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Introduction

Abstract

Background: Delayed posthypoxic leukoencephalopathy (DPHL) is a rare and
underrecognized entity where patients manifest a neurological relapse after ini-
tial recovery from an acute hypoxic episode. We sought to describe the mag-
netic resonance imaging (MRI) findings in a group of patients with DPHL and
review the available literature. Methods: Retrospective case series including
patients who presented with neurological and/or psychiatric symptoms after
recovery from an acute hypoxic episode. The history and clinical presentation
were reviewed from the electronic medical records. MRI scans were evaluated
from the picture archiving and communication system. We performed a com-
prehensive review of the English medical literature for prior published cases of
DPHL and describe the key imaging findings that have been reported related to
this condition. Results: A total of five patients were identified, including four
patients with respiratory failure due to drug overdoses from benzodiazepines,
opioids, and/or barbiturates, and one patient who presented after cardiopulmo-
nary arrest due to pulmonary embolism. All patients showed diffuse, extensive,
and confluent white matter signal abnormalities including prominent restricted
diffusion, extending to the subcortical white matter and respecting the U-fibers.
There was no gyral edema or contrast enhancement. In one case histopathology
was available, which highlighted patchy subcortical myelin loss with sparing of
U-fibers and demonstrated prominent macrophage/microglial inflammation
with extensive axonal damage. Of the other four patients, two were at their
neurological baselines and two had persistent neurological deficits at the time
of discharge. Conclusions: The described constellation of MRI findings is highly
suggestive of DPHL in the appropriate clinical setting.

incidence is approximately 2.8% (Choi 1983). However,
delayed neurological sequelae have also been documented

Delayed posthypoxic leukoencephalopathy (DPHL) is a
rare and underrecognized entity characterized by neuro-
logical relapse following a period of clinical stability or
improvement after an episode of hypoxia. Patients usually
present between one and 4 weeks after the initial event
with relatively lucid intervening periods of variable
lengths. While the exact mechanism behind its delayed
manifestation has not been elucidated, DPHL is consid-
ered a distinct process from various direct causes of acute
leukoencephalopathy such as toxic and metabolic injury.
The majority of DPHL cases reported to date have been
associated with carbon monoxide intoxication, where the
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in other causes of hypoxia, particularly due to respiratory
failure in drug overdoses (Rozen 2012; Salazar and
Dubow 2012; Meyer 2013).

Histopathologically, DPHL is characterized by wide-
spread demyelination with axonal preservation (Gottfried
et al. 1997). Diffuse and confluent white matter changes
are present on magnetic resonance imaging (MRI), most
notably with extensive, symmetric, and often striking
restricted diffusion (Molloy et al. 2006). Such a pattern is
distinctly different from that seen in acute hypoxic-ische-
mic injury in the adult, which involves predominantly the
gray matter structures (Huang and Castillo 2008).
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Although DPHL as a clinical phenomenon has been
known for many years, the presence of extensive restricted
diffusion has only been recognized after the relatively
recent advent of diffusion-weighted imaging (DWI) and
probably constitutes the most remarkable MRI feature.
To date, the literature regarding MRI findings is relatively
scarce and consists of scattered case reports on patients
with various etiologies of hypoxia and two small series of
DPHL after carbon monoxide poisoning (Kim et al. 2003;
Hsiao et al. 2004). Herein, we describe the MRI charac-
teristics of DPHL in a series of five adult patients, the
majority of whom presented following drug overdoses,
with histopathologic correlation in one case. We also offer
an extensive review of the literature including cases where
MRI was performed.

Materials and Methods

Case series

This retrospective case series was approved by our institu-
tional review board which waived requirement for
informed consent. Adult patients (>18 years of age) who
fulfilled the following criteria were included in the study:
(1) neurological deterioration caused by an initial hypoxic
event; (2) subsequent clinical improvement with return to
(prehypoxic event) baseline or near baseline; and (3) neu-
rological relapse or new neurological or psychiatric symp-
toms following clinical improvement. Patients with
continued deterioration after the initial hypoxic event with-
out a lucid period or a clear relapse or with an alternative
explanation for neurologic deterioration were excluded.

Imaging technique

Studies were performed on 1.5 T (Magnetom Aera, Sie-
mens, Erlangen, Germany; Signa, GE Healthcare, Milwau-
kee, WI) or 3.0 T (Magnetom Skyra, Siemens) MRI
scanners and typically consisted of T1- and T2-weighted
sequences, T2 fluid-attenuated inversion recovery (FLAIR),
trace isotropic DWI at b = 1000, and gadolinium-enhanced
T1-weighted sequences. Parameters were as follows: for T2
FLAIR, TR = 8000-9000, TE = 101-126, and IR = 2200—
2500; for T2, TR = 2683-5940, and TE = 102-117; and for
DWI, TR = 7500-10,000, TE = 80-99, number of excita-
tions = 1 or 2, matrix = 128 x 128 to 192 x 192; field of
view, 22 x 22 cm to 24 x 24 cm, slice thickness = 4—
5 mm, and gap 4-6.5 mm.

Data collection and analysis

The electronic medical records of each patient were
reviewed to determine the clinical presentation, history,
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etiology of hypoxia, time to neurological relapse, and
clinical manifestations during relapse. MRI studies were
extracted from our picture archiving and communication
system. Time from the initial hypoxic event to identifica-
tion of diffuse white matter abnormalities on MRI
(FLAIR and DWI) was recorded. The following imaging
characteristics were visually analyzed: morphology (patchy
or homogeneous), symmetry, relative extent of FLAIR
and ADC abnormalities, spared structures, presence of
mass effect or gyral edema, contrast enhancement, or
hemorrhage.

Histopathology

For the autopsy case, the brain was fixed in formalin for
2 weeks. Following brain cutting representative sections
were taken for microscopic assessment. Histochemical
staining was done with hematoxylin and eosin, with Lux-
ol fast blue added to label myelin. Immunohistochemistry
was performed to detect expression of SM31 (Sternberger)
for neurofilaments and CD68 (Ventana) for macrophages.

Literature review

We queried the PubMed database using the following
terms for articles written in the English language: “delayed
hypoxic encephalopathy”, “delayed hypoxic leukoencephalop-
athy”, “delayed leukoencephalopathy”, and “delayed hyp-
oxic-ischemic leukoencephalopathy”, as well as various
permutations substituting “reversible” for “delayed” and
“post-hypoxic” for “hypoxic” and “post-anoxic.” All articles
were reviewed for redundancy of patients and only those
who had a clear delayed presentation fulfilling the criteria
above and who underwent MRI were included.

Results

Patient characteristics

A total of five patients (three men and two women) ful-
filled criteria for inclusion in this case series. Median age
(interquartile range) at presentation was 63 years (59—64).
All patients were 59 years or older except for one patient
who was 32 years old.

Clinical presentation and course

Four patients were brought to our facility following an
episode of respiratory failure due to drug overdose with
opioids, benzodiazepines, and/or barbiturates. Three of
them were found unresponsive and one had altered men-
tal status in the setting of respiratory failure. One of five
patients developed pulmonary embolism at home 8 days
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Table 1. Clinical characteristics of patients with delayed posthypoxic leukoencephalopathy.

Patient
No./age Initial Time to
(years)/sex  Etiology of hypoxia manifestations  relapse ~ Manifestations during relapse Condition at discharge
1/64/M Cardiopulmonary Unresponsive 23 days  Progressive cognitive deterioration, Alert and oriented but with attention and
arrest due to psychomotor retardation, and memory deficits and failure to follow
pulmonary global weakness; increased tone, multi-step commands
embolism cogwheeling, tremor
2/32/M Opioid overdose Respiratory 32 days Bizarre behavior, urinary and fecal Alert and oriented, at neurological baseline
distress and incontinence, akinetic mutism;
altered mental tremor, triple flexion response on
status plantar stimulation
3/63/F Opioid, Unresponsive 5 weeks Delusions, memory deficits, Alert and oriented, at neurological baseline
benzodiazepine, decreased mood, and akinetic
and barbiturate mutism. Postural tremor, pronator
overdose drift
4/65/M Opioid and Unresponsive 2 weeks Odd behavior including disinhibition ~ Much improved but persistent unsteady
benzodiazepine and paranoia; increased tone, slow gait; deficits of executive functioning
overdose and shuffling gait
5/59/F Oxycodone Unresponsive 2 weeks Irrational behavior, mania, Deceased
overdose parkinsonism, and catatonia.

Leadpipe rigidity

after being discharged for bowel surgery and was brought
to the hospital in cardiorespiratory arrest. After this initial
admission for respiratory failure/hypoxia, all patients
were discharged from the hospital at their baseline or
near baseline. Relapse was made manifest with neuropsy-
chiatric symptoms such as erratic behavior, ataxia, urinary
and/or fecal incontinence, delusions, akinetic mutism,
and deficits in functioning  including
memory and attention. Two patients presented with pyra-
midal signs at relapse, consisting of triple flexion response
on plantar stimulation (patient 2) and a pronator drift

executive

(patient 3). Other symptoms included increased tone,
tremors, and cogwheel and leadpipe rigidity. Median time
to relapse was 23 days (14-32). One patient continued to
worsen after relapse and died 24 days after readmission.
The other four patients progressively improved and were
discharged at a median 24.5 days (21.5-33.75) after
relapse. Two out of four patients were at their neurologi-
cal baselines at discharge. The other two patients had
shown significant improvement but had persistent deficits
(Table 1).

MRI findings

Median time to identification of white matter abnormali-
ties since the initial hypoxic event was 40 days (30-50).
All cases demonstrated extensive and confluent T2 and
FLAIR hyperintensity involving predominantly the peri-
ventricular white matter and centrum semiovale, bilater-
ally and in a symmetric fashion (Fig. 1). In two out of
the five patients, restricted diffusion matched the extent
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of the T2-FLAIR hyperintensity, while in three patients
the restrictive abnormalities were relatively less extensive.
The white matter lesions were confluent and homoge-
neous in two patients. Three patients had evidence of
more heterogeneous, patchy lesions which still followed
an overall symmetric distribution. In all patients the T2
abnormalities involved the subcortical white matter but
spared the U-fibers (Fig. 2), and were confined to the
supratentorial brain without affecting the basal ganglia,
thalami, brain stem, or cerebellum. There was no gyral
edema or sulcal effacement, and there were no areas of
contrast enhancement following the intravenous adminis-
tration of gadolinium (Table 2). These findings were new
in four out of the five patients in whom baseline MRI
studies from their initial presentation were available for
review. In one out of five patients, we did not have the
initial imaging studies from an outside institution; how-
ever, these reportedly did not show an acute abnormality.
Initial baseline MRI on patient number four showed three
small subacute-appearing embolic infarcts in the supra-
tentorial brain, without the confluent and symmetric
white matter abnormalities that were seen on an MRI
study performed 9 days later. Of the other patients who
had a baseline study, two demonstrated chronic white
matter ischemic changes and one did not show any signif-
icant findings.

Histopathologic findings

Autopsy examination of the brain in case 5 demonstrated
no significant edema or sulcal effacement. Microscopically,
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Figure 1. 65-year-old male presenting after an acute hypoxic episode secondary to opioid and benzodiazepine overdose (case 4). Baseline MRI (A
through D) demonstrate a few nonspecific subcortical T2 and FLAIR white matter hyperintensities (A and B) without restricted diffusion (C and D)
probably representing chronic small vessel ischemic changes in a patient of this age. MRI after neurological relapse (E through H) shows diffuse
confluent white matter abnormalities in the centrum semiovale involving the subcortical white matter. There is corresponding signal hyperintensity
on DWI (G) with somewhat less extensive hypointensity on the calculated ADC maps (H), indicating some degree of T2-shine through
superimposed on cytotoxic edema. FLAIR: TR =9000, TE =126, and IR =2490; DWI: TR = 9000, TE =98, number of excitations = 2,

matrix = 192 x 192; field of view, 23 x 23 cm to 24 x 24 cm, slice thickness = 4 mm, and gap 4.

there was extensive white matter injury with myelin loss
and axonal swelling, as well as abundant reactive astroglia,
in a mildly vacuolated background neuropil. These changes
involved the subcortical white matter in a patchy distribu-
tion, although the U-fibers were preserved (Fig. 3).

Discussion

The gray matter of the adult brain demonstrates selective
vulnerability to acute hypoxic-ischemic injury, which is
triggered by a complex cascade of cellular events resulting
in glutamate excitotoxicity, release of free radicals, and
apoptosis (Won et al. 2002). Hypoxia preferentially affects
the basal ganglia, thalami, neocortex, and hippocampus,
with relative sparing of the brainstem, and results in a
consistent pattern of abnormalities on MRI which are
most evident on DWI within the first few hours following
injury (Huang and Castillo 2008). On the contrary, white
matter is relatively resilient to the effects of hypoxia, with
the exception of carbon monoxide poisoning, which can
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cause acute demyelination preferentially damaging the
globi pallidi and subcortical white matter (Adams et al.
2000).

In the setting of drug overdose, there are two principal
mechanisms by which white matter can be injured. First,
a form of spongiform leukoencephalopathy with intramy-
elinic vacuolization has been described from inhalation of
the pyrolysate vapors produced after heating heroin in a
practice known as “chasing the dragon”, which primarily
presents as a cerebellar syndrome causing ataxia, dysar-
thria, and bradykinesia (Won et al. 2002; Keogh et al.
2003). White matter injury in heroin inhalation encepha-
lopathy favors the cerebellum, brainstem, posterior cere-
bral white matter, and posterior limb of the internal
capsule (Keogh et al. 2003). This is in contradistinction
to a second mechanism consisting of delayed demyelina-
tion, seen in DPHL, which occurs weeks after the initial
hypoxic event and typically spares the cerebellum, brain-
stem, and basal ganglia. This particular distribution was
evident in our study and is also concordant with the MRI
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Figure 2. Cropped and digitally magnified region from Fig. 1E
demonstrates that the white matter signal abnormality (asterisk)
involves the subcortical white matter but spares the U-fibers which
appear as a curvilinear dark band (arrowhead). The adjacent gray
matter is also visualized (arrow).

findings of DPHL in the majority of published case
reports and series. Findings reported in the literature are
described in detail in Table 3 (Weinberger et al. 1994; Lee
and Lyketsos 2001; Arciniegas et al. 2004; Molloy et al.
2006; Shprecher et al. 2008; Mittal et al. 2010; Wallace
et al. 2010; Nzwalo et al. 2011; Huisa et al. 2013; Meyer
2013; Tormoehlen 2013; Geraldo et al. 2014).

On histopathologic examination, DPHL demonstrates
widespread demyelination with axonal sparing as well as
macrophages and reactive astrocytes (Plum et al. 1962;
Gottfried et al. 1997). The U-fibers and cerebral cortex
are noticeably spared (Plum et al. 1962). As opposed to
the spongiform leukoencephalopathy seen in heroin

Delayed Posthypoxic Leukoencephalopathy

pyrolysate (Wolters et al. 1982; Kriegstein et al. 1999),
there is usually no intramyelinic vacuolization in DPHL
(Plum et al. 1962; Gottfried et al. 1997).

To date, the pathophysiology of DPHL remains elusive.
A proposed mechanism relates to the fact that the turn-
over rates for some myelin-related proteins range between
19 to 22 days, which is close to the average time for clini-
cal relapse after initial injury (Meyer 2013). This would
be consistent with our study, where the median time to
neurological relapse was 23 days. However, while this is
plausible, it would not explain why DPHL is such an
uncommon phenomenon. Additionally, there have been
reports of patients with decreased levels of arylsulfatase A,
which is deficient in metachromatic leukodystrophy, sug-
gesting that this could represent a predisposing factor
(Weinberger et al. 1994; Gottfried et al. 1997). However,
levels of this enzyme in other reported cases have been
normal (Salazar and Dubow 2012). We did not measure
arylsulfatase A in our patients. It is also worth mention-
ing that DPHL appears to occur after mild-to-moderate
episodes of hypoxia, as severe hypoxia would likely result
in acute hypoxic-ischemic injury with typical damage to
gray matter structures.

In our series, the white matter abnormalities were
bilateral, and symmetric, and invariably
involved the subcortical white matter while preserving the
U-fibers. In particular, a remarkable imaging finding was

extensive,

the presence of extensive restricted diffusion, which has
been partially described in some cases (Kim et al. 2002;
Arciniegas et al. 2004; Molloy et al. 2006; Shprecher et al.
2008; Lou et al. 2009; Betts et al. 2012; Salazar and
Dubow 2012; Huisa et al. 2013). The majority of reports
available, however, do not include DWI sequences (Hori
et al. 1991; Weinberger et al. 1994; Gottfried et al. 1997;
Lee and Lyketsos 2001; Hsiao et al. 2004; Mittal et al.
2010; Wallace et al. 2010; Nzwalo et al. 2011; Rozen
2012; Choi et al. 2013; Meyer 2013; Tormoehlen 2013;

Table 2. MRI characteristics in a series of patients with delayed posthypoxic leukoencephalopathy.

Mass
Time to  Morphology of effect
MRI! signal or gyral  Contrast
No. (days) abnormality Symmetry  T2-FLAIR/ADC mismatch Spared structures edema  enhancement Hemorrhage
1 40 Patchy Yes T2-FLAIR more extensive than ADC  U-fibers, brainstem, No No No
basal ganglia,
thalami,
cerebellum
2 50 Homogeneous  Yes T2-FLAIR more extensive than ADC ~ Same as above No No No
3 54 Patchy Yes Matched T2-FLAIR’ADC Same as above No No No
4 30 Homogeneous  Yes T2-FLAIR more extensive than ADC ~ Same as above No No No
5 20 Patchy Yes Matched T2-FLAIRZADC ADC Same as above No No No

"Time to MRI abnormality since the original hypoxic event (during relapse).

MRI, magnetic resonance imaging; ADC, apparent diffusion coefficient; FLAIR, fluid-attenuated inversion recovery.
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Geraldo et al. 2014), and those that do, lack the level of
detail that we include in our series, specifically in terms
of spared structures, symmetry, and morphology of the
signal abnormalities, and presence of T2-FLAIR/ADC
mismatch. We have shown that the FLAIR abnormalities
were more extensive than the areas of restricted diffusion
in three of our patients, although both showed a similar
distribution and were symmetric. These findings were not
present on baseline MRI, which was available in 80% of
our cases, further substantiating the fact that such
changes constitute a delayed manifestation rather than a
direct effect of acute injury.

While none of the studies in the literature have
reported signal abnormalities in the cerebellum or brain-
stem, there are a few instances where lesions were present
in the basal ganglia, presumably related to the hypoxic
injury (Hori et al. 1991; Gottfried et al. 1997; Kim et al.
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Figure 3. MRI and histologic sections from
a 59-year-old female who developed DPHL
after being found unresponsive in the
setting of opioid overdose. Axial T2-
weighted image demonstrates more patchy
white matter lesions compared to the case
in Fig 1, with corresponding low apparent
diffusion coefficient (B) indicating restricted
diffusion. T2: TR = 2683 and TE = 103;
DWI: TR = 10,000, TE = 80, number of
excitations = 2, matrix = 128 x 128, field
of view, 24 x 24 cm, slice

thickness = 5 mm, and gap 5 mm. (C)
Abundant reactive astroglia characterized
by brightly eosinophilic cytoplasm and
enlarged nuclei are numerous in subcortical
white matter. The mildly vacuolated
background neuropil demonstrates
ubiquitous eosinophilic ‘blebs’ which
impart a rough or stippled character.
Occasional macrophages are appreciated,
for example, at 9 o’clock position.
Hematoxylin and eosin, original
magnification 200x. (D) The subcortical
u-fibers at the gray white junction exhibit
normal myelin, but white matter beneath
these shows marked patchy pallor.
Hematoxylin and eosin with luxol fast blue,
original magnification 20x. (E) CD68 stain
highlights lysosome-enriched cells,
microglia and macrophages, abundant in
the neuropil. Immunohistochemistry for
CD68, original magnification 100x. (F)
Neurofilament stain highlights frequent
axonal swelling, indicative of damage, in
white matter. Immunohistochemistry for
SNl SM31, original magnification 200x.

2002; Hsiao et al. 2004; Lou et al. 2009; Betts et al. 2012;
Rozen 2012; Salazar and Dubow 2012; Choi et al. 2013).
Specific injury to the globi pallidi has been described in
several cases, not only in the setting of carbon monoxide
poisoning (Kim et al. 2003; Hsiao et al. 2004), but also
following drug overdose and arrest after massive hemor-
rhage (Gottfried et al. 1997; Lou et al. 2009; Betts et al.
2012; Rozen 2012; Salazar and Dubow 2012). The authors
of one case report describe isolated injury to the basal
ganglia in a patient with delayed encephalopathy after
strangulation (Hori et al. 1991). However, this is the ear-
liest case with MRI and it is possible that subtle abnor-
malities may have been missed. Additionally, no DWI
was available at that time. A delayed-onset dystonia
following anoxic injury, without white matter abnormali-
ties and progressive over time, has also been reported in
two cases (Kuoppamaki et al. 2002).
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The lack of gyral edema in our series also supports a
delayed presentation rather than acute toxic or metabolic
injury. The absence of contrast enhancement argues
against an active inflammatory or demyelinating process,
which is possible if myelin injury has already occurred.
None of the reviewed publications described contrast
enhancement, and if such is present an alternative diagno-
sis should be sought. Additionally, the clinical presentation
in DPHL is different from that of acute hypoxia, with
most patients showing bizarre behavior, akinetic mutism,
psychomotor retardation, and deficits of executive func-
tioning. The presence of pyramidal signs as well as Parkin-
sonism and other movement disorders is also relatively
common. We believe that, in the appropriate clinical set-
ting, the constellation of MRI findings described above is
highly suggestive of DPHL, which usually warrants sup-
portive treatment and bears a relatively good prognosis in
most patients. Our findings are similar to those presented
by Kim et al. (2003), although that study only included
patients with DPHL after carbon monoxide poisoning.

The main limitations of our study are related to the
small number of subjects and its retrospective design,
which are difficult to avoid given the rarity of this disor-
der. While a prospective cohort study (e.g., including all
patients with neurological deterioration caused by an ini-
tial hypoxic event) would be ideal, this type of research is
not well suited for rare diseases as an impractically high
number of study subjects would be required (Mann 2003).
It is possible that we could have identified more cases but
the delayed presentation of this entity and the fact that
many patients may present primarily with psychiatric
symptoms (Tormoehlen 2013) may cause it to go under-
recognized. Additionally, the time from symptom onset to
MRI is variable among different patients, which is an
inherent drawback related to the retrospective nature of
this study. We could also not follow patients longitudi-
nally to assess the reversibility of imaging findings over
time. A prior case report in a patient with DPHL from
carbon monoxide intoxication showed gradual resolution
of restricted diffusion but persistence of the abnormal
periventricular T2 signal abnormality which remained lar-
gely unchanged for over a year (Kim et al. 2002). Another
case report documented incomplete resolution of the
white matter abnormalities 1 year postoverdose (Shpre-
cher et al. 2008), while separate reports showed improved
but persistent abnormalities 6 months and 8 years after
initial presentation, respectively (Molloy et al. 2006; Betts
et al. 2012). Two-year clinical follow-up on another study,
in patients with carbon monoxide-related DPHL, showed
75% recovery within 1 year (Choi 1983). Therefore, the
use of the term “reversible” as in some of the prior
descriptions of the disease might not be appropriate.
Finally, DPHL has been shown to usually occur in older

© 2015 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
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individuals. None of the patients in a large study of DPHL
after carbon monoxide poisoning was less than 30 years of
age (Choi 1983). Our patients were close to or above
60 years of age, with the exception of one patient who was
32 years old. Interestingly, this younger patient showed
the most rapid clinical improvement of our cohort and
was at his neurological baseline at discharge.

Conclusion

The characteristics and distribution of imaging findings in
DPHL can be striking on MRI. We have performed an
exhaustive review of the literature on this entity and pres-
ent our findings on its imaging aspects in great detail. In
the appropriate clinical setting, bilateral and symmetric
white matter signal abnormalities confined to the supra-
tentorial white matter without gyral edema or enhance-
ment, are highly suggestive of DPHL, which carries a
relatively favorable prognosis compared to other acute
toxic or metabolic causes of white matter injury.
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