serves as the foundation for the Triple O ap-
proach.	Indeed,	the	detection	of	the	three	low	IQ	outliers	all	of	whom	
were	in	the	RISK	group,	including	one	with	maternal	mental	disorder	
diagnosis	and	two	with	premature	and	twin	birth	status,	echoes	with	
this hypothesis and suggests that the genetical factors underlying 
the disorder diagnosis/potential maternal distress associated with 
it and premature/twin birth may have contributed to the detected 
outlying brain connectivity patterns and the subsequent outlying 
low	IQ	performance	at	4	years	of	age	(Monk	et	al.,	2019).	A	detailed	
examination of all eight true positives against the 10 demographic 
variables failed to show clear signs of extremes that could potentially 
explain	their	outlying	neonatal	brain	and	4YR	IQ	patterns	(Figure	S2).	
Future studies with genetic modeling and more comprehensive en-
vironmental monitoring are needed to more rigorously examine the 
potential underlying factors leading to the detected “brain outliers” 
at the neonatal stage and the later outlying (both high and low) IQ 
performances.

Empirically,	the	choices	of	abstraction	measures	are	almost	un-
limited,	but	we	chose	 the	 three	global	abstraction	measures	given	

the multifaceted nature of IQ performance that covers a multitude 
of	 different	 functional	 domains	 (e.g.,	 fluid	 reasoning,	 verbal	 and	
nonverbal	 knowledge,	quantitative	 skills,	 visual–spatial	processing,	
working	memory)	(Roid,	2003).	These	functions	likely	require	coor-
dinated functioning of a complex set of distributed functional net-
works	throughout	the	whole	brain	(Goriounova	&	Mansvelder,	2019).	
Note	 these	 three	measures	 were	 chosen	 in	 this	 proof-of-concept	
study to demonstrate the link between brain outliers and IQ outli-
ers.	Future	expansions/revisions	of	the	proposed	approach,	such	as	
including	more	sophisticated	graph	theoretical	measures	(Rubinov	&	
Sporns,	2010),	are	possible	and	deserve	further	exploration.	As	pre-
viously	mentioned,	another	important	rationale	to	use	brain	outlier	
measures for prediction relates to its insensitivity to signs of brain–
behavioral	 relationships	 that	 are	 either	 homogeneous	 (Alcauter,	
Lin,	Smith,	Goldman,	et	al.,	2014;	Alcauter,	Lin,	Smith,	Short,	et	al.,	
2014;	Salzwedel	et	al.,	2019)	or	heterogeneous	 (Chen	et	al.,	2020)	
within the examined population. While prediction schemes directly 
using functional connectivity strength measures would inevitably 
be affected/complicated by the different signs of brain–behavior 
associations between connections and/or the heterogeneity across 
different	 subgroups	 of	 subjects,	 the	 proposed	 Triple	 O	 approach	
captures the absolute deviations of different functional connectiv-
ity strength measures against the population mean regardless of the 
relative signs and subgroup differences. This sign insensitivity may 
partly contribute to the observed high level of generalizability to dif-
ferent reference samples as discussed below.

The observed significant quantitative correlations between a 
range	of	demographic/participant	variables,	including	parental	ed-
ucation,	birth	outcomes,	gestational	age,	family	income,	maternal	
age,	and	4YR	IQ	outcomes	(Figure	1b),	are	consistent	with	previ-
ous	 findings	 (Bacharach	&	Baumeister,	1998;	Elgen,	Sommerfelt,	
&	Ellertsen,	2003;	Eriksen	et	al.,	2013;	Tong,	Baghurst,	Vimpani,	
&	McMichael,	2007).	Leveraging	 these	quantitative	associations,	
we derived a Cumulative Demographic Risk Index (CDRI) and pre-
dicted	that	the	detected	brain	“outliers”	with	above-average	CDRI	
would	 correspond	 to	high	4YR	 IQ	outliers,	while	 those	with	be-
low-average	CDRI	would	correspond	to	low	4YR	IQ	outliers.	Our	
results	 confirmed	 this	 prediction,	 and	 the	 addition	 of	 the	 CDRI	
indicator enabled the resulting Triple O+ approach to distinguish 
between	high	and	low	IQ	outliers	(Figure	2b).	Therefore,	by	com-
bining Triple O with demographic information as implemented in 
Triple O+,	the	translational	potential	of	the	proposed	abstraction	
scheme is further improved by the identification of those at risk to 
develop	as	low	IQ	outliers.	As	mentioned	above,	the	identification	
of risks for low IQ outliers may be especially important and pro-
ductive among vulnerable infant populations including those with 
prenatal	 drug	 exposure,	 maternal	 mental	 health	 problems,	 pov-
erty,	maternal	 obesity,	 among	 others.	 For	 the	CONTROL	 group,	
since	none	of	them	develop	as	 low	IQ	outliers	 in	SAMPLE	1,	the	
main benefit is the knowledge that the detected “brain outliers” 
have a higher chance of developing as high IQ outliers (Figure 2b). 
This	 information,	although	not	as	clinically	critical	as	predictions	
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of	low	IQ	outliers,	could	still	be	helpful	and	beneficial	to	identify	
potential gifted children.

4.3 | The high level of robustness and 
generalizability of Triple O+

The Triple O+ approach proposed in this study comes from a hy-
pothesis-driven	understanding	of	the	infant	brain	and	brain–behav-
ioral relationships specifically designed to promote robustness and 
generalizability	 of	 prediction.	 In	 particular,	 the	 three	most	 salient	
features	of	Triple	O	lie	in	its	high	level	of	abstraction,	insensitivity	to	
signs of brain–behavioral associations either homogenous or hetero-
geneous	within	the	examined	population,	and	no	need	for	training	
with	behavioral	 outcome	data.	All	 three	 features	 promote	 robust-
ness and generalizability and could potentially avoid the commonly 
encountered	“overfitting”	problem	in	training-based	machine	learn-
ing	approaches.	 Indeed,	highly	consistent	prediction	performances	
were	 observed	 when	 using	 the	 independent	 SAMPLE	 2	 data	 as	
the	reference	sample.	 Importantly,	even	when	using	the	male-only	
or	 female-only	 subsamples	within	 SAMPLE	 2	 as	 reference,	 highly	
consistent	 predictions	 were	 observed	 for	 SAMPLE	 1	 with	 mixed	
sexes,	 suggesting	 that	 the	 proposed	 scheme	 is	 not	 sex-depend-
ent.	Moreover,	 similar	 prediction	performances	 could	be	 achieved	
even when using data from one scanner to predict data from two 
scanners. These observations are encouraging and support future 
cross-institutional	 applications	 of	 Triple	O.	 To	 add	 to	 its	 practical	
applications,	a	 low	 limit	of	50	 in	sample	size	was	demonstrated	to	
achieve	similar	performances	as	shown	in	Figure	4.	Taken	together,	
the demonstrated robustness and a relatively minimal requirement 
of	sample	size	(i.e.,	~50)	support	Triple	O	as	a	promising	and	practical	
way of identifying newborns at risk for adverse IQ outcomes.

4.4 | Limitations

Several	additional	limitations	of	this	study	are	worth	discussing.	The	
first one reiterates the undetected 4YR IQ outliers. Other types of 
brain	 outliers,	 non-outlier-based	 brain	mechanisms,	 and	 postnatal	
factors	 (e.g.,	 brain	 development,	 family	 environment,	 adverse	 life	
events,	education,	and	nutrition)	could	all	underlie	this	observation,	
and future studies are needed to explore/validate these possibilities. 
In	particular,	future	studies	further	incorporating	postnatal	environ-
mental factors may prove particularly effective for better prediction 
but this inclusion may inevitably delay the timing of prediction and 
considerations have to be given to balance between higher sensitiv-
ity	 and	earlier	detection.	Related,	 in	 the	 current	 study,	 the	demo-
graphic information was reduced to a sign indicator and incorporated 
in our Triple O+	to	only	help	identify	the	sign	of	IQ	outliers	(i.e.,	high	
and low IQ outliers) but future efforts are needed to further explore 
best ways to incorporate quantitative demographic information 
for potential improvement in prediction sensitivity/accuracy. The 

second limitation relates to the relatively small number of IQ outli-
ers	(19	from	175)	for	prediction,	reflecting	a	limited	degree	of	vari-
ability in 4YR IQ outcomes in the current population. Future studies 
with a larger sample size and/or a larger degree of IQ variability are 
needed	to	independently	validate	the	current	results.	Moreover,	our	
validation	SAMPLE	2	does	not	have	4YR	IQ	data,	which	prevented	us	
from	performing	a	complete	validation	test	within	SAMPLE	2.	Future	
studies with samples that have both neonatal brain and 4YR IQ data 
are	thus	needed	to	further	validate	the	current	findings.	In	addition,	
efforts could be spent on distinguishing between “good” and “bad” 
functional connectivity outliers for potential improvement in predic-
tion.	Third,	we	only	 tested	 the	performance	of	Triple	O/Triple	O+ 
on 4YR IQ outcome measures. Future efforts are needed to test 
whether variants of Triple O/Triple O+ could predict other domains 
of	behavior	outcomes	at	 the	same	or	other	ages.	Finally,	 although	
our	tests	on	male-only,	female-only,	and	one	scanner-only	reference	
samples revealed highly consistent results (as long as sample sizes 
are	larger	than	50)	promoting	cross-institutional	application	of	Triple	
O+,	actual	tests	with	data	from	different	institutions	are	needed	to	
confirm this potential.

5  | CONCLUSIONS

In	conclusion,	we	propose	a	Triple	O+	approach	to	use	brain-based	
outlier	indicators	in	neonates,	enriched	by	demographic	information,	
to predict high and low outlying IQ performers at 4 years of age. 
Our results revealed an 42.1% identification rate of 4YR IQ outliers 
(i.e.,	8	out	of	19)	among	a	mixed	cohort	of	175	newborns	with	dif-
ferential	term,	twin,	and	maternal	disorder	statuses.	Together	with	
a	high	specificity	of	96.2%,	Triple	O	reached	an	overall	accuracy	of	
90.3%	in	identifying	4YR	IQ	outliers.	High	levels	of	robustness	and	
generalizability were also observed when using independent data-
sets	as	the	reference	samples.	Featured	by	no	need	for	 training,	a	
“small-data”	 requirement	 (lower	 limit	of	50),	 straightforward	 inter-
pretations,	and	high	levels	of	robustness	and	generalizability,	Triple	
O+ may have the potential for translational applications as a novel 
way	for	brain-based	identification	of	newborns	at	risk	for	adverse	IQ	
outcomes	years	down	the	road.	However,	one	should	also	be	mindful	
of the ~60% 4YR IQ outliers that were not detected using Triple O 
based on the neonatal functional connectivity data. Other types of 
neonatal	brain	outliers,	other-than-outlier-based	mechanisms,	post-
natal	brain	growth,	or	other	postnatal	family/environmental	factors	
could	 all	 have	 contributed	 to	 these	 false	negatives,	 and	 future	ef-
forts are needed to improve upon Triple O for a higher rate of risk 
identification.
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