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Background: Naturally occurring dietary botanicals offer time-tested safety and anti-
cancer efficacy, and a combination of certain compounds has shown to overcome the
elusive chemotherapeutic resistance, which is of great significance for improving the
mortality of patients with colorectal cancer (CRC). Accordingly, herein, we hypothesized
that berberine (BBR) and oligomeric proanthocyanidins (OPCs) might regulate
synergistically multiple oncogenic pathways to exert a superior anti-cancer activity in CRC.

Methods: We performed a series of cell culture studies, followed by their interrogation in
patient-derived organoids to evaluate the synergistic effect of BBR and OPCs against
CRC. In addition, by performing whole genome transcriptomic profiling we identified the
key targeted genes and pathways regulated by the combined treatment.

Results: We first demonstrated that OPCs facilitated enhanced cellular uptake of BBR in
CRC cells by measuring the fluorescent signal of BBR in cells treated individually or their
combination. The synergism between BBR and OPCs were investigated in terms of their
anti-tumorigenic effect on cell viability, clonogenicity, migration, and invasion. Furthermore,
the combination treatment potentiated the cellular apoptosis in an Annexin V binding assay.
Transcriptomic profiling identified oncogene MYB in PI3K-AKT signaling pathway might be
critically involved in the anti-tumorigenic properties of the combined treatment. Finally, we
successfully validated these findings in patient-derived CRC tumor organoids.

Conclusions: Collectively, we for the first time demonstrate that a combined treatment
of BBR and OPCs synergistically promote the anti-tumorigenic properties in CRC
possibly through the regulation of cellular apoptosis and oncogene MYB in the PI3K-
Akt signaling pathway.

Keywords: colorectal cancer, berberine, oligomeric proanthocyanidins, grape seed extract, synergistic effect,
apoptosis, MYB, PI3K-Akt signaling pathway
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INTRODUCTION

Colorectal cancer (CRC) is one of the most common malignancies
worldwide, and currently ranks fourth in disease incidence and the
second leading cause of cancer-related deaths, with an estimated
104,270 new cases and 52,980 deaths in 2021 (1). Systemic
chemotherapy remains the backbone and one of the best
therapeutic options for CRC patients with distant metastasis or
recurrence. Although 5-fluorouracil based therapy is the standard
of care chemotherapeutic intervention in patients with CRC (2, 3),
a large majority of CRC patients tend to acquire resistance and
become chemoresistant to such treatments. The acquisition of
chemoresistance is primarily due to compensatory overload or
emergence of mutations in chemotherapy-induced targeted
pathways in a clone of cancer cells (4, 5), which renders these
patients unresponsive to subsequent drugs (6, 7). Accordingly, a
growing school of thought is that instead of the use of single
agents, combination therapies by employing more than one
simultaneous drugs that can modulate multiple pathways might
enhance the overall therapeutic efficacy as it mitigates the
opportunity to develop chemoresistance to a single therapy. In
other words, the development of chemoresistance presents a major
challenge in the management of CRC, and an optimal
combination of various therapeutic modalities is a growing area
of research to thwart this clinical challenge.

In recent years, accumulating body of data have shown that active
principles within various naturally-occurring dietary botanicals offer
a time-tested safety and anti-cancer efficacy (8–16). While this list of
compounds is quite large, including some of the research undertaken
by our research team on curcumin (17–24), Boswellic acids (19, 25,
26), andrographis extract (27–29) and oligomeric proanthocyanidins
(OPCs) (27, 30–33). In this regard, OPCs and berberine (BBR), have
recently been actively studied for their anti-tumorigenic properties in
CRC and other human cancers (16, 27, 30–33). BBR is a small
molecule isoquinoline alkaloid extracted from the rhizomes of
Berberis including Coptidis rhizome and Amur corktree bark and
was traditionally used to treat a variety of conditions including
bacterial diarrhea in China and native America (16, 34). However,
recent studies have shown their diverse pharmacological anti-cancer
effects against CRC through a multitude of regulatory mechanisms,
including the Wnt signaling pathway, SCAP/SREBP-1 pathway, and
b-catenin signaling pathway (35–37). On the other hand, OPCs are a
class of polyphenols that are frequently present in a variety of purple
or red pigmented plants, including their heavy abundance in the
grape seeds. The OPCs also possess anti-cancer properties, and some
of the work from our group in the past has demonstrated that their
anti-tumorigenic activity in CRC is mediated through cell-cycle
dynamics, cancer stem cells, and regulation of ABC drug
transporters (30, 32, 33).

A more recent study revealed existence of synergism between
BBR and OPCs in patients with type 2 diabetes mellitus (38). This
report demonstrated that OPCs inhibited the efflux of BBR and
simultaneously increased its cellular uptake by the epithelial cells.
Furthermore, OPCs also potentiated the therapeutic efficacy of
BBR in mice with diabetes, without causing any harmful adverse
effects. On similar lines, our recent research has also demonstrated
the cooperative and synergistic effects of OPCs with several other
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natural compounds, such as curcumin and andrographolide in
CRC (27, 31). Furthermore, several previous studies demonstrated
the BBR’s synergistic anti-cancer effect with other natural
compounds and chemotherapeutic drugs (39–44). In view of
these accumulating evidence, we hypothesized that BBR and
OPCs might synergistically regulate multiple oncogenic cell
signaling pathways to exert a superior anti-cancer activity in
CRC. Furthermore, a combination of BBR and OPCs might
appropriately also mitigate the likelihood for development of
chemoresistance in this malignancy.

Herein, for the first time, we performed a systematic series of
experiment in various cell lines, followed by their interrogation
in patient-derived organoids to evaluate the synergistic anti-
tumorigenic effects of BBR and OPCs in CRC. In addition, we
performed whole genome transcriptomic profiling to decipher
the molecular mechanisms and key growth regulatory pathways
regulated by the combined treatment with BBR and OPCs in
this malignancy.
MATERIALS AND METHODS

Cell Culture and Materials
Human colorectal cancer cell lines (RKO and HT29) were
purchased from the American Type Culture Collection (Manassas,
VA). NCM460 was obtained from INCELL Corporation (San
Antonio, TX). All cell lines were tested and authenticated using a
panel of genetic and epigenetic markers for their genomic
authenticity and tested for mycoplasma on a regular basis. The
cell lines were cultured in Dulbecco’s Medium Eagle’s medium
(DMEM; Gibco, Carlsbad, CA) containing 10% fetal bovine serum,
and 1% penicillin and streptomycin, maintained in a humidified
incubator at 37°C in 5% CO2, and harvested with 0.05% trypsin-
0.03% EDTA (Invitrogen, Carlsbad, CA). Grape seed-OPCs (VX1
extract, EuroPharma USA, Green Bay, WI) and berberine
(Berberine HCL, EuroPharma USA, Green Bay, WI) were
dissolved in DMSO. Both compounds were diluted to appropriate
experimental concentrations in culture medium.

Cell Viability, Proliferation, Invasion and
Wound Healing Assays
Cells were plated at a density of 3-5 x 103 cells per well in 96-well
plates under each culture conditions, and incubated with various
concentrations of BBR, OPCs, and their combination for 48
hours. We used uniform DMSO concentrations between each
treatment groups, including the untreated group. Cell
proliferation was measured using Cell Counting Kit-8 (CCK-8)
assays (Dojindo, Kumamoto, Japan) as described previously (28).
To assess the synergism between BBR and OPCs, the
combination index (CI) was calculated using the Chou-Talalay
equation (45) at 50% inhibitory concentration. A CI of less than
1.0 was considered to be a synergistic interaction.

For the invasion assay, cells (3-5 x 104 cells) following
treatment with BBR, OPCs, and their combination for 48
hours were grown in 24-well transwell chambers (8-mm pore
size) coated with Matrigel (BD Biosciences, Franklin Lakes, NJ).
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After 48 hours, invading cells were detected by Diff-Quik
staining. The wound healing assay was performed as described
previously (33). Cells were seeded in 12-well plates and grown to
80% confluence. Wounds were created by scraping monolayer
cells with a 200-ml pipette tip, and treated with BBR, OPCs, and
their combination. 24 hours after scratching, treated and control
cells were observed with a microscope.

Apoptosis and Colony Formation Assays
For the Annexin V binding assay, cells were seeded in 6-well
plates, followed by treatment with BBR, OPCs, and their
combination for 48 hours. The assay utilizes Annexin V to
detect phosphatidylserine on the external membrane of
apoptotic cells. After treatment, cells were harvested, and 100ml
of cell suspension was added to 100ml of the Muse Annexin V &
Dead Cell reagent (Millipore Corp, Billerica, MA). The apoptotic
cell fraction was measured using the Muse Cell Analyzer
(Millipore Corp) according to the manufacturer’s instructions.
The colony formation assay was performed as described
previously (25). For this assay, 5 x 102 cells were seeded in 6-
well plates, followed by treatment with BBR, OPCs, and their
combination for 48 hours. After 7 days, cells were fixed by 100%
methanol and stained by 1% crystal violet. The number of
colonies with more than 50 cells were counted manually, and
the relative change was determined.

Measurement of BBR Uptake
BBR emits a yellowish fluorescence (excitation: 488nm, emission:
564nm) (46, 47), and its uptake was examined using the Infinite
M1000 microplate reader (Tecan Trading AG, Männedorf,
Switzerland) and confocal microscopy. The cells were treated
with BBR, OPCs, or their combination for 24 hours, and washed
two times with cold phosphate buffered solution (PBS) before
measurement. BBR autofluorescence was imaged using 488nm
excitation and 564nm emission. Cells were observed under 200x
magnification using a fluorescent microscope.

RNA Extraction and Quantitative Reverse
Transcription PCR (qRT-PCR)
Total RNA was extracted from cells using the Qiagen miRNeasy Kit
(Qiagen, Hilden, Germany), and reverse transcribed to
complementary DNA (cDNA) using a high-capacity cDNA
Reverse Transcription Kit (Thermo Fischer Scientific, Waltham,
MA). The qRT-PCR assays were performed using a SensiFAST
SYBR Lo-ROX Kit (Bioline, London, United Kingdom) and the
QuantStudio 6/7 Flex RT-PCR System (Applied Biosystems, Foster
City, CA). The b-actin gene was used as an internal control. The
delta Ct method, where delta Ct is the difference in Ct values
between the abundance of target transcripts and the internal
control, was used for quantification (48). The primers used in the
present study were described in Supplementary Table S1.

Genome-Wide RNA Sequencing
and Analysis
Genome-wide RNA sequencing was performed as described
previously (30). Total RNA was isolated from RKO and HT29
cells treated with DMSO (Control), BBR, and OPCs for 24 hours
Frontiers in Oncology | www.frontiersin.org 3
using the Qiagen miRNeasy Kit (Qiagen, Hilden, Germany). Next-
generation sequencing library construction was performed by the
TruSeq RNA library kit (Illumina, Chicago, IL), and the quality of
each library was assessed through a High Sensitivity DNA Kit
(Agilent, Los Angeles, CA). Libraries were pooled together using a
Pippin HT instrument (Sage Science, Beverly, MA). Efficiency of
size selection was assessed by a High Sensitivity DNA Kit
(Agilent). The pooled libraries were quantified by qRT-PCR
using the KAPA Library Quantification Kit, Universal (KAPA
Biosystems, Philadelphia, PA) before sequencing on an Illumina
HighSeq 2500 with single-end 75 base read lengths. Fastq files
were trimmed using Flexbar to remove 3’ bases with quality scores
lower than 30 before alignment, and the trimmed reads were
mapped to human genome version GRCH38 downloaded from
GENCODE57 (49) using HISAT258 (50) to generate alignment
files in bam format. Samtools name-sorted bam files (51) were
processed using htseq-count to summarize gene level counts (52).
DESeq 2 was used for differential gene expression analysis of
RNA-sequencing read counts (53).

The raw expression data was analyzed using the Partek Genomic
Suite (Build version 10.0.21.0929; Partek Inc., St. Louis, MO). A
given gene was considered differentially expressed if it had an FDR
step-up p < 0.05 and a fold-change > ± 1.5. The heatmap was
generated using the Partek Genomic Suite, and the molecular
pathways of the differentially expressed genes were analyzed using
the KEGG and Partek pathway (Partek, St. Louis, MO) analytical
methods. The data was subsequently analyzed for enrichment of
GO terms and the KEGG pathways; a pathway was considered
significantly enriched if the enrichment score is > 3 and p < 0.05.

Western Blotting
Western blotting (WB) for total protein extracted for cells was
performed as described previously (28). Primary antibodies against
Bax (1:1000, #5023; Cell Signaling Technology), Bcl-2 (1:1000,
#15071; Cell Signaling Technology), Akt (1:1000, #4691; Cell
Signaling Technology), and phospho-Akt (Ser473) (1:1000, #4060,
Cell Signaling Technology) were used. b-actin (1:1000, #58169; Cell
Signaling Technology) were used as an internal control of WB. The
relative protein levels were quantified by using the Image-J 1.47v
software (http://imagej.nih.gov/ij/index.html).

Transfection of Small Interfering RNA
For these experiments, 1 x 106 cells were reverse transfected with the
MYB siRNA (Thermo Fischer Scientific, Waltham,MA) or negative
control siRNA (Thermo Fischer Scientific, Waltham, MA) using
Lipofectamine RNAiMAX Transfection Reagent (Thermo Fischer
Scientific, Waltham, MA) and then seeded in 6-cm plate. 24-48
hour after transfection, cells were used for the total RNA extraction,
total protein extraction, and the other assays.

Patient-Derived CRC Tumor Organoids
Human primary CRC tissues were obtained from patients with
CRC enrolled at Baylor University Medical Center, Dallas, TX.
With approval from the ethics committees of the institution, a
written informed consent was obtained from all patients. Patients
were anonymously coded in accordance with ethical guidelines, as
instructed by the Declaration of Helsinki. CRC tumor organoids
May 2022 | Volume 12 | Article 855860
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were cultured using a modified protocol described previously (32).
The CRC tumors were incubated in Gentle Cell Dissociation
Reagent (STEMCELL Technologies, Vancouver, BC, Canada),
and resuspended in DMEM/F-12 with 15mM HEPES
(STEMCELL Technologies). Tissues were minced and digested
with collagenase solution (5ml of above medium with 75ml
collagenase, 124mg/ml dispase type II, and 0.2% Primocen), and
then suspended in 100ml of Matrigel (Corning, Tehama County,
CA) with 100ml of IntestiCult™ Organoid Growth Medium
(#06010, STEMCELL Technologies). The organoids were
suspended to four wells such that forms a dome, and then,
750ml of IntestiCult™ Organoid Growth Medium were added to
each well. The organoids were randomly assigned into four groups
and treated with appropriate concentrations of BBR (20mg/ml),
OPCs (20mg/ml), and their combination (BBR: 20mg/ml, OPCs:
20mg/ml). The control organoids were treated with a very low
concentration of DMSO. Seven days after growth in the culture
medium, the organoids that were about 500 microns in diameter
were observed and counted under a bright-field microscope. And
then the organoids were harvested by Gentle Cell Dissociation
Reagent, and harvested organoids were used for total
RNA extractions.

Statistical Analysis
All experiments were conducted as three independent technical
triplicates. All data were expressed as mean ± standard deviation
(SD). Two-sided Student’s t test was used to analyze differences
between continuous values of each independent group. All P
values were two-sided, and P < 0.05 was considered statistically
significant. All statistical analyses were performed using EZR
(54), which is a graphical user interface for R (R Foundation for
Statistical Computing, Vienna, Austria, version 4.0.3) designed
to add statistical functions and is frequently used in biostatistics.
RESULTS

OPCs Exhibited a Synergistic
Anti-Tumorigenic Effect With BBR in
Inhibiting Cell Proliferation, Colony
Formation, Migration, and Invasion
Through Enhanced Cell Apoptosis
To evaluate if OPCs exhibit any synergistic anti-tumorigenic
effects with BBR in CRC cells, we first investigated the effects of
each compound individually (0, 20, 40, 60, 80, and 100mg/ml), and
their combination in RKO and HT29 cells. The median IC25 and
IC50 of the combination treatment in both cell lines were 11.38
and 23.87mg/ml, respectively, therefore, following experiments
were performed at a concentration of 20mg/ml, which is
approximately IC50 of a combination treatment. In support of
our original hypothesis, the combination of BBR and OPCs
demonstrated notably superior anti-proliferative effects in both
cells (Figure 1A). To assess the synergism between BBR and
OPCs, the CI was calculated using the Chou-Talalay equation (45)
at 50% inhibitory concentration, with 0.74 and 0.64 value observed
in RKO and HT29 cells, respectively (Supplementary Figure S1).
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Because a CI of less than 1.0 was considered to be synergistic, these
data indicated a synergistic anti-tumorigenic effect of BBR and
OPCs in CRC cells. Interestingly, combination treatment was safe
and did not affect cell viability in normal colonic epithelial cell line
NCM460 (Supplementary Figures S2A, B). Furthermore, the
colony formation assays following treatment with BBR (20mg/ml),
OPCs (20mg/ml), and their combination (BBR: 20mg/ml, OPCs:
20mg/ml) demonstrated that the combined treatment resulted in a
significantly higher reduction of clonogenicity than either treatment
alone in CRC cells (fold change [FC] = 0.22 vs BBR alone, P = 0.01;
FC = 0.21 vs OPCs alone, P = 0.01 in RKO cells; FC = 0.51 vs BBR
alone, P = 0.04; FC = 0.35 vs OPCs alone, P = 0.04 in HT29
cells; Figure 1B).

Next, we assessed the ability of BBR and OPCs to inhibit
cellular migration and invasion, which is critical for cancer
progression and metastases. With regards to the wound
healing and invasion assay, BBR and OPCs significantly
decreased cell migration and invasion compared to control
cells, while the combination treatment of these compounds
significantly enhanced these effects for their ability to inhibit
cell migration (in RKO cells; vs BBR alone, P = 0.15; vs OPCs
alone, P = 0.01; In HT-29 cells, vs BBR alone, P = 0.05; vs OPCs
alone, P < 0.01; Figure 1C) and invasion (vs BBR alone, P = 0.03;
vs OPCs alone, P < 0.01 in RKO cells; vs BBR alone, P < 0.01; vs
OPCs alone, P < 0.01 in HT29 cells; Figure 1D).

To clarify the underlying mechanism that orchestrated the
enhanced efficacy for the combination treatment of BBR and
OPCs in reducing the cell viability and clonogenicity, we
evaluated their combinatorial impact on apoptotic rates by an
Annexin V binding assay. Compared to the untreated group, BBR
significantly increased the rates of apoptosis, whereas the combined
treatment with BBR and OPCs further enhanced the apoptotic
potential of BBR (Figure 2A). Furthermore, for the expression of
apoptosis related genes, the combination treatment significantly up-
regulated Bax and down-regulated Bcl-2 at the mRNA and protein
level (Figures 2B, C). Taken together, these data confirm that OPCs
potentiated the anti-tumorigenic effect of BBR through increased
apoptosis and other key cancer cell death mechanism in CRC cells.

OPCs Increased the Cellular Uptake of
BBR in CRC Cells
To evaluate the mechanism of synergism, we examined whether
OPCs affect the cellular uptake of BBR in CRC cells. Because the
IC25 and IC50 concentration of the combination treatment was
approximately 10 and 20mg/ml, respectively (Figure 1A), RKO
and HT29 cell lines were treated with BBR (10 and 20mg/ml) and
various concentration of OPCs (10 and 20mg/ml) for 24 hours.
Using BBR’s yellowish fluorescence (excitation: 488nm,
emission: 564nm), the cellular uptake of BBR was visualized by
the multimode microplate reader and confocal microscopy.
Interestingly, we noted that OPCs promoted the fluorescence
intensity of BBR in both RKO and HT29 cells, while the
combination of OPCs exhibited significantly higher uptake of
BBR than BBR alone in a concentration-dependent manner; the
combination of 20mg/ml OPCs revealed 2.91 and 2.28 times
higher uptake of BBR in RKO and HT29 cells, respectively (P =
0.04 and P = 0.03, respectively, vs BBR: 20mg/ml alone;
May 2022 | Volume 12 | Article 855860
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Figures 3A, B). These data suggest that OPCs facilitate increased
cellular uptake of BBR in CRC cells, supporting the previous
observation made in type 2 diabetes mellitus (38).
Transcriptomic Profiling Revealed That
BBR and OPCs Modulated Key
Cancer-Associated Pathways
To unravel the molecular mechanisms underlying the anti-
tumorigenic properties of the combination treatment, we
examined the genome-wide transcriptomic changes induced by
BBR and OPCs in RKO and HT29 cells using the Partek
Genomic Suite. The treatment of BBR resulted in 2851 up- or
down-regulated (> 1.5-fold) probes in RKO cells, and 7372 up-
or down-regulated (> 1.5-fold) probes in HT29 cells. We also
detected that 621 and 617 up- or down-regulated (> 1.5-fold)
probes by the treatment of OPCs in RKO and HT29, respectively.
Among them, 108 and 336 genes were altered by both treatments
in RKO and HT29, respectively (Figures 4A, B).
Frontiers in Oncology | www.frontiersin.org 5
Next, we examined Gene Ontology enrichment analysis of
these up- or down-regulated genes using the KEGG and Partek
pathway analytical methods. This analysis revealed that PI3K-
Akt signaling pathway was one of the key pathways that was
commonly abrogated in both RKO and HT29 cells (enrichment
score: 5.67, p < 0.01 in RKO; enrichment score: 4.20, p = 0.01 in
HT29), because PI3K-Akt signaling pathway was the only
pathway that was common among the top 10 pathways in both
cells (Figures 4C, D). Since the expression of CDKN1A, F2R,
FGF9, ITGB7, and MYB were up- or down-regulated by both
treatments in each cell line (Figure 4E), we next validated the
expression of these 5 genes by qRT-PCR, and the results were
consistent with the sequencing data (Figure 4F and
Supplementary Figure S3). Furthermore, the protein
expression level of Akt, which is one of the key genes in the
PI3K-Akt signaling pathway, was significantly inhibited by
combined treatment of BBR and OPCs in both cells. In
addition, combined treatment attenuated phosphorylation of
Akt at Ser473, which indicated that the PI3K-Akt signaling
A B

D

C

FIGURE 1 | BBR and OPCs exert a synergistic anti-tumorigenic effect in colorectal cancer cell lines. (A) CCK-8 assays comparing cell viability following treatment with
BBR, OPCs, and their combination for 48 hours in RKO and HT29 cells. Error bars are the mean ± SD. (B) Colony formation assays to assess clonogenicity of CRC cells
following treatment with BBR, OPCs, and their combination. The average (column) ± SD is indicated (*P < 0.05 vs control, #P < 0.05 vs BBR alone). (C) Wound healing
assay following treatment with BBR, OPCs, and their combination for 24 hours in RKO and HT29 cells. Photographs show representative scratched and wound
recovering areas (marked by red lines). Scale bar = 50mm. The average (column) ± SD is indicated (*P < 0.05 vs control, #P < 0.05 vs BBR alone). (D) Invasion assay
following treatment with BBR, OPCs, and their combination for 48 hours in RKO and HT29 cells. Scale bar = 50mm. The number of invading cells were counted at four
fields randomly selected on the membrane, and then relative invasion ratios were calculated. The average (column) ± SD is indicated (*P < 0.05 vs control, #P < 0.05 vs
BBR alone). Photographs show representative fields of invading cells on the membrane (magnification x100).
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pathway is the key pathway regulated by combined treatment of
BBR and OPCs (Figure 4G). For the combination treatment, the
expression of only MYB were significantly down-regulated
compared to control and BBR in both cells. MYB emerged as
one of the key regulators of this anti-cancer activity. MYB,
encodes three types of oncoprotein that function as a
transcription regulator, is considered to be an oncogene, and is
involved in the regulation of apoptotic process (55–58) – hence,
supporting the apoptotic potential of the combination treatment
(Figures 2A–C). Furthermore, MYB is often up-regulated in
patients with CRC (59, 60), and recently have gained increased
attention as a potential and novel therapeutic target in cancer
(61, 62). Based upon these findings, among these five genes, we
focused on MYB as a target of the combined treatment with BBR
and OPCs and selected this gene for subsequent experiments.

SiRNA-Mediated Knockdown of
MYB Exhibited the Anti-Tumorigenic
Effects by Inhibiting Cell Proliferation
and Migration in CRC Cells
To address the role ofMYB in the anti-tumorigenic properties of the
combination treatment in CRC cells, we next performed siRNA-
basedknockdownofMYB inRKOandHT29 cells. The expressionof
MYB at themRNA levels was inhibited 24 hours after transfection of
Frontiers in Oncology | www.frontiersin.org 6
its siRNA (Figure 5A). As for series of proliferation and wound
healing assays, knockdown of MYB significantly inhibited cell
proliferation (P = 0.01 in RKO cells; P = 0.02 in HT29 cells;
Figure 5B) and migration (FC = 0.37, P = 0.05 in RKO cells; FC =
0.42, P = 0.04 in HT29 cells; Figure 5C) in RKO andHT29 cells.We
also evaluated its impact on apoptotic rates via anAnnexinVbinding
assay to further clarify that knockdown of MYB reduced the cell
viability andmigration. Compared to CRC cells transfected negative
control siRNA, knockdown of MYB significantly increased the rates
of cellular apoptosis (FC = 1.78, P= 0.04 in RKO cells; FC = 1.50, P=
0.03 in HT29 cells; Figure 5D). Moreover, knockdown of MYB
significantly up-regulated Bax expression and down-regulated Bcl-2
expression at the mRNA and protein levels (Figures 5E, F). Taken
together, these data suggest that MYB plays an important role in
cancer progression and metastases through regulation of cellular
apoptosis, and this gene is critically involved in the anti-tumorigenic
effects of the combined treatment with BBR and OPCs.

The Combination of BBR and OPCs
Synergistically Inhibited the Growth in
Patient-Derived Organoids
Tumor organoid model and 3D primary cultures are
physiologically superior to the conventional monolayer
cultured cells for the study of anti-cancer agents (63). Thus, in
A

B

C

FIGURE 2 | BBR and OPCs promoted the cell apoptosis in colorectal cancer cell lines. (A) Representative images of cells undergoing apoptosis that stained for
annexin V assay in RKO and HT29 cells. The average (column) ± SD is indicated (*P < 0.05 vs control, #P < 0.05 vs BBR alone). (B) qRT-PCR analysis of Bax and
Bcl-2 expression in RKO and HT29 cells following treatment with BBR, OPCs, and their combination for 48 hours. Relative expression was calculated using b-Actin
mRNA expression as an internal control. The average (column) ± SD is indicated (*P < 0.05 vs control, #P < 0.05 vs BBR alone). (C) WB of Bax and Bcl-2
expression in RKO and HT29 cells following treatment with BBR, OPCs, and their combination for 48 hours. b-Actin protein was used as an internal control. The
average (column) ± SD is indicated (*P < 0.05 vs control, #P < 0.05 vs BBR alone).
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order to further support our cell culture findings, we finally
utilized a tumor-derived organoid model from patients with
CRC. The tumor organoids were treated with BBR (20mg/ml),
OPCs (20mg/ml), and their combination (BBR: 20mg/ml; OPCs:
20mg/ml) for 1 week (Figure 6A). It was quite reassuring to
witness that the results in this experimental model were
consistent with those seen in cell culture experiments, where
BBR significantly inhibited the growth and formation of patient-
derived organoids compared to untreated ones. Furthermore, the
combined treatment with BBR and OPCs enhanced the anti-
tumorigenic potentials in patient-derived organoids (FC = 0.50,
P = 0.04 in patient #1; FC = 0.50, P = 0.03 in patient #2;
Figure 6B). In support of our phenotypic observations made in
tumor-derived organoids, the expression of MYB was also
significantly down-regulated by the combined treatment of
BBR and OPCs (FC = 0.40 vs control, P = 0.05 in patient #1;
FC = 0.43 vs control, P = 0.03 in patient #2; Figure 6C).
Interestingly, for the expression of apoptosis related genes, Bax
was also significantly up-regulated, and Bcl-2 was down-
regulated by the combination treatment (Figure 6D).
Collectively, these data highlight that the combination
treatment with BBR and OPCs possess a remarkable anti-
tumorigenic effect in inhibiting organoid growth by enhancing
cellular apoptosis and by downregulating the expression of MYB
via the PI3K-Akt signaling pathway.
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

In treating patients with CRC, overcoming the intrinsic and
acquired drug resistance is one of the most challenging problems
because chemoresistance leads to frequent cancer recurrence, its
dissemination to other organs, and patient death. Furthermore,
there is an unequivocal consensus that chemoresistant mutants
generally exist as clones at very low numbers before the initiation
of chemotherapy. However, following initiation of a single-drug
treatment, it often leads to the selection and evolution of such
drug-resistant mutational populations of cancer cells, and
subsequent treatment with other drugs is usually ineffective
due to the establishment of such resistant mechanisms (6, 7).
In contrast, combined treatment with multiple drugs presumably
impacts multiple pathways, yields a better therapeutic efficacy,
which is often attributed to the smaller chances for the
emergence of chemoresistance to multiple drugs in cancer
cells. However, the therapeutic benefits of combined treatment
are usually accompanied by the simultaneous drug toxicity, as
well as increased costs – which often limits their clinical efficacy.

To overcome these clinical challenges, the use of safe and
cost-effective diet-based natural botanicals offer a time-tested
safety and anti-cancer efficacy. Actually, 75 of 175 small
molecules recognized as anti-cancer drugs currently, can be
traced back to their origin to naturally-occurring botanicals,
A

B

FIGURE 3 | OPCs increased the cellular uptake of BBR in colorectal cancer cell lines. (A) Cellular fluorescence intensity value of BBR following treatment with BBR
and combination of BBR and OPCs for 24 hours in RKO and HT29 cells. The average (column) ± SD is indicated (*P < 0.05). (B) Representative images of RKO and
HT29 cells following treatment with BBR, OPCs, and their combination for 24 hours using a fluorescent microscope under 200x magnification with a 488 nm/564 nm
excitation filter (scale bar = 50mm).
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from 1981 to 2019 (64). Furthermore, several natural
compounds have recently gained increasing attention due to
their anti-cancer potential through their ability to target multiple
oncogenic pathways, in a safe manner (13–16, 65, 66). Among
this list of many such compounds including curcumin, boswellia,
resveratrol and andrographis, BBR and OPCs have recently been
interrogated due to their promising anti-tumorigenic properties
in CRC (30, 32, 33, 35–37). In fact, a recent study also reported a
synergistic effect between these two natural compounds in type 2
diabetes mellitus (38). Accordingly, in this study, we for the first
time investigated the synergistic anti-tumorigenic effect of BBR
and OPCs in CRC by enhancing cellular apoptosis and by
downregulating the expression of MYB via the PI3K-Akt
signaling pathway (Figure 7), using a series of systematic cell
culture and patient-derived tumor organoid experimental
models. Furthermore, considering that our observed effects for
BBR and OPCs were comparable in microsatellite unstable (MSI)
and microsatellite stable (MSS) cell lines, this suggests that these
compounds can be used for almost all patients with colorectal
Frontiers in Oncology | www.frontiersin.org 8
cancer; hence highlighting their broader application for
this malignancy.

Current evidence has demonstrated the cooperative anti-
tumorigenic effects of OPCs with other natural compounds and
various chemotherapeutic drugs. Our previous studies also reported
that by combining OPCs with curcumin and andrographis,
enhanced their growth inhibitory activity in CRC cells (27, 31).
In addition, we previously demonstrated the additional ability of
OPCs to overcome chemoresistance through the suppression of
ABC transporters in CRC (30). In the current study, we build upon
our previous work, and illustrate that OPCs also demonstrated
synergism with BBR in CRC cells, and in part, this efficacy was
perhaps driven by the ability of OPCs to increase the cellular uptake
of BBR in cancer cells. Procyanidins including OPCs are considered
to downregulate the expression of P-glycoprotein, which is an
important protein of the cell membrane that pumps many
foreign substances out of cells, by inhibiting NF-kB activation
and MAPK/ERK-mediated YB-1 activity (38, 67). These previous
studies and our present results suggest that the synergism observed
A

B D

E

F
G

C

FIGURE 4 | BBR and OPCs modulated multiple cancer-associated pathways. (A, B) Venn-diagram of dysregulated expression (> 1.5-fold) of the genes following
treatment with BBR and OPCs in RKO (A) and HT29 (B) cells. (C, D) The top 10 pathways affected by both BBR and OPCs in RKO (C) and HT29 (D) cells. (E)
Heatmap of differentially expressed genes regulated by both BBR and OPCs in PI3K-Akt signaling pathway. (F) qRT-PCR analysis of MYB expression in RKO and
HT29 cells following treatment with BBR, OPCs, and their combination for 48 hours. Relative expression was calculated using b-Actin mRNA expression as an
internal control. The average (column) ± SD is indicated (*P < 0.05 vs control, #P < 0.05 vs BBR alone). (G) WB of Akt and phospho-Akt (ser473) (p-Akt) expression
in RKO and HT29 cells following treatment with BBR, OPCs, and their combination for 48 hours. b-Actin protein was used as an internal control. The average
(column) ± SD is indicated (*P < 0.05 vs control, #P < 0.05 vs BBR alone).
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between BBR and OPCs might be a result of OPCs to facilitate the
increased cellular uptake of BBR by inhibiting the efflux of BBR
through the regulation of P- glycoprotein.

The PI3K-Akt signaling pathway plays a vital role in cancer
development and drug-resistance, and BBR’s properties on the
cell apoptosis through the regulation of this signaling pathway
have been illustrated in various types of cancers (68, 69). In
osteosarcoma and breast cancer, BBR promoted cellular
apoptosis through inhibition of the PI3K-Akt signaling
pathway (70, 71). More interestingly, BBR acted synergistically
with PI3K inhibitor in SW480 CRC cells (72). In line with
previous reports, in our present study, BBR enhanced cellular
apoptosis in CRC cells and regulated the PI3K-Akt signaling
pathway. Furthermore, the combination of OPCs further
enhanced the anti-tumorigenic apoptotic potential of BBR.
Within the context of this pathway, MYB, encodes for three
types of oncoproteins and functions, is a transcriptional
Frontiers in Oncology | www.frontiersin.org 9
regulator in the PI3K-Akt signaling pathway and considered to
be an oncogene that regulates apoptosis (55–58). Accordingly, in
this study, we focused on the evaluation of the function of MYB
as a potential target in support of the combined treatment with
BBR and OPCs. According, in support of several previous reports
and our results of siRNA experiments in this study, MYB played
an important role in cancer progression and metastases through
regulation of apoptosis. Although transcriptional factors are
traditionally considered difficult to target, renewed interest in
targeting transcriptional factors has opened a new horizon in the
field of cancer drug discovery. More specifically, MYB has also
emerged as an attractive therapeutic target in cancers, and several
small molecules or peptide-mimetic inhibitors have shown
promise as anti-cancer agents (61, 62). However, none of these
compounds have thus far been used in the clinical practice due to
the accompanying toxicity. In this study, we for the first time report
that MYB is critically involved in the anti-tumorigenic effects for the
A B

D

E

F

C

FIGURE 5 | The siRNA-based knock-down of MYB inhibited a tumorigenic effect through induction of apoptosis in colorectal cancer cell lines. (A) qRT-PCR analysis
of MYB expression in RKO and HT29 cells. MYB expression was knock-downed by siMYB. Relative expression was calculated using b-Actin mRNA expression as
an internal control. The average (column) ± SD is indicated (*P < 0.05). (B) Cell proliferation assay in RKO and HT29 cells after MYB knock-down. Total viable cells
were measured with a CCK-8 assay on the indicated days. Error bars are the mean ± SD. (C) Wound healing assay in RKO and HT29 cells after MYB knock-down.
Photographs show representative scratched and wound recovering areas (marked by red lines). Scale bar = 50mm. The average (column) ± SD is indicated (*P <
0.05). (D) Representative images of cells undergoing apoptosis that stained for annexin V assay in RKO and HT29 cells after MYB knock-down. The average
(column) ± SD is indicated (*P < 0.05). (E) WB of Bax and Bcl-2 expression in RKO and HT29 cells after MYB knock-down. b-Actin protein was used as an internal
control. The average (column) ± SD is indicated (*P < 0.05). (F) qRT-PCR analysis of Bax and Bcl-2 expression in RKO and HT29 cells after MYB knock-down.
Relative expression was calculated using b-Actin mRNA expression as an internal control. The average (column) ± SD is indicated (*P < 0.05).
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observed anti-cancer effects with BBR and OPCs. Our new findings
thus offer a potentially safe alternative to the drug toxicity of MYB-
inhibitors, considering the time-tested safety and recently reported
anti-cancer efficacy of these nutraceuticals.
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In this study, for the first time, we investigated the synergistic
anti-tumorigenic effect of BBR and OPCs against CRC cells,
however, we would like to acknowledge some of the potential
limitations of our work. Since the primary objective of our study
A B

DC

FIGURE 6 | The combination of BBR and OPCs effectively suppressed growth of tumor organoids derived from human colorectal cancers. (A) Schematic protocol of BBR,
OPCs, and their combination treatment on tumor organoids derived from human colorectal cancers. (B) Representative images of tumor organoids following treatment with BBR,
OPCs, and their combination. Scale bar = 500mm. The average (column) ± SD is indicated (*P < 0.05 vs control, #P < 0.05 vs BBR alone). (C) qRT-PCR analysis of MYB
expression in tumor organoids following treatment with BBR, OPCs, and their combination. Relative expression was calculated using b-Actin mRNA expression as an internal
control. The average (column) ± SD is indicated (*P < 0.05 vs control). (D) qRT-PCR analysis of Bax and Bcl-2 expression in tumor organoids following treatment with BBR, OPCs,
and their combination. Relative expression was calculated using b-Actin mRNA expression as an internal control. The average (column) ± SD is indicated (*P < 0.05 vs control).
FIGURE 7 | A schematic illustration of the synergistic anti-cancer effect of BBR and OPCs. This illustration demonstrates treatment of BBR alone (left) and combined
treatment of BBR and OPCs (right) in CRC cells. OPCs increased the cellular uptake of BBR in CRC cells and enhanced BBR’s anti-cancer potential through MYB
and PI3K-Akt signaling pathway.
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was to investigate the synergism of BBR and OPCs against CRC
cells, we did not perform detailed molecular functional studies.
In addition, given the constraints with tumor-derived organoids,
we were able to analyze such organoids from only two patients.
Moreover, our pathway analyses were performed in cells treated
by BBR alone and OPCs alone, not the combined treatment.
While RNA sequencing of the combined treatment might reveal
additional genes and pathways that orchestrate the
chemopreventive effects of these compounds, the primary
objective of the present study was the gain first insights on the
synergistic anti-cancer effect of BBR and OPCs against CRC cells.
Therefore, we first performed the RNA sequencing in cells
treated by BBR alone and OPCs alone. Future studies with
such combinatorial treatments and transcriptomic profiling
might reveal previously unrecognized genes and regulatory
pathways in colorectal cancer. Although, we validated our in
vivo findings about the synergism of BBR and OPCs in patient-
derived tumor organoids experiments, this study involved no
animal studies to demonstrate the toxicity examination.
Accordingly, future studies are warranted to further investigate
the detailed molecular mechanisms of the combined treatment
with BBR and OPCs on MYB and PI3K-Akt signaling pathway,
including the validation of our findings in the tumor spheroids
and animal models.
CONCLUSIONS

In conclusion, we have firstly demonstrated that the combination
treatment of BBR and OPCs promoted the anti-tumorigenic
effects in CRC possibly through the inhibition of cellular
apoptosis by regulating the expression of MYB in the PI3K-
Akt signaling pathway. Our findings could provide essential
evidence of the combined treatment with BBR and OPCs as a
potential therapeutic option for patients with CRC.
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Supplementary Figure 2 | (A) CCK-8 assays comparing cell viability following
treatment with BBR, OPCs, and their combination for 48 hours in NCM460 cells.
Error bars are the mean ± SD. (B) Cell viability following treatment with BBR (20mg/
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48 hours in NCM460 cells. The average (column) ± SD is indicated.

Supplementary Figure 3 | The qRT-PCR analysis of CDKN1A, F2R, FGF9, and
ITGB7 expression in RKO and HT29 cells following treatment with BBR, OPCs, and their
combination for 48 hours. Relative expression was calculated using b-Actin mRNA
expression as an internal control. The average (column) ± SD is indicated (*P < 0.05, #P <
0.05 vs BBR alone).
REFERENCES
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer

J Clin (2021) 71(1):7–33. doi: 10.3322/caac.21654
2. Giacchetti S, Perpoint B, Zidani R, Le Bail N, Faggiuolo R, Focan C, et al.

Phase III Multicenter Randomized Trial of Oxaliplatin Added to
Chronomodulated Fluorouracil-Leucovorin as First-Line Treatment of
Metastatic Colorectal Cancer. J Clin Oncol (2000) 18(1):136–47.
doi: 10.1200/JCO.2000.18.1.136

3. Colucci G, Gebbia V, Paoletti G, Giuliani F, Caruso M, Gebbia N, et al. Phase
III Randomized Trial of FOLFIRI Versus FOLFOX4 in the Treatment of
Advanced Colorectal Cancer: A Multicenter Study of the Gruppo Oncologico
Dell'Italia Meridionale. J Clin Oncol (2005) 23(22):4866–75. doi: 10.1200/
JCO.2005.07.113
4. Bernards R. A Missing Link in Genotype-Directed Cancer Therapy. Cell
(2012) 151(3):465–8. doi: 10.1016/j.cell.2012.10.014

5. Yamaguchi H, Chang SS, Hsu JL, Hung MC. Signaling Cross-Talk in the
Resistance to HER Family Receptor Targeted Therapy. Oncogene (2014) 33
(9):1073–81. doi: 10.1038/onc.2013.74

6. Komarova NL, Boland CR. Cancer: Calculated Treatment. Nature (2013) 499
(7458):291–2. doi: 10.1038/499291a

7. Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. The
Molecular Evolution of Acquired Resistance to Targeted EGFR Blockade in
Colorectal Cancers. Nature (2012) 486(7404):537–40. doi: 10.1038/
nature11219

8. Bishayee A, Sethi G. Bioactive Natural Products in Cancer Prevention and
Therapy: Progress and Promise. Semin Cancer Biol (2016) 40-41:1–3.
doi: 10.1016/j.semcancer.2016.08.006
May 2022 | Volume 12 | Article 855860

https://www.frontiersin.org/articles/10.3389/fonc.2022.855860/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.855860/full#supplementary-material
https://doi.org/10.3322/caac.21654
https://doi.org/10.1200/JCO.2000.18.1.136
https://doi.org/10.1200/JCO.2005.07.113
https://doi.org/10.1200/JCO.2005.07.113
https://doi.org/10.1016/j.cell.2012.10.014
https://doi.org/10.1038/onc.2013.74
https://doi.org/10.1038/499291a
https://doi.org/10.1038/nature11219
https://doi.org/10.1038/nature11219
https://doi.org/10.1016/j.semcancer.2016.08.006
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Okuno et al. BBR and OPCs in CRC
9. Ranjan A, Ramachandran S, Gupta N, Kaushik I, Wright S, Srivastava S, et al.
Role of Phytochemicals in Cancer Prevention. Int J Mol Sci (2019) 20
(20):4981. doi: 10.3390/ijms20204981

10. Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O.
Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical
Practice. Front Pharmacol (2019) 10:1614. doi: 10.3389/fphar.2019.01614
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