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Cell surface macromolecules play a crucial role in the biology and
pathobiology of flaviviruses, both as receptors for virus entry and as
signaling molecules for cell–cell interactions in the processes of
vascular permeability and inflammation. This review examines the
cell tropism and pathogenesis of flaviviruses from the standpoint of
cell surface molecules, which have been implicated as receptors in
both virus–cell as well as cell–cell interactions. The emerging picture
is one that encompasses extensive regulation and interplay among
the invading virus, viral immune complexes, Fc receptors, major
histocompatibility complex antigens, and adhesion molecules.
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I. INTRODUCTION

Flaviviruses comprise a rich and diverse family of agents that infect
a variety of hosts and cause a wide spectrum of disease. Three disease
types are recognized for flaviviruses, namely encephalitis, hemor-
rhagic fever, and fever–arthralgia–rash. Disease distinctions are not
absolute, and overlapping pathologies among various flavivirus
members are often observed. The ability of flaviviruses to cause such
divergent clinical syndromes, associated with virus replication in a
number of different organs, has profound implications for the types
of cell surface molecules the virus recognizes as receptors. Mutational
analyses of the flaviviral E protein have demonstrated a striking
ability of flaviviruses to adapt to different cells and receptors. Given
the considerable homologies among them, flaviviruses show a remark-
able capacity to cause vastly different diseases with a minimum of
alterations in the E protein.

The cell surface molecules, which act as receptors for flaviviruses,
are only starting to be identified. In addition to providing the mol-
ecules involved in virus attachment and penetration, the host cell
erects a battery of surface structures that mediate communication
with other cells and trigger host defense and pathological processes.
Many of these are modulated by flavivirus infection and contribute to
the overall picture of pathogenesis.
II. THE FLAVIVIRUS RECEPTOR BINDING PROTEIN

The flavivirus E protein is a multifunctional protein involved in
cell receptor binding (Anderson et al., 1992; Chen et al., 1996; He
et al., 1995) and virus entry via fusion with a host cell membrane (Rice,
1996). Some of the functional activities of the E protein, notably mem-
brane fusion, are regulated by interaction with a second viral protein,
prM. It is believed that the association of prM with E stabilizes certain
pH-sensitive epitopes on the E protein, thereby preventing the confor-
mational changes that normally occur at acidic pH and activate the
fusogenic activity of the E protein (Allison et al., 1995; Guirakhoo
et al., 1992; Heinz et al., 1994). In addition to its normal role in flavi-
virus assembly, the prM protein has also been included in novel recom-
binant formulations in which it is generally coexpressed with the
E protein; the resultant E/prM complexes have been shown to be
immunogenic and protective as vaccines against challenge with sev-
eral flaviviruses, including Japanese encephalitis virus (Mason et al.,
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1991), yellow fever virus (Pincus et al., 1992), dengue virus (Fonseca
et al., 1994), and tick-borne encephalitis (TBE) virus (Heinz et al.,
1995).

In TBE virus, the majority of extracellular virus is largely free of
prM protein due to a late intracellular processing event that generates
a carboxy-terminal fragment designated M and which together with
the E and C proteins are believed to constitute the protein components
of the mature virus particle (Heinz et al., 1994). Cleavage of prM to M
enhances low pH–dependent virus–cell fusion (Guirakhoo et al., 1991)
and infectivity (Guirakhoo et al., 1992; Heinz et al., 1994; Randolph
et al., 1990; Shapiro et al., 1972; Wengler, 1989). Dengue virions
containing prM are still infectious (Randolph et al., 1990) and bind to
permissive cells in a manner that can be blocked using E-specific anti-
bodies (He et al., 1995; Wang et al., 1999). Virus particles containing
mainly E and prM also show antibody-enhanced binding to Fc recep-
tor-bearing K562 cells as well as to platelets (Wang et al., 1995). Thus,
in addition to being requisite precursors to mature virus particles,
virus particles containing prM possess many properties associated
with mature virus particles.

Flaviviruses appear to gain entry to the cell by the endocytic path-
way (Rice, 1996). At low pH, the E protein undergoes a conformational
change (Allison et al., 1995) involving dissociation of the E dimer
(Stiasny et al., 1996), thereby exposing a hidden fusion peptide,
followed by reorganization of E into a trimer (Allison et al., 1995), in
which the fusion peptide is brought close to the membrane-anchoring
carboxy terminus (Ferlenghi et al., 2001). Remarkably similar struc-
tural features and conformational rearrangements have been noted
between the flavivirus E protein and the alphavirus E1 (Heinz and
Allison, 2001; Lescar et al., 2001; Pletnev et al., 2001; Strauss and
Strauss, 2001), suggesting a common evolutionary origin for these
two virion surface proteins.

Considerable homology exists among flaviviral E proteins, raising
the possibility that different flaviviruses may have similar receptor-
binding motifs. For example, many mosquito-borne flaviviruses
contain an RGD sequence (e.g., residues 388–390 of the Murray
Valley encephalitis virus E protein), which has been implicated in viru-
lence (Lobigs et al., 1990) and receptor binding by analogy with
integrin-binding motifs (Rey et al., 1995). Mutagenesis studies of
the yellow fever virus (Van der Most et al., 1999) and Murray Valley
encephalitis virus (Hurrelbrink and McMinn, 2001) RGD motifs, how-
ever, have cast doubt on the role of integrins in flavivirus attachment
or entry.
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Studies with TBE virus have identified important determinants for
pathogenicity within the suspected receptor-binding site on the upper-
lateral surface of domain III (Mandl et al., 2000). Acquisition of hepar-
an sulfate-binding mutations by passaging TBE in cell culture has also
implicated amino acids in this region in receptor binding (Mandl et al.,
2001). The selection of virus mutants on the basis of weak binding to
brain membranes has been used with several neurotropic flaviviruses
(Holbrook et al., 2001; Ni and Barrett, 1998; Ni et al., 2000) and has
identified a variety of mutations within domain III as well as other
regions of E. For dengue virus, blocking of virus cell binding correlates
more closely to virus neutralization for mAb 3H5 than for mAb 1B7
(Wang et al., 1999). This may suggest that mAb 3H5 neutralizes
dengue virus predominantly by blocking virus–cell attachment,
whereas mAb 1B7 neutralizes dengue virus largely by a postattach-
ment mechanism. The mAb 3H5-binding site on the dengue viral
E protein has been partly characterized (Hiramatsu et al., 1996;
Megret et al., 1992; Trirawatanapong et al., 1992) and probably encom-
passes, at a minimum, residues 383–385 (Hiramatsu et al., 1996)
within domain III. More recent data involving a larger number of
monoclonal antibodies indicate that mAbs that interact with domain
III are in fact the most effective blockers of virus–cell attachment (Crill
and Roehrig, 2001). A putative heparan sulfate-binding site on the
dengue-2 E protein is also located within this region (Chen et al.,
1997), and comparative sequencing of dengue type 2 genomes has im-
plicated amino acid 390 of the E protein as a major determinant of
pathogenicity (Leitmeyer et al., 1999). The pH-dependent conforma-
tional ‘‘hinge’’ region (between domains I and II) of the E protein has
also been implicated in virulence, receptor interaction, and/or mem-
brane fusion (Hurrelbrink and McMinn, 2001; Lee et al., 1997;
Monath et al., 2002). Further mutagenesis studies will undoubtedly
help define the sites of the E protein involved in flavivirus–cell
macromolecule recognition.
III. CELL TARGETS FOR FLAVIVIRUSES

A. Dendritic Cells

Transmission of flaviviruses to humans generally occurs via the bite
of an infected mosquito or tick. In the case of dengue, inoculated virus
is thought to first replicate in skin Langerhans (dendritic) cells
(Palucka, 2000; Taweechaisupapong et al., 1996a, 1996b; Wu et al.,
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2000). Dendritic cells have also been shown to be involved in the trans-
port of intradermally inoculated West Nile virus to local draining
lymph nodes, with a subsequent accumulation of leukocytes (Johnston
et al., 2000). It is likely that dendritic cells will prove to be efficient
carriers of a wide number of flaviviruses from their cutaneous site of
infection to lymphoid and possibly other tissues.

Given the importance of dendritic cells in initiating immune re-
sponses (Banchereau et al., 2000), they probably play a pivotal role in
stimulating host defense against invading flaviviruses. Dengue virus
infection of immature myeloid dendritic cells has been shown to induce
their maturation accompanied by the expression of major histocompat-
ibility complex (MHC) class I and II antigens; the costimulatory mol-
ecules CD40, CD80, and CD86; and the dendritic cell marker CD83
(Libraty et al., 2001). Such changes were seen in both dengue-infected
and bystander cells, indicating that upregulation of cell surface mol-
ecules could be a consequence of virus infection as well as virus-
induced cytokine expression. Similarly, Langerhans cells infected with
West Nile virus, as well as an alphavirus, Semliki Forest virus, express
increased cell surface MHC class II and appear to undergo maturation
to a cell type similar to lymphoid dendritic cells (Johnston et al., 1996).
The efficient presentation of both MHC class I– and II–associated viral
peptides on the surface of dendritic cells permits the generation of
potent cytotoxic and helper T cell responses (see also Section V,A).
B. Monocytes and Macrophages

Monocytes and macrophages have long been recognized as major
targets of flavivirus replication in the human host (Halstead, 1989;
Halstead et al., 1977; Scott et al., 1980). They are also important host
cells for the antibody-enhanced replication of certain flaviviruses
(see Section IV,C). Because of their presence in the circulation, blood
monocytes may be particularly important to the pathogenesis of
hemorrhagic viruses, such as dengue. Because most of the pathological
changes associated with dengue virus are hemostatic in nature, it is
suspected that blood cells, particularly virus-infected blood monocytes,
orchestrate many of these effects.

Dengue virus–infected human monocytes have been shown to be
potent sources of vasoactive cytokines such as tumor necrosis factor
(TNF)-� (Anderson et al., 1997) and interleukin (IL)-1� (Chang and
Shaio, 1994). Monocytes are also known producers of several
other vasoactive mediators, including IL-6, platelet-activating factor
(PAF), prostaglandins, thromboxanes, leukotrienes, and nitric oxide
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(Bulger and Maier, 2000; Funk, 2001; Lefer, 1989; Maruo et al., 1992;
Montrucchio et al., 2000; Szabo and Billiar, 1999), any of which could
have powerful effects on endothelial cell physiology. A crucial aspect
in understanding dengue pathogenesis will be the identification of
additional vasoactive mediators, which trigger the key dysfunctional
events in vascular integrity.

Various tissue macrophages are undoubtedly important in the
pathogenesis of flaviviral diseases but have, to date, not received much
attention. Skin mononuclear cells, pulmonary, splenic, and thymic
macrophages and liver Kupffer cells have been recognized carriers of
viral antigen (Halstead, 1989). In the liver, virus or viral antigen has
been found in Kupffer cells and hepatocytes in infections with yellow
fever (Monath et al., 1989) and dengue (Bhamarapravati et al., 1967;
Hall et al., 1991; Halstead, 1989; Rosen and Khin, 1989). Destruction
of Kupffer cells, possibly by apoptosis, has been reported in the
liver of some patients with fatal dengue (Huerre et al., 2001). Primary
cultures of Kupffer cells apparently undergo an abortive infection with
dengue virus in which viral antigen but no progeny virus is produced
(Marianneau et al., 1999).
C. Endothelial Cells

Many flaviviruses invade either visceral or central nervous system
tissues following initial replication in dendritic cells, monocytes, or
macrophages. Often this necessitates a transfer of virus across blood
vessel endothelial layers.

For neurotropic flaviviruses, endothelial cells of the cerebral micro-
vasculature constitute a barrier that must be overcome in order to gain
access to the central nervous system. How this occurs remains uncer-
tain. Transendothelial passage of virus may direct infection of cerebral
microvascular endothelial cells, may transport across the endothelial
layer, or both (Dropulic and Masters, 1990). Japanese encephalitis
virus has been observed electron microscopically to traverse mouse
cerebral endothelial cells by transcytosis (Liou and Hsu, 1998). Alter-
natively, virus may spread from blood vessels to the olfactory neuroe-
pithelium and from there to olfactory neurons (McMinn et al., 1996;
Monath et al., 1983).

Even normally nonneurotropic flaviviruses may occasionally invade
the central nervous system under certain conditions. Modulation of
the blood–brain barrier by anesthetics (Ben-Nathan et al., 2000) or
lipopolysaccharide (Lustig et al., 1992) has been reported to facilitate
neuroinvasion by a normally noninvasive strain of West Nile virus.
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Flaviviruses may also trigger the production of soluble factors that
perturb the integrity of the blood–brain barrier, leading to increased
leakage of proteins and cells into the central nervous system
(Chaturvedi et al., 1991). These studies indicate that even nonneuro-
tropic flaviviruses may infect tissues of the central nervous system or
otherwise affect the integrity of the blood–brain barrier under special
circumstances.

Transendothelial migration of individual leukocytes (e.g., lympho-
cytes, monocytes, neutrophils, eosinophils) is regulated in a highly
specific manner by the differential expression of selected adhesion
molecules on endothelial cells (reviewed in Crockett, 1998; Lowell
and Berton, 1999). Flaviviruses, including dengue (Anderson et al.,
1997) and West Nile (Shen et al., 1997) viruses, activate endothelial
cell adhesion molecule expression by either direct (virus-mediated) or
indirect (cytokine-mediated) mechanisms (see Section V,C). In the
presence of leukocyte-attracting chemokines, such virus-triggered
activation of the vascular endothelium may contribute toward the
migration of leukocytes into extravascular tissues. In addition to being
a mechanism for virus dissemination, this process may also be a factor
in phenomena such as leukopenia and particularly neutropenia (loss
of circulating leukocytes, neutrophils) often observed in flavivirus,
particularly dengue, infection (reviewed in Halstead, 1989). Due to
the lack of suitable animal models for severe dengue disease, i.e.,
dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS),
there are difficulties in assessing the roles of such events, particularly
the identification of adhesion molecules mediating the transendothe-
lial migration of neutrophils using blocking antibodies against specific
integrins, as has been performed for other disease states (Doerschuk
et al., 1990; Gao et al., 1994; Issekutz and Issekutz, 1993; Laberge
et al., 1995; Springer, 1995).

The hallmark feature of increased vascular permeability in hemor-
rhagic flavivirus (e.g., dengue) infection suggests that vascular endo-
thelial cells may mediate the fluid leakage and hemorrhaging that
occur in DHF/DSS. Endothelial cells line the inner surface of blood
vessels and play essential roles in maintaining an antithrombogenic
surface and regulating vascular permeability. Increased vascular per-
meability can arise from a variety of mediators associated with acute
inflammation and shock (Bulger and Maier, 2000; Funk, 2001; Lefer,
1989; Michel, 1988; Montrucchio et al., 2000; Schnittler et al., 1990).
It is thought that vascular permeability is largely controlled by
changes in endothelial cell–cell contact, which result in gap formation,
thus allowing for fluid exchange between blood and interstitial tissue



236 ROBERT ANDERSON
fluid (Michel, 1988). An electron microscopic study of endothelium
from DHF biopsy samples revealed the occasional presence of gaps
(Sahaphong et al., 1980), thus providing evidence that endothelial cell
features may indeed be perturbed during DHF/DSS.

Although dengue virus infects endothelial cells in vitro (Andrews
et al., 1978; Avirutnan et al., 1998; Killen and O’Sullivan, 1993), there
is no evidence that endothelial cell infection occurs clinically, as nei-
ther virus particles nor viral antigen has been detected in the endothe-
lium of tissue specimens (Halstead, 1988, 1989; Sahaphong et al.,
1980), in contrast to that seen in cases of ebola (Zaki et al., 1999) or
hantaan hemorrhagic fever (Gavrilovskaya et al., 1999; Wang et al.,
1997). It is likely that dengue virus mediates endothelial cell activation
via an indirect route, involving blood monocytes, which are a major
cell target for dengue virus infection (Halstead et al., 1977b; Scott
et al., 1980). A major candidate event in such a route is the activation
of endothelial cell adhesion molecules by a factor(s) (particularly
TNF-�) produced by dengue virus–infected blood monocytes (Anderson
et al., 1997).

TNF is a key cytokine in a variety of normal and pathological
immune responses, including immunoregulation, regulation of cell
proliferation, cytotoxicity, and in the mediation of endotoxic shock
(Fiers, 1991; Tartaglia and Goeddel, 1992; Tracey and Cerami, 1993;
Vassalli, 1992). Monocyte-derived TNF-� appears to play a pivotal role
in dengue-associated endothelial cell activation (Anderson et al., 1997)
and may be an important effector in the manifestation of DHF/DSS.
Support for the clinical significance of this observation comes from ob-
servations of elevated TNF levels in the sera of patients with severe
dengue disease (Green et al., 1999b; Hober et al., 1993; Vitarana
et al., 1991; Yadav et al., 1991). Taken together, current evidence indi-
cates that dengue virus represents a rather unique group of viruses
that target monocytes, thereby triggering the production of factors
such as TNF-�, which in turn affect other cell targets, including endo-
thelial cells. While the overall picture of endothelial cell dysfunction in
DHF/DSS is obviously more complex than can be explained by any
single factor, the role of TNF in dengue pathogenesis would seem to
merit particular attention.

Current knowledge of endothelial cell responses observed in endo-
toxic shock may be instructive for the understanding of vascular
leakage in DHF/DSS. Plasma leakage induced by endotoxin (lipopoly-
saccharide, LPS) from gram-negative bacteria encompasses a complex
cascade of processes, including activation and functional alteration
of endothelial cells. Major mediators of endothelial cell perturbation
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in endotoxic shock are LPS itself, as well as cytokines such as
TNF- � and IL-1� (Bevilacqua, 1993). These factors can modulate endo-
thelial cell function to varying degrees by activating cytokine and
vasoactive factor release (Rink and Kirchner, 1996; Shanley et al.,
1995), upregulating adhesion molecule expression (Bevilacqua, 1993;
Luscinskas et al., 1991; Moser et al., 1989; Smith et al., 1989), and
mediating transendothelial migration of specific leukocytes (Issekutz
et al., 1995; Luscinskas et al., 1991; Morzycki et al., 1990; Moser et al.,
1989; Smith et al., 1989). Additional factors, particularly lipid medi-
ators such as PAF, leukotrienes, thromboxanes, and prostaglandins,
may contribute to further endothelial cell dysfunction, including
vascular leakage (Bulger and Maier, 2000; Funk, 2001; Lefer, 1989;
Montrucchio et al., 2000). While the involvement of these vasoactive
mediators is recognized in endotoxic shock, more needs to be learned
of their role in the vascular dysfunction that occurs in severe dengue
disease.
D. Lymphocytes

Although lymphocytes are potently involved in the host response
and immunopathology of flavivirus (especially dengue) diseases,
their role as virus-permissive host cells is unclear. Dengue virus has
been identified in circulating B cells from acutely ill dengue patients
by immunocytochemistry and by recovery of infectious virus after
passage in mosquitoes (King et al., 1999). In vitro studies showed
that cells and cultured cell lines of both B and T cell derivation could
be infected with dengue virus (Bielefeldt-Ohmann et al., 2001; Kurane
et al., 1990; Marchette and Halstead, 1978; Mentor and Kurane, 1997;
Sung et al., 1975; Takasaki et al., 2001; Theofilopoulos et al., 1976).
Continued passage of dengue virus in lymphoblastoid (Raji) cells can
give rise to dengue virus variants capable of replication in human
lymphocytes (Brandt et al., 1979). Interestingly, lymphocytes do
not appear to undergo antibody-enhanced dengue virus infection
(Brandt et al., 1979; Kurane et al., 1990), even though B cells do have
Fc receptors (Dijstelbloem et al., 2001; see Section IV,C).
E. Neural Cells

The initial stages of pathogenesis for neurotropic flaviviruses appear
to be common for flaviviruses in general in that the virus progresses
from the subcutaneous site of inoculation to lymph nodes, followed
by viremia and replication in extraneural tissues. Invasion into the
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central nervous system is marked by high virus titers in the brain
and detectable virus or viral antigen in neurons (Albrecht, 1968). Cell
destruction in tick-borne encephalitis may be less extensive than that
seen in herpes simplex type 1 encephalitis (Studahl et al., 2000),
although this is variable and may involve considerable inflammation
(Chu et al., 1999; Matthews et al., 2000; Suzuki et al., 2000). Suscep-
tible cell types include both neurons and glial cells (Chu et al., 1999;
Ramos et al., 1998; Steele et al., 2000).
F. Basophils/Mast Cells

As notorious producers of vasoactive mediators, mast cells have been
a source of controversial speculation for years in dengue pathogenesis.
Cells resembling degranulated mast cells have been reported in skin
perivascular infiltrates from DHF/DSS cases (Bhamarapravati et al.,
1967). Dengue patients showed elevated levels of urinary histamine
(a major granule product of mast cells), which correlated with disease
severity (Tuchinda et al., 1977), suggesting that mast cells may have a
contributory role in the pathogenesis of dengue. Although antihista-
mine treatment does not resolve shock in severely dengue-diseased
patients (Halstead, 1989), histamine is only one of several potent
vasoactive factors produced by mast cells (Benyon et al., 1991;
Bradding et al., 1993; Galli et al., 1984; Grabbe et al., 1994; Marshall
and Bienenstock, 1994; Moller et al., 1991, 1993, 1998; Nilsson et al.,
1995; Schwartz and Austen, 1984), some of which could cause vascular
dysfunction in dengue infection. DHF/DSS patients have been
reported to have elevated serum levels of IgE (Pavri et al., 1979), which
has been speculated to relate to IgE-triggered histamine release in the
manifestation of shock (Pavri and Prasad, 1980).

Mast cells reside mainly in the tissues, often closely associated with
blood vessels (Alving, 1991; Anton et al., 1998; Pesci et al., 1996;
Pulimood et al., 1998; Selye, 1966; Selye et al., 1968). They are present
in large numbers in the skin (Marshall et al., 1987), where transmis-
sion of insect-borne flaviviruses occurs. Basophils, however, comprise
about 1% of total circulating cells and would be accessible to virus
in the blood. Dengue virus infects basophil/mast cell–like KU812
cells in an antibody-enhanced manner, coupled with the release of
vasoactive cytokines, IL-1� and IL-6 (King et al., 2000, 2002). This cell
line, which can be differentiated easily toward either a basophil or
mast cell phenotype (Saito et al., 1995), may provide further insights
into potential roles for basophils and mast cells in dengue disease.
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Dengue patients show increased serum levels of anaphylatoxins C3a
and C5a (Malasit, 1987), which can attract (Nilsson et al., 1996) and
activate (Kownatzki, 1982) mast cells. Among the expected mast cell
secretion products would be vasoactive factors, including histamine,
which has been detected in elevated amounts in the urine of dengue
patients (Tuchinda et al., 1977).
G. Platelets

Evidence for platelet involvement in dengue pathogenesis comes
from at least two (probably related) sources. First, thrombocytopenia
(loss of circulating platelets) is one of the most consistent clinical fea-
tures of severe dengue infection (Halstead, 1989). Second, viral
immune complexes have been detected on platelets from dengue
patients (Boonpucknavig et al., 1979; Phanichyakarn et al., 1977a).
Functional studies on platelets in dengue-diseased individuals
have been sparse, but include a markedly reduced half-life (Mitrakul
et al., 1977), deficient ADP release (Mitrakul et al., 1977), increased
adhesiveness (Doury et al., 1976), increased tagging by complement
fragments (Malasit, 1987), and increased release of �-thromboglobulin
and platelet factor 4 (Srichaikul et al., 1989). There is also evidence for
platelet activation in dengue patients (Doury et al., 1976; Krishnamurti
et al., 2001; Srichaikul et al., 1989). Although these results relate to a
variety of platelet functions, they do indicate a general alteration in
platelet physiology, which is consistent with platelet involvement and
triggering of thrombocytopenia in dengue disease.

Dengue virus has been recovered from washed patient platelets
(Scott et al., 1978), and virus has been reported to bind to platelets in
the absence of antibody as assayed using immunofluorescence and im-
munoperoxidase techniques (Funahara et al., 1987). However, the
levels of antibody-independent bound virus are very low compared to
the levels of virus bound in the presence of dengue-specific antibodies
(Wang et al., 1995). As noted earlier, dengue immune complexes have
been demonstrated on platelets from dengue patients (Boonpucknavig
et al., 1979; Phanichyakarn et al., 1977a). Weiss and Halstead (1965)
originally proposed the possibility that dengue virus interactions with
platelets might be involved in the thrombocytopenia observed in severe
dengue disease. The finding that dengue virus binding to platelets is
dependent on a virus-specific antibody is consistent with epidemi-
ological and experimental data linking preexisting host antibodies to
an increased risk of DHF/DSS (reviewed in Halstead, 1990).
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Several other viruses have been shown to bind directly to platelets
(Bik et al., 1982; Danon et al., 1959; Forghani and Schmidt, 1983;
Larke and Wheelock, 1970; Lee et al., 1993; Zucker-Franklin et al.,
1990). Platelet association may stabilize or protect blood-borne viruses
(Larke and Wheelock, 1970) and may function as a mechanism of
hematogenous dissemination (Forghani and Schmidt, 1983). Virus
binding to platelets has been suggested to be a contributing mechan-
ism to thromobocytopenia arising from infections with vaccinia
(Bik et al., 1982), chikungunya (Larke and Wheelock, 1970), and ru-
bella (Bayer et al., 1965). Thrombocytopenia in these virus infections
is generally much milder than that observed in severe dengue disease.

Levels of dengue virus in the blood can exceed 107 infectious units/ml
(Gubler, 1988; Monath, 1994). Such high viremic titers are likely
necessary to ensure infection and transmission of the obligate mos-
quito intermediary host (Monath, 1994). Assuming a reasonable
particle:infectivity ratio of 100:1, virus particle titers in blood may
rival normal platelet counts (3 � 108/ml). Such parity between
numbers of virus particles and platelets suggests that antibody-
enhanced binding of virus to platelets may have a profound effect on
platelets. Circulating virus-immune complexes are detected in DHF/
DSS, and levels of immune complexes have been correlated with sever-
ity of disease (Ruangjirachuporn et al., 1979) and some of these are
platelet associated (Boonpucknavig et al., 1979; Phanichyakarn et al.,
1977a). These observations suggest that sufficient binding of virus
immune complexes to platelets may occur to tag the majority of circu-
lating platelets. Such an event could lead to immune clearance by the
reticuloendothelial system, thereby precipitating the thrombocytopenia
frequently associated with severe dengue disease.

It is likely that molecules other than Fc receptors on the platelet
surface may mediate antibody-enhanced binding of dengue virus
(Wang et al., 1995). Drug-induced thrombocytopenias provide interest-
ing examples in this regard. It is known that given the appropriate
accessory ligand (i.e., drug), IgG can bind to platelets through either
the Fc receptor or other surface proteins. A variety of clinical thrombo-
cytopenias are known that involve an immune component in patho-
genesis. Many of these reflect activities of host antibodies, which
react with proteins on the surface of platelets. These antibodies may
be autoimmune in nature (i.e., antibodies that bind to platelet
surface molecules) or dependent on a third party ligand (drug or pro-
tein), which then induces binding of the antibody–ligand complex to
either the platelet Fc� receptor or to another surface protein. For
example, a number of individuals are susceptible to drug-dependent
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thrombocytopenia when administered drugs such as heparin or
quinine/quinidine (Aster, 1989; Hackett et al., 1982). While heparin-
dependent antibodies bind to the platelet Fc� receptor (Adelman et al.,
1989; Chong et al., 1989a, 1989b; Kelton et al., 1988), quinine/quini-
dine-dependent antibodies bind to platelet protein heterodimers
GPIIb/IIIa and GPIa/IX (Berndt et al., 1985; Chong et al., 1983;
Christie et al., 1987; Devine and Rosse, 1995). This latter category of
immune-mediated thrombocytopenia may be relevant to the under-
standing of dengue-associated thrombocytopenia, as patient antibodies
mediate dengue virus binding to platelets via a platelet surface protein
other than the Fc� receptor (Wang et al., 1995).

Communication between platelets and endothelial cells is a frequent
intermediate step in certain events such as platelet adhesion, aggrega-
tion, and regulation of vascular permeability. How this occurs in dengue
infection and what the effects are on endothelial cell function are
unknown. Binding of viruses to platelets can have potentially profound
immunological effects [e.g., the stimulation of TGF-� release by plate-
lets bound by Epstein–Barr virus (Ahmad and Menezes, 1997)]. In light
of reports of altered platelet function in dengue patients, discussed
earlier, there is a tantalizing need to determine the immunological con-
sequences of antibody-enhanced dengue virus binding to platelets in
terms of platelet as well as endothelial cell physiological responses.

Many products of complement activation can also be deposited on
platelets (Devine, 1992). In view of evidence for complement activation
in severe dengue disease (Halstead, 1989; Malasit, 1987), binding of
complement products might play a role in the immune destruction of
platelets leading to thrombocytopenia. Platelets display surface recep-
tors, e.g., C1q receptor (Peerschke and Ghebrehiwet, 1987, 1998),
membrane cofactor protein (Seya et al., 1986), and decay-accelerating
factor (Devine et al., 1987), for specific components of complement ac-
tivation. In addition, the platelet surface can act as a substrate for the
deposition of C3dg and C5b-9 (Devine, 1992). Fragments of C3 have
been detected on the platelets of DHF/DSS patients (Malasit, 1987).

In addition to immune complex deposition on platelets, thrombo-
cytopenia associated with DHF/DSS might also arise by the immune
destruction of platelets through antiplatelet autoantibodies. Antiplate-
let autoantibodies have been reported in the sera of dengue patients
(Lin et al., 2001), although they have also been detected in patients re-
covering from a variety of viral infections (Imbach, 1994). Antiplatelet
antibodies are strongly linked to the pathogenesis of immune-
mediated thrombocytopenias, such as idiopathic thrombocytopenic
purpura (Winkelstein and Kiss, 1997).



Fig 1. Model showing surface interactions of hemorrhagic flavivirus (dengue) with
extra- and intravascular cell targets. Intravascularly, the presence of subneutralizing
levels of antivirus antibodies stimulates virus attachment to platelets and infection of
monocytes. This results in immune complex deposition on platelets and secretion of
vasoactive factors from virus-infected monocytes. Among such vasoactive factors are
cytokines, particularly TNF-�, which activates increased surface expression of adhesion
molecules on endothelial cells. Extravascularly, virus infection of tissue macrophages,
mast cells, and dendritic cells may result in the release of additional factors, which
contribute to endothelial cell perturbation.
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H. Cell Targets: An Overview

While this brief discussion of cell targets for flaviviruses is by no
means complete, it highlights some of the major interactions as they
relate to pathogenesis. Because pathogenesis is probably best under-
stood for dengue, Fig. 1 illustrates the interactions of hemorrhagic
flavivirus (e.g., dengue) with cell targets both within and outside the
vascular system.
IV. CELL SURFACE MACROMOLECULES INVOLVED IN

FLAVIVIRUS ATTACHMENT

A. Glycosaminoglycans

Glycosaminoglycans and proteoglycans (i.e., proteins bearing glyco-
saminoglycans) are important cell surface molecules involved in a
variety of ligand recognition and cell signaling processes (Gallo,
2000). Because glycosaminoglycans are widely distributed on cells,
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they are attractive candidates as virus receptors. Some degree of speci-
ficity (i.e., virus tropism) may arise from the compositional heterogen-
eity of glycosaminoglycans, as well as quantitative differences in the
degree of expression on various cell types.

Flaviviruses seem to share, with a large number of virus families, the
ability to bind glycosaminoglycans (Birkmann et al., 2001; Dechecchi
et al., 2000, 2001; Duisit et al., 1999; Feldman et al., 1999, 2000;
Giroglou et al., 2001; Goodfellow et al., 2001; Heil et al., 2001; Hsiao
et al., 1999; Hulst et al., 2000, 2001; Lin et al., 2000; Liu and Thorp,
2002; Patel et al., 1993; Rue and Ryan, 2002; Shukla et al., 1999;
Shukla and Spear, 2001). Glycosaminoglycans such as heparin and
its structural analogues have been investigated for their ability to bind
dengue virus and thereby to gain insights as to the structural require-
ments for dengue receptors. Potential glycosaminoglycan-binding
motifs have been identified on the dengue viral E protein at two sites,
the best characterized of which appears to be composed of amino acids
188, 284–295, and 305–310 and which may also play a role in virus–cell
attachment (Chen et al., 1997). Heparin (minimum of 10 carbohydrates)
and an uncharacterized highly sulfated heparin sulfate isolated from
bovine liver were found to show the best binding to dengue E protein
(Chen et al., 1997). Attachment of dengue virus to human hepatoma
cells has also been reported to be inhibited by heparin (Hilgard and
Stockert, 2000). A further study involving a panel of natural and syn-
thetic polyanionic, sulfated compounds suggested that binding of the
dengue E protein required a highly sulfated (and highly charged) oligo-
saccharide with a minimum size of 39Å and a high degree of structural
flexibility (Marks et al., 2001).

The role of glycosaminoglycans in natural (i.e., nontissue culture-
adapted) strains of flaviviruses needs to be studied further. It has long
been recognized that dengue virus passaged in various host cell types
can give rise to virus variants with altered cell specificity (Brandt et al.,
1979; Halstead et al., 1984a, 1984b, 1984c). Passage-dependent muta-
tions of the dengue virus E protein at a number of different amino acid
residues have been documented (Lee et al., 1997). Following passage of
TBE virus in cultured BHK-21 cells, virus mutants were selected that
contained more positively charged amino acids in the putative recep-
tor-binding region of the E protein, resulting in dependence on cell
surface heparan sulfate (Mandl et al., 2001). Such mutants were
diminished in their neurovirulence in mice as well as in their replica-
tion in primary chicken cells and plaque formation in porcine kidney
cells (Mandl et al., 2001). A large number of other viruses have also
been shown to undergo loss of virulence upon adaptation to cell culture
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associated with heparan sulfate utilization (Bernard et al., 2000;
Byrnes and Griffin, 2000; Klimstra et al., 1998, 1999; Lee and Lobigs,
2000; Neff et al., 1998; Sa-Carvalho et al., 1997).

B. CD14

CD14 and the Toll-like receptor (TLR) pattern recognition receptors
are involved in the innate response to lipopolysaccharide and other
microbial products (Diamond et al., 2000; Imler and Hoffmann,
2000). A role for CD14 and TLR4 has been found for respiratory
syncytial virus (RSV) (Kurt-Jones et al., 2000), suggesting that these
receptors may have a broader involvement in host response than pre-
viously thought. A possible role for CD14 in dengue infection has been
postulated on the basis of inhibition of dengue virus infection of
human monocytes with bacterial lipopolysaccharide (Chen et al.,
1999). However, this has been disputed (Bielefeldt-Ohmann et al.,
2001) and requires further investigation.

C. Fc Receptors

As indicated earlier, flaviviruses are capable of initiating infection of
appropriate host cells through as yet largely unidentified primary re-
ceptors. In addition, a number of flaviviruses are capable of using sub-
neutralizing levels of virus-specific antibodies to attach to and gain
entry to cells bearing Fc and/or complement receptors (Cardosa et al.,
1983; Halstead, 1982; Halstead and O’Rourke, 1977a; Schlesinger
and Brandriss, 1981a) by a process known as antibody-dependent en-
hancement (ADE) of infection (Table I). ADE has been documented
for dengue (Halstead et al., 1980), West Nile (Peiris and Porterfield,
1979), yellow fever (Schlesinger and Brandriss, 1981b), tick-borne
encephalitis (Phillpotts et al., 1985) and Japanese encephalitis
(Cecilia and Ghosh, 1988) viruses. Early work with dengue virus and
monocytes differentiated between trypsin-sensitive and trypsin-
resistant cell surface molecules as the putative receptors for anti-
body-independent and antibody-dependent infection, respectively
(Daughaday et al., 1981).

To date, dengue virus appears to be the only flavivirus in which
strong evidence exists for antibody-dependent enhancement as a
major contributing factor to severe disease (Halstead, 1980; Thein
et al., 1997). Severe dengue disease, encompasing conditions known
as dengue hemorrhagic fever/dengue shock syndrome, involves several
well-defined hemostatic abnormalities, including the leakage of



TABLE I
FcRs FOR ANTIBODY-ENHANCED INFECTION OF DENGUE VIRUS

Dengue virus replication

Cell Fc�Ra Ab independent Ab enhanced Fc�R for ADE

Monocyte I,II,III Yesb Yesb I, IIf

Dendritic cells II Yesc Noc None

Mast cell /basophil I,II Nod Yesd Unknown

Kupffer cell I,II,III Noe Unknown Unknown

a Compiled from van de Winkel and Anderson (1991), Dijstelbloem et al. (2001),
Okayama et al. (2000), Anselmino et al. (1989), and Tuijnman et al. (1993).

b From Halstead and O’Rourke (1977).
c From Wu et al. (2000) and Libraty et al. (2001).
d From King et al. (2000).
e Abortive infection, but expressing viral antigen (Marianneau et al., 1999).
f From Littaua et al. (1990) and Kontny et al. (1988).
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plasma into interstitial spaces, as well as thrombocytopenia and bleed-
ing (Halstead, 1990; Kurane et al., 1994). The potential to cause severe
hemorrhagic disease is a general property of dengue viruses and
is not limited to any one viral serotype (Gubler, 1998; Rigau-Perez
et al., 1998). Although different strains of dengue may influence the
severity of hemorrhagic symptoms (Leitmeyer et al., 1999; Rico-Hesse
et al., 1997), it is also generally accepted that pathogenesis depends
on immunopathological processes (Rothman and Ennis, 1999). Thus
the roles of prior immunity, antibody-enhanced virus infection, and
immune-mediated pathologic effects on the vascular system are
key points in understanding the pathogenesis of dengue hemorrhagic
disease.

While the pathogenesis of severe dengue disease is not completely
understood, it is clear from laboratory and epidemiological studies
that a considerable risk factor is prior immunity. Severe dengue dis-
ease, DHF/DSS, rarely occurs in seronegative individuals suffering
their first dengue infection, but instead occurs in individuals who have
preexisting dengue viral antibodies, either from a previous infection or
from passive antibody transfer, e.g., following maternal transmission
of antibodies to the fetus (Kliks et al., 1988, 1989). Estimates suggest
that 99% of children suffering from DHF/DSS have preexisting
immunity from a prior dengue virus infection (Halstead, 1988). Conse-
quently, from this and other studies, it has been calculated that prior
exposure to dengue increases the risk for hemorrhagic disease in a
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second dengue infection by at least 15-fold (Halstead, 1980; Thein et al.,
1997). Preexisting serum antibodies can potentiate virus infection by
the mechanism of antibody-dependent enhancement, giving rise
to amplified virus replication and to an increased potential for the
development of hemorrhagic symptoms (Halstead, 1989). Viremic
titers are higher in secondary dengue infections in both humans
(Gubler et al., 1979) and experimental monkeys (Halstead et al., 1973).
Antibody-enhanced dengue virus infection of human blood monocytes
is necessary for the production of endothelial cell activators (Anderson
et al., 1997), thereby providing a link between antibody-dependent
enhancement and alteration of endothelial cell properties, which might
contribute to vascular permeability in dengue infection.

For certain other viruses, e.g., influenza (Tamura et al., 1993) and
HIV (Takeda et al., 1990, 1992), distinct ‘‘neutralizing’’ and ‘‘antibody-
enhancing’’ epitopes have been identified on the respective viral
attachment proteins. Surprisingly, no systematic approach has yet
been undertaken to identify regions on the E protein that are essential
for ADE, even though this issue was raised as a challenge to research
on dengue many years ago (Halstead, 1988).

Human Fc� receptors are currently categorized into three classes:
Fc�RI (CD64), Fc�RII (CD32), and Fc�RIII (CD16). While Fc�RI shows
high affinity for monomeric IgG, Fc�RII and Fc�RIII bind monomeric
IgG poorly and are more likely involved in binding immune complexes
(Dijstelbloem et al., 2001). Fc�RII is the most widely distributed, being
expressed on most circulating leukocytes (van de Winkel and Anderson,
1991). Monocytes express all three Fc�Rs to varying degrees (van de
Winkel and Anderson, 1991), although Fc�RI and Fc�RII predominate,
whereas Fc�RIII appears to be limited to a subpopulation (�10%) of
monocytes (Anderson et al., 1990; Passlick et al., 1989). Fc�RIII consti-
tutes the major Fc�R on macrophages (Fanger et al., 1989), although
Fc�RI and Fc�RII are also present (Tuijnman et al., 1993; van de
Winkel and Anderson, 1991). It is also important to recognize that
FcR expression on cells, including macrophages, can vary depending
on the microenvironment (Tomita et al., 1994).

Although strong evidence exists for Fc�R involvement in ADE
of dengue virus, the participating Fc�Rs in vivo have not yet been iden-
tified rigorously. In cultured cell lines (monocytic U937 or erythroleu-
kemic K562 cells), Fc�RI (Kontny et al., 1988) and Fc�RII (Littaua
et al., 1990) have been shown to mediate ADE of dengue virus infec-
tion. That Fc�RI has the ability to mediate ADE of dengue has been
demonstrated using COS cells transfected with Fc�RI (Schlesinger
and Chapman, 1999).
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Dengue and DHF patients show elevated serum levels of interferon
(IFN)-� (Kurane et al., 1991). Because IFN- � can upregulate both
MHC class I and II molecules as well as Fc �R (particularly Fc �RI)
expression in monocytes (Erbe et al., 1990; Perussia et al., 1983),
the chances for ADE may be increased, thereby creating a vicious cycle
involving positive cytokine feedback and virus amplification (Kurane
and Ennis, 1992). IFN- � has been shown to enhance ADE of dengue
virus infection of human monocytic U937 cells (Kontny et al., 1988),
although any enhancing effect on dengue infection of peripheral
blood monocytes may be negated by the antiviral properties of IFN- �
(Sittisombut et al., 1995).

Mast cells and basophils express mainly Fc �RII (Anselmino
et al., 1989; Okayama et al., 2001a; Wedi et al., 1996) and some (IFN-
�–inducible) Fc �RI (Okayama et al., 2000, 2001b) as well as the high-
affinity Fc eRI for IgE (Guo et al., 1992; Sperr et al., 1994). As noted
previously, the basophil/mast cell KU812 cell line exhibits antibody-
enhanced dengue virus infection and produces vasoactive cytokines
(King et al., 2000).

Although Fc �R-mediated ADE of flaviviruses has been examined ex-
tensively as a mechanism for virus amplification, the biological conse-
quences for the participating host cell are not well understood.
Because Fc �R-mediated cell signaling is complex, the functional effects
of virus–antibody interactions with cell surface Fc �Rs need to be inves-
tigated. Monocytes infected with dengue virus in the presence of anti-
body release cytokines such as TNF- � (Anderson et al., 1997). Induction
of TNF- � requires infectious virus (Anderson et al., 1997), suggesting
that virus replication (or perhaps expression of one or more crucial
viral genes) is responsible for the stimulation of TNF- � release. There-
fore, in this case, the Fc �R is likely facilitating antibody-enhanced
virus replication rather than providing a signal triggered by virus bind-
ing to the Fc �R. Similarly, antibody-enhanced dengue virus infection of
KU812 basophil/mast cells produces IL-1�, IL-6 (King et al., 2000,
2002), and selected chemokines (King et al., 2002). Suppressive effects
of antibody-enhanced flavivirus or alphavirus infection on monocyte
cytokine secretion have also been reported (Lidbury and Mahalingam,
2000; Yang et al., 2001).

Both activating (Fc�RI, Fc�RIIa, and Fc�RIIIa) and inhibitory
(Fc�RIIb) forms of Fc�Rs exist, which mediate signal transduction via
a cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)
or inhibitory (ITIM) motif, respectively (Dijstelbloem et al., 2001). The
ITAM and associated molecules are necessary for the endocytosis of
FcR-bound immune complexes (Amigorena and Bonnerot, 1999) and
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therefore play a likely role in the initiating events of antibody-enhanced
flavivirus infection. Although not necessary for Fc�RII, an accessory
subunit (homo- or heterodimeric � or � chains) is required for signaling
through Fc�RI and Fc�RIIIa (Ravetch, 1994). A further Fc�R
(Fc�RIIIb) lacks transmembrane and cytoplasmic domains and is in-
stead anchored to the cell surface membrane via a glycosylphosphatidy-
linositol (GPI) linkage (Selvaraj et al., 1988; Simmons and Seed, 1988).
It apparently does not participate in signal transduction and has
been speculated to sequester and accumulate immune complexes
at specific sites on the cell surface (Huizinga et al., 1988; Selvaraj
et al., 1988).

The roles of activating and inhibitory FcRs in viral ADE have not yet
been ascertained. Activating FcRs are expressed on monocytes, macro-
phages, granulocytes, natural killer (NK) cells, and platelets but not on
most lymphocytes (Dijstelbloem et al., 2001). Inhibitory FcRs, however,
are found on B cells, dendritic cells, and macrophages (Dijstelbloem
et al., 2001). Interestingly, ADE of dengue virus is best documented
for monocytes/macrophages and related cell lines (Halstead, 1989). In
contrast, lymphocytic cells (Brandt et al., 1979; Kurane et al., 1990)
and dendritic cells (Wu et al., 2000) do not appear to support anti-
body-enhanced dengue virus infection. Whether this is due to differen-
tial expression of activating versus inhibitory FcRs remains to be
investigated.

FcRs for IgE (primarily the high-affinity FceRI) are expressed on
cells such as monocytes, macrophages, mast cells, basophils, and den-
dritic cells and are structurally related to Fc�Rs (Ravetch, 1994). Their
role in binding IgE and/or immune-complexed flaviviruses, such as
dengue, remains unexplored. Similarly unexplored is the potential
role of the neonatal Fc IgG receptor (FcRn), structurally related to
MHC class I and involved in IgG transport across cells (Ghetie and
Ward, 2000). In addition to being expressed on certain epithelial and
endothelial cells, FcRn is also expressed functionally on monocytes,
macrophages, and dendritic cells (Zhu et al., 2001).
D. Complement Receptors

In addition to the Fc�R, the antibody-complexed flavivirus has been
shown to be taken up by a macrophage cell line using the complement
receptor-3 (Cardosa et al., 1983). In the case studied—West Nile virus
infection of mouse P388D1 macrophages—ADE was mediated by the
presence of antiviral IgM and was inhibited with a CR3-blocking anti-
body. This mode of ADE was, however, found to be quantitatively less
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productive than the more commonly studied route of ADE,
i.e., involving Fc�R-mediated uptake route of IgG–virus complexes
(Cardosa et al., 1983).
E. Virus Binding Proteins Identified on Cells

The recent demonstration of DC-SIGN as a functional dengue virus
receptor on human dendritic cells represents an important advance in
the definitive identification of flavivirus receptors (Navarro-Sanchez
et al., 2003; Tassaneetrithep et al., 2003). Several studies have identi-
fied cell surface proteins that bind flaviviruses, generally assayed by
virus overlay blots of SDS–PAGE-resolved cell proteins (Table II). Fur-
ther work is required to confirm the involvement of these and other
proteins as receptors in flavivirus infection.
V. CELL SURFACE MACROMOLECULES MODULATED

BY FLAVIVIRUS INFECTION

A number of flaviviruses are able to stimulate the expression of cell
surface molecules. Notable among these are adhesion molecules and
major histocompatibility antigens. Multiple mechanisms appear to be
involved, including virus- and cytokine-dependent pathways.
A. MHC Class I

Flavivirus infection of a number of cell types causes an increase in
cell surface MHC class I expression (King and Kesson, 1988; King
et al., 1989; Libraty et al., 2001; Liu et al., 1989; Lobigs et al., 1996;
Shen et al., 1995a, 1997). Evidence for both virus-dependent (Lobigs
et al., 1996) and cytokine-dependent (Libraty et al., 2001; Shen et al.,
1997) mechanisms has been reported. One process appears to be driven
by the amount of flaviviral peptides generated by proteolysis and
imported into the transporter associated with antigen processing
(TAP), which results in increased cell surface expression of peptide-
loaded MHC class I (Momburg et al., 2001). The upregulation of
MHC class I molecules by flaviviruses is perhaps reminiscent of that
observed in infections by coronaviruses (Suzumura et al., 1986) but
stands in contrast to the virus-manipulated downregulation of MHC
class I by viruses such as herpesviruses (Jennings et al., 1985; Ploegh,
1998), adenoviruses (Sparer and Gooding, 1998), poxviruses (Boshkov
et al., 1992), and HIV (Scheppler et al., 1989). Although enhanced



TABLE II
FLAVIVIRUS BINDING PROTEINS ON CELLS

Cell Virus Binding protein(s) Reference

Human erythroleukemic K562 cells Dengue-2 100 kDa Rothwell et al. (1996)

Human and mouse neuroblastoma cells Dengue-2 65 kDa Ramos-Castaneda et al. (1997)

Human monocytic, B and T cell lines Dengue-2 32, 45, 72 kDa Bielefeldt-Ohmann (1998);
Bieldfeldt-Ohmann et al. (2001)

Monkey kidney Vero cells Dengue-4 44, 74 kDa Martinez-Barragan and del Angel (2001)

Mosquito C6/36 cells Dengue-4 40, 45 kDa Salas-Benito and del Angel (1997)

Mosquito C6/36 cells Dengue-2 65, 80 kDa Munoz et al. (1998)

Human hepatoma HuH-7 cells Dengue-1 33- and 37-kDa
proteoglycans

Hilgard and Stockert (2000)

Pig kidney PS cells TBE 35 kDa Kopecky et al. (1999)

Human dendritic cells Dengue DC-SIGN Navarro-Sanchez et al. (2003)
Tassaneetrithep et al. (2003)

Vero cells; mouse neuroblastoma cells West Nile 105 kDa Chu and Ng (2003)

2
5
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MHC class I expression would be expected to lead to greater cytotoxic
T (Tc) cell–mediated cytolysis, it would render cells less susceptible to
recognition by NK cells. Evidence has been presented that flavivirus-
infected cells in fact show reduced susceptibility to NK cells at the cost
of enhanced Tc cell–mediated lysis (Lobigs et al., 1996). It has been
suggested that such a response may permit flaviviruses to evade an
early NK cell response and thereby allow for substantial amplification
of virus during the viremic phase of infection (Momburg et al., 2001).
Nevertheless, evidence shows that NK cells are activated during
dengue infection (Green et al., 1999a), and NK cell–mediated cytotoxi-
city has been reported to correlate with the severity of disease
(Homchampa et al., 1988).

Dendritic cells also undergo upregulation of MHC class I molecules
following infection with dengue virus (Libraty et al., 2001). Compared
to other antigen-presenting cells, dendritic cells have superior T cell–
stimulating activities (McKinney and Streilein, 1989; Timares et al.,
1998). Because antigen presentation via dendritic cell MHC class I
can provoke exceptionally strong proliferation in CD8-bearing T cells
(Bhardwaj et al., 1994; Elbe et al., 1994; McKinney and Streilein,
1989), much of the overall cytotoxic T cell response arising in flavivirus
infection may be dictated at the level of the dendritic cell.
B. MHC Class II

West Nile virus infection induces MHC class II expression in mouse
macrophages (Shen et al., 1995a), mouse astrocytes (Liu et al., 1989),
rat Schwann cells (Argall et al., 1991), and human myoblasts (Bao
et al., 1992). Upregulation of dendritic cell MHC class II occurs in
response to dengue (Libraty et al., 2001) and West Nile (Johnston
et al., 1996) virus infection. Given the potent ability of dendritic cells
to activate T cells (Banchereau et al., 2000), the communication be-
tween dendritic cell MHC class II–peptide complexes and recognition
molecules on CD4-expressing T cells should provide insights into some
of the molecular processes underlying T cell activation.
C. Adhesion Molecules

Adhesion molecules are expressed on a variety of cells and mediate
a spectrum of processes (Ley, 2001; Roebuck and Finnegan, 1999;
Springer, 1995). From the standpoint of flaviviruses, the most sig-
nificant processes likely concern adhesion molecules on vascular
endothelial cells, as these cells regulate permeability as well as
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transendothelial migration of leukocytes (Springer, 1995). Of particu-
lar importance are intercellular adhesion molecule 1 (ICAM-1; CD54),
vascular cell adhesion molecule-1 (VCAM-1; CD106), and E-selectin
(CD 62E), which are upregulated on the surface of the endothelium
by inflammatory cytokines, cellular stress, and virus infection
(Roebuck and Finnegan, 1999).

In the case of dengue, activation of endothelial cells occurs in vitro
via TNF-� released from antibody-enhanced dengue virus infection of
monocytes (Anderson et al., 1997). Such activation involves upregula-
tion of adhesion molecules E-selectin, ICAM-1, and VCAM-1. Evidence
that similar activation processes occur in vivo comes from clinical stud-
ies showing elevated serum levels of TNF-� (Green et al., 1999b; Hober
et al., 1993; Vitarana et al., 1991; Yadav et al., 1991) and soluble VCAM-
1 (Murgue et al., 2001) in dengue- and DHF/DSS-infected patients.
Surprisingly, serum levels of soluble ICAM-1 were actually found to
be lower than those of control subjects, although this may reflect
plasma protein loss through leakage (Bethell et al., 1998). Moreover,
the function of soluble forms of ICAM-1 remains unclear, and their ex-
pression appeazrs to be regulated differently from that of membrane-
bound ICAM-1 (Komatsu et al., 1997; van Den Engel et al., 2000).

Two phases of ICAM-1 upregulation have been noted in West Nile and
Kunjin virus infection of human embryonic fibroblasts, namely an early
(�2 h postinfection) virus-dependent process and a later (�24 h postin-
fection) event that is mediated by type 1 interferon (Shen et al., 1995b).

For neurotropic flaviviruses, such as West Nile virus in the mouse,
the development of encephalitis has been correlated with viremia
(Weiner et al., 1970), suggesting virus penetration of the blood–brain
barrier. The endothelium of the brain microvasculature normally repre-
sents a block between circulating virus and the central nervous system.
Expression of endothelial cell adhesion molecules, thereby facilitating
leukocyte adherence and diapedesis through the endothelium, may be
an important mode of dissemination of virus-infected monocytes or
other leukocytes into the brain. West Nile virus infection of human
endothelial cells causes the upregulation of E-selectin, ICAM-1, and
VCAM-1 (Shen et al., 1997), which could mediate the transendothelial
migration of leukocytes. Upregulation of these adhesion molecules
was observed to occur early (2–4 h) in infection and appeared to be
triggered by the virus rather than by cytokines (Shen et al., 1997).

Further studies are required to clarify the role of endothelial cell
adhesion molecule expression in the neuroinvasion of certain flavi-
viruses. Assuming such a role is confirmed, it will be incumbent to
identify the mechanisms by which either free or cell-borne flaviviruses
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are stimulated to cross the vascular endothelial layer. For virus-
infected leukocytes, such stimulation likely arises, at least in part, from
chemokines produced by cells of the central nervous system. Astro-
cytes infected with JE virus have been reported to release chemokines
(RANTES and MCP-1), which may play a role in the transendothelial
migration of leukocytes (including those possibly carrying virus) across
the blood–brain barrier (Chen et al., 2000). Thus, once neural infection
is initiated, the process could be amplified by the production of
leukocyte-attracting chemokines at the site of infection.
VI. OTHER CELL SURFACE MACROMOLECULAR MODIFICATIONS

TRIGGERED BY FLAVIVIRUS INFECTION

A. Complement Deposition

Complement activation is well documented in dengue disease
(Nishioka, 1974; Phanichyakarn et al., 1977b; Russell et al., 1969),
with peak activation and the production of C3a and C5a occurring at
the time of vascular leakage and/or shock (Malasit, 1987). Complement
activation is likely to be largely mediated by immune complexes
consisting of IgG and virus (Bokisch et al., 1973a, 1973b; Shaio
et al., 1992; Sobel et al., 1975), although the low levels of circulating
immune complexes detected in patients have stimulated thought as to
other possible mechanisms (Malasit, 1987). Receptors for C3a and
C5a are found on a wide variety of cells, including many human
peripheral blood leukocytes (Chenoweth and Hugli, 1978; Fureder
et al., 1995; Kretzschmar et al., 1993; Nilsson et al., 1996; van Epps
and Chenoweth, 1984). C5a receptors have been reported on endothe-
lial cells, although at lower levels than myeloid cells (Zwirner
et al., 1999).

Although endothelial cells do not appear to be major targets for
dengue virus in vivo (Halstead, 1988, 1989; Sahaphong et al., 1980),
endothelial cells infected with dengue virus in vitro can become a
substrate for deposition of C3dg and C5b-9, provided the dengue
antibody is present (Avirutnan et al., 1998). The presence of comple-
ment activation products on the endothelial cell surface could be a
contributing factor to vascular permeability (Saadi et al., 1995).
Furthermore, anaphylotoxins and/or deposition of sublytic C5b-9 on
the endothelial cell surface has the potential to activate the
expression of adhesion molecules (Foreman et al., 1994), cytokines
(Saadi et al., 2000), chemokines (Selvan et al., 1998), cyclooxygenase-2
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(Bustos et al., 1997), tissue factor (Saadi and Platt 1995), heparan
sulfate proteoglycan proteinases (Ihrcke and Platt, 1996), and even
functional or morphological changes such as permeability loss and
gap formation (Saadi et al., 1995).

Thus, in addition to being activated by leukocyte-derived cytokines
(Anderson et al., 1997), endothelial cells may also be coaxed toward
a more permeability-enhancing state by virus infection and virus-
mediated complement deposition. At present, the lack of evidence
for in vivo infection of endothelial cells by dengue virus would
suggest that the cytokine-mediated pathway is dominant. Figure 2
shows a model illustrating the potential role of endothelial cell perturb-
ation by monocyte-derived cytokines and complement activation prod-
ucts in initiating vascular permeability and leukocyte extravasation
in severe hemorrhagic flavivirus disease.
Fig 2. Model depicting possible events in endothelial cell surface perturbation during
hemorrhagic flavivirus (dengue) infection. Endothelial cell activation, leading to upre-
gulation of adhesion molecules (E-selectin, VCAM-1, ICAM-1), can be triggered by
monocyte-derived cytokines (Anderson et al., 1997) or by deposition of C5b-9 and other
products of complement activation (Avirutnan et al., 1998). C5b-9 is represented as a
membrane attack complex pore structure, although the deposition of C5b-9 on dengue-
infected cells appears associated with sublytic, rather than lytic, responses (Avirutnan et
al., 1998). Increased adhesion molecule expression, along with uncharacterized vaso-
active factors, can lead to endothelial leakage and can mediate rolling, adhesion, and
transendothelial migration of leukocytes into extravascular tissues. Similar processes
may also contribute to the invasion of cell-borne neurotropic flaviviruses through the
endothelial blood–brain barrier.
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VII. CONCLUSIONS

Much remains to be learned about the primary receptors for flavi-
viruses, though much knowledge has been gained about the initial
interactions of flaviviruses with cell surface structures. The ability of
flaviviruses to affect cell entry through heparan sulfate–type proteo-
glycans, as well as their dexterity to adjust mutationally to different
receptors, depending on host cell type, illustrates the plasticity of
the viral E protein to adapt to changing conditions and to ensure suc-
cessful virus replication. Beyond this, certain flaviviruses, notably
dengue virus, are masters at exploiting host antibody and Fc recep-
tor–bearing cells to dramatically amplify viral replication. Flavivirus
replication is coupled to altered cellular expression of cytokines,
chemokines, and cell surface molecules, which shape the host response
and immunopathogenesis associated with flavivirus infections. On-
going and future characterization of the cell surface structures that
mediate these events will be helpful in understanding the mechanisms
of flavivirus-induced disease and in developing therapeutic and/or
preventive strategies.
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