Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

S-2-Amino-5-(dimethylammonio)phenyl sulfothioate

Gordana Pavlović, Livio Racané and Vesna Tralić-Kulenović*

Faculty of Textile Technology, Laboratory of Applied Chemistry, University of Zagreb, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia Correspondence e-mail: gpavlov@ttf.hr

Received 8 April 2009; accepted 29 April 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.092$; data-to-parameter ratio $=14.4$.

The title compound, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$, has been isolated as an intermediate in the synthesis of methylene blue dye, the best known phenothiazine dye, and structurally characterized as a zwitterion. The crystal structure is dominated by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the amine and sulfothioate groups, with graph-set motif $C(9) R_{2}^{2}(8)$, involving antiparallel chains and a centrosymmetric eightmembered ring. A hydrogen bond with graph-set motif $R_{2}^{2}(14)$ between the ammonium and sulfothioate groups completes the two-dimensional network in the $a b$ plane. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are also present in the crystal.

Related literature

For methylene blue dye, see: Bernthasen (1889); Zollinger (1991); Hunger (2003). For its preparation, see: Leventis et al. (1997). For the synthesis of the title compound, see: Bogert \& Updike (1927); Bennett \& Bell (1943). For bond-length data, see: Trinajstić (1968); Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$
$M_{r}=248.32$
Monoclinic, $P 2_{1} / n$
$a=12.0593$ (1) \AA
$b=7.3651$ (1) A
$c=12.2312(1) \AA$
$\beta=95.0766$ (8) ${ }^{\text {c }}$
$V=1082.09(2) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$\mu=4.41 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.48 \times 0.37 \times 0.29 \mathrm{~mm}$

Data collection

Xcalibur Nova diffractometer with enhance (Cu) X-ray source and Onyx CCD
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)

$$
T_{\min }=0.628, T_{\max }=1.000
$$

(expected range $=0.175-0.279)$
5132 measured reflections
2153 independent reflections 2006 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
H atoms treated by a mixture of independent and constrained refinement
$S=1.07$
2153 reflections
150 parameters
$\Delta \rho_{\text {max }}=0.33$ e \AA_{\circ}^{-3}
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 11 \mathrm{~N} \cdots \mathrm{O} 1^{\text {i }}$	0.87 (3)	2.36 (3)	3.136 (3)	148 (2)
$\mathrm{N} 1-\mathrm{H} 21 N \cdots \mathrm{O}{ }^{\text {ii }}$	0.82 (2)	2.28 (2)	3.010 (2)	148 (2)
$\mathrm{N} 2-\mathrm{H} 12 \mathrm{~N} \cdots \mathrm{O} 3^{\text {iii }}$	0.88 (2)	1.89 (2)	2.769 (2)	175 (2)
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {i }}$	0.93	2.55	3.376 (2)	148
$\mathrm{C} 8-\mathrm{H} 84 \cdots \mathrm{O} 2{ }^{\text {iv }}$	0.96	2.41	3.209 (3)	141

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+2,-y,-z+1$; (iii) $-x+1,-y,-z+1$; (iv)
$x-\frac{1}{2},-y-\frac{1}{2}, z+\frac{1}{2}$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

This research was supported by the Ministry of Science and Technology of the Republic of Croatia (grant No. 117-0000000-3283 and 098-1191344-2943).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2216).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. \& Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bennett, G. M. \& Bell, E. V. (1943). Organic Syntheses, Collected Vol. 2, p. 223. New York: John Wiley \& Sons.
Bernthasen, A. (1889). Annalen, 251, 1-97.
Bogert, M. T. \& Updike, I. A. (1927). J. Am. Chem. Soc. 49, 1373-1382.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hunger, K. (2003). Industrial Dyes: Chemistry, Properties, Application. Weinheim: Wiley-VCH.
Leventis, N., Chen, M. \& Sortiriou-Leventis, C. (1997). Tetrahedron, 53, 10083-10092.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Trinajstić, N. (1968). Tetrahedron Lett. 12, 1529-1532.
Zollinger, H. (1991). Colour Chemistry, 2nd ed. Weinheim: VCH.

supplementary materials

Acta Cryst. (2009). E65, o1215 [doi:10.1107/S1600536809016158]

S-2-Amino-5-(dimethylammonio)phenyl sulfothioate

G. Pavlovic, L. Racané and V. Tralic-Kulenovic

Comment

Phenothiazine dyes are class of colorants with application in various fields of which the methylene blue is the most well known (Zollinger, 1991; Hunger, 2003). Commercially, methylene blue is produced by oxidation of $4-N, N$-dimethylaminoaniline with $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in the presence of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, followed by the further oxidation in the presence of N, N-dimethylaniline, usually without isolation of intermediate 4- N, N-dimethylaminoaniline-2-tiosulfuric acid (Leventis et al., 1997). Namely, this compound was first described in 1889 (Bernthasen, 1889) and in the last hundred years reported by several authors. Moreover, in the literature the compound is described as phenyl O-hydrogen sulfothioate acid but the possibility of zwitterionic form (I) (Scheme 1) was not reported. Following one of the known method for preparation of 4- N, N-dimethyl-aminoaniline-2-tiosulfuric acid (Bogert \& Updike, 1927), we isolated S-2-amino-5-(dimethylammonio)phenyl sulfothioate (I) determined by single-crystal structure analysis (Scheme, Fig. 1).

The single $\mathrm{S} — \mathrm{~S}$ bond distance value of sulfothioate group is 2.0985 (5) \AA. The $\mathrm{S}-\mathrm{C}$ bond in (I) is 1.768 (2) \AA, reflecting aprox. 20% of π bond character according to N . Trinajstić (Trinajstić, 1968). The $\mathrm{C}_{\mathrm{ar}}-\mathrm{N}$ bond formed by amine group has significant π character (1.360 (3) \AA). On the contrary, $\mathrm{C}-\mathrm{N}$ bonds of the N, N-dimethylammonio groups are essentially single bonds (N2-C7 1.491 (2) \AA and N2-C8 1.501 (2) \AA). The values observed are in accordance with the literature data (Allen et al., 1987).

The relative orientation of the sulfothioate group to the phenyl ring is defined by the torsion angle $\mathrm{S} 2-\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 4$ (92.93 (13) ${ }^{\circ}$). The twist around Car-Nsp3 bond is described by $\mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{ar}}-\mathrm{Nsp}^{3}-\mathrm{Csp}^{3}$ torsion angle of 73.97 (18) ${ }^{\circ}$ (for the atom sequence $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 8)$.

The rather complex hydrogen bond network in (I) (Table 1, Fig. 2) is characterized by the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds. The atom N 1 acts as double proton donor and the atoms O 1 and O 3 as double proton acceptors (Table 1). The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds are formed between Car-H groups along with the C 8 atom of 5-N,N-dimethylammonio cation and O atoms of $\mathrm{S}-\mathrm{SO}_{3}^{-}$fragment.

At the unitary level antiparallel infinite chains are formed by the $\mathrm{N} 1-\mathrm{H} 11 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{i}}(\mathrm{i}=x,-y, z)$ hydrogen bonds between amino and sulfothioate groups (Table 1, Fig. 2). The R22(8) rings are formed via $\mathrm{N} 1-\mathrm{H} 11 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{i}}(\mathrm{i}=x,-y, z$) and $\mathrm{N} 1-\mathrm{H} 21 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{ii}}$ (ii $=2-x,-y, 1-z$) hydrogen bonds, thus N 1 amino group participates in bifurcated hydrogen bond. The combination of these two primary motifs, chain and ring, generates a new 14-membered ring of the second level of graph-set notation: $N 2=\mathrm{R} 22(14)$ involving $\mathrm{N}+2-\mathrm{H} \cdots \mathrm{O} 3$ hydrogen bond. Consequently, the crystal structure can be described as the two-dimensional-network in the $(a b)$ plane.

supplementary materials

Experimental

N, N-dimethylaniline was dissolved in aqueous HCl and nitrosilated with NaNO_{2} (Bennett \& Bell, 1943). The resulting crude 4-nitroso- N, N-dimethylaniline hydrochloride was isolated and dissolved in aqueous acetic acid. The cold water solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added and the reaction mixture was stirred at $273-278 \mathrm{~K}$ for several h (Bogert \& Updike, 1927), and left for two days at room temperature. The crude product was filtered off, and crystallized from water. The obtained crystals of S-2-amino-5-(dimethylammonium)phenyl sulfothioate (I) were in the form of blue prisms. Spectroscopic analysis, IR (ATR, cm^{-1}): 3451 (m), 3342 (m), 3034 (w), 2657 (m), 1616 (s), 1504 (s), 1458 (m), $1400(m), 1319$ (w), $1242(s), 1161$ $(s), 1134(s), 1003(s), 906(m), 880(\mathrm{w}), 822(m), 675(\mathrm{w}), 622(\mathrm{~s}), 544(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $\left.\mathrm{d}_{6}\right): \delta 8.99(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 6 \mathrm{H})$. Analysis, calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}: \mathrm{C} 38.69, \mathrm{H} 4.87, \mathrm{~N} 11.28 \%$; found: C 38.65, H 4.91, N 11.21\%.

Refinement

Hydrogen atoms bonded to the nitrogen atoms of amino and ammonio groups were found in the difference Fourier electrondensity maps and refined freely. All hydrogen atoms attached to the carbon atoms were generated at calculated positions and refined by applying the riding model $\left(U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right.$ and Csp2-H distance $0.93 \AA$; Csp3-H $0.96 \AA$ and $U_{\text {iso }}$ $(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$.

Figures

S-2-amino-5-(dimethylammonio)phenyl sulfothioate

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} & F_{000}=520 \\
M_{r}=248.32 & D_{\mathrm{x}}=1.524 \mathrm{Mg} \mathrm{~m}^{-3}
\end{array}
$$

Monoclinic, $P 2_{1} / n$
$a=12.0593$ (1) \AA
$b=7.3651$ (1) \AA
$c=12.2312(1) \AA$
$\beta=95.0766(8)^{\circ}$
$V=1082.089(19) \AA^{3}$
$Z=4$
$\mathrm{Cu} \mathrm{K} \alpha$ radiation
$\lambda=1.54184 \AA$
Cell parameters from 4267 reflections
$\theta=3.6-76.1^{\circ}$
$\mu=4.41 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, blue
$0.48 \times 0.37 \times 0.29 \mathrm{~mm}$

Data collection

к geometry Xcalibur Nova
diffractometer with enhance $(\mathrm{Cu}) \mathrm{X}$-ray source and
2153 independent reflections
Onyx CCD
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 10.4323 pixels mm^{-1}
$T=296 \mathrm{~K}$
Enhance (Cu) X-ray Source scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
$T_{\text {min }}=0.628, T_{\text {max }}=1.000$
5132 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.092$
$S=1.07$
2153 reflections
150 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0551 P)^{2}+0.3077 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}
Extinction correction: none

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.85191(3)$	$0.04337(6)$	$0.62282(3)$	$0.04476(15)$
S2	$0.83204(3)$	$0.15312(5)$	$0.46396(3)$	$0.03773(14)$

O1	$0.92392(11)$	$0.27914(18)$	$0.46826(12)$	$0.0521(3)$
O2	$0.83442(12)$	$0.00876(19)$	$0.38531(12)$	$0.0556(3)$
O3	$0.72379(11)$	$0.24407(18)$	$0.45543(11)$	$0.0506(3)$
N1	$0.83654(15)$	$-0.3588(3)$	$0.56480(16)$	$0.0531(4)$
H11N	$0.832(2)$	$-0.469(4)$	$0.539(2)$	$0.060(7)^{*}$
H21N	$0.891(2)$	$-0.295(3)$	$0.556(2)$	$0.057(7)^{*}$
N2	$0.43258(11)$	$-0.05829(19)$	$0.68128(11)$	$0.0369(3)$
H12N	$0.3836(17)$	$-0.113(3)$	$0.6345(17)$	$0.042(5)^{*}$
C1	$0.53946(13)$	$-0.1301(2)$	$0.64861(12)$	$0.0354(3)$
C2	$0.63340(13)$	$-0.0239(2)$	$0.65023(13)$	$0.0371(3)$
H2	0.6306	0.0971	0.6715	0.045^{*}
C3	$0.73290(13)$	$-0.0974(2)$	$0.62006(13)$	$0.0375(3)$
C4	$0.73946(14)$	$-0.2821(2)$	$0.59014(13)$	$0.0391(3)$
C5	$0.64152(14)$	$-0.3866(2)$	$0.59039(14)$	$0.0413(4)$
H5	0.6433	-0.5087	0.5712	0.050^{*}
C6	$0.54366(14)$	$-0.3119(2)$	$0.61841(13)$	$0.0388(3)$
H6	0.4799	-0.3832	0.6172	0.047^{*}
C7	$0.42090(16)$	$0.1431(2)$	$0.67521(17)$	$0.0491(4)$
H7A	0.4696	0.1979	0.7322	0.074^{*}
H7B	0.3453	0.1762	0.6845	0.074^{*}
H7C	0.4403	0.1848	0.6050	0.074^{*}
C8	$0.40933(16)$	$-0.1240(3)$	$0.79311(15)$	$0.0491(4)$
H8A	0.4120	-0.2543	0.7948	0.074^{*}
H8B	0.3368	-0.0838	0.8091	0.074^{*}
H8C	0.4643	-0.0760	0.8470	0.074^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0369(2)$	$0.0545(3)$	$0.0423(2)$	$-0.01012(16)$	$0.00067(16)$	$0.00048(17)$
S2	$0.0361(2)$	$0.0368(2)$	$0.0409(2)$	$-0.00114(14)$	$0.00620(15)$	$-0.00381(14)$
O1	$0.0461(7)$	$0.0505(7)$	$0.0602(8)$	$-0.0109(6)$	$0.0076(6)$	$0.0049(6)$
O2	$0.0643(8)$	$0.0537(8)$	$0.0503(7)$	$0.0016(6)$	$0.0127(6)$	$-0.0157(6)$
O3	$0.0435(7)$	$0.0476(7)$	$0.0594(8)$	$0.0071(5)$	$-0.0029(5)$	$-0.0075(6)$
N1	$0.0463(9)$	$0.0465(9)$	$0.0690(11)$	$0.0051(7)$	$0.0192(8)$	$-0.0029(8)$
N2	$0.0344(7)$	$0.0419(7)$	$0.0347(7)$	$-0.0012(5)$	$0.0046(5)$	$-0.0001(5)$
C1	$0.0344(7)$	$0.0402(8)$	$0.0320(7)$	$0.0011(6)$	$0.0046(6)$	$0.0004(6)$
C2	$0.0394(8)$	$0.0361(8)$	$0.0363(7)$	$-0.0021(6)$	$0.0060(6)$	$-0.0030(6)$
C3	$0.0354(7)$	$0.0425(8)$	$0.0348(7)$	$-0.0034(6)$	$0.0047(6)$	$-0.0003(6)$
C4	$0.0415(8)$	$0.0425(9)$	$0.0336(7)$	$0.0026(7)$	$0.0060(6)$	$0.0006(6)$
C5	$0.0487(9)$	$0.0349(8)$	$0.0409(8)$	$-0.0005(7)$	$0.0067(7)$	$-0.0016(6)$
C6	$0.0394(8)$	$0.0393(8)$	$0.0377(8)$	$-0.0060(6)$	$0.0040(6)$	$0.0011(6)$
C7	$0.0486(9)$	$0.0449(10)$	$0.0551(10)$	$0.0079(7)$	$0.0114(8)$	$0.0048(8)$
C8	$0.0509(10)$	$0.0567(10)$	$0.0418(9)$	$-0.0005(8)$	$0.0154(7)$	$0.0067(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{S} 1 — \mathrm{C} 3$	$1.7683(16)$
$\mathrm{S} 1 — \mathrm{~S} 2$	$2.0986(6)$

$\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{C} 2-\mathrm{H} 2$
1.395 (2)
0.9300

sup-4

supplementary materials

S2-O2	1.4358 (13)
S2-O1	1.4428 (13)
S2-O3	1.4627 (13)
N1-C4	1.360 (2)
N1-H11N	0.87 (3)
N1-H21N	0.83 (3)
N2-C1	1.4805 (19)
N2-C7	1.491 (2)
N2-C8	1.501 (2)
N2-H12N	0.88 (2)
$\mathrm{C} 1-\mathrm{C} 2$	1.375 (2)
C1-C6	1.391 (2)
C3-S1-S2	100.49 (5)
$\mathrm{O} 2-\mathrm{S} 2-\mathrm{O} 1$	116.10 (8)
$\mathrm{O} 2-\mathrm{S} 2-\mathrm{O} 3$	111.22 (8)
$\mathrm{O} 1-\mathrm{S} 2-\mathrm{O} 3$	112.69 (8)
O2-S2-S1	109.13 (7)
O1-S2-S1	100.93 (6)
O3-S2-S1	105.69 (6)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 11 \mathrm{~N}$	116.4 (17)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 21 \mathrm{~N}$	120.4 (17)
$\mathrm{H} 11 \mathrm{~N}-\mathrm{N} 1-\mathrm{H} 21 \mathrm{~N}$	121 (2)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 7$	115.00 (13)
C1-N2-C8	111.61 (13)
C7-N2-C8	109.99 (14)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 12 \mathrm{~N}$	102.0 (13)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 12 \mathrm{~N}$	111.7 (13)
C8-N2-H12N	105.9 (13)
C2-C1-C6	120.13 (15)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2$	121.91 (14)
C6- $\mathrm{C} 1-\mathrm{N} 2$	117.94 (14)
C1-C2-C3	120.15 (15)
C1-C2-H2	119.9
C3-C2-H2	119.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	120.73 (15)
C3-S1-S2-O2	-61.58 (9)
C3-S1-S2-O1	175.65 (8)
C3-S1-S2-O3	58.12 (8)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	21.8 (2)
C8-N2-C1-C2	-104.36 (18)
C7-N2-C1-C6	-159.86 (15)
C8-N2-C1-C6	73.96 (18)
C6-C1-C2-C3	0.9 (2)
N2-C1-C2-C3	179.22 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-1.6 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$	179.85 (12)

C3-C4	1.413 (2)
C4-C5	1.410 (2)
C5-C6	1.373 (2)
C5-H5	0.9300
C6-H6	0.9300
C7-H7A	0.9600
C7-H7B	0.9600
C7-H7C	0.9600
C8-H8A	0.9600
C8-H8B	0.9600
C8-H8C	0.9600
C2-C3-S1	118.90 (13)
C4-C3-S1	120.36 (12)
N1-C4-C5	120.80 (16)
N1-C4-C3	121.86 (16)
C5-C4-C3	117.32 (15)
C6-C5-C4	121.37 (15)
C6-C5-H5	119.3
C4-C5-H5	119.3
C5-C6-C1	120.29 (15)
C5-C6-H6	119.9
C1-C6-H6	119.9
N2-C7-H7A	109.5
N2-C7-H7B	109.5
H7A-C7-H7B	109.5
N2-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
N2-C8-H8A	109.5
N2-C8-H8B	109.5
H8A-C8-H8B	109.5
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
$\mathrm{S} 2-\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 2$	-88.47 (13)
S2-S1-C3-C4	92.94 (13)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	-177.24 (16)
$\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	1.3 (2)
C2-C3-C4-C5	1.0 (2)
S1-C3-C4-C5	179.60 (12)
N1-C4-C5-C6	178.39 (17)
C3-C4-C5-C6	0.1 (2)
C4-C5-C6-C1	-0.7 (2)
C2-C1-C6-C5	0.2 (2)
N2-C1-C6-C5	-178.16 (14)

supplementary materials

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D - H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 11 \mathrm{~N} \cdots \mathrm{O} 1^{\text {i }}$	0.87 (3)	2.36 (3)	3.136 (3)	148 (2)
$\mathrm{N} 1-\mathrm{H} 21 \mathrm{~N} \cdots \mathrm{O} 1^{\text {ii }}$	0.82 (2)	2.28 (2)	3.010 (2)	148 (2)
$\mathrm{N} 2-\mathrm{H} 12 \mathrm{~N} \cdots \mathrm{O} 3^{\text {iii }}$	0.88 (2)	1.89 (2)	2.769 (2)	175 (2)
C5-H5 $\cdots{ }^{\text {O }}{ }^{\text {i }}$	0.93	2.55	3.376 (2)	148
C8-H8A $\cdots \mathrm{O} 2^{\text {iv }}$	0.96	2.41	3.209 (3)	141

Fig. 1

supplementary materials

Fig. 2

Fig. 3

zwitterionic form

