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Abstract
We are entering the era of personalized medicine in which an individual’s genetic

makeup will eventually determine how a doctor can tailor his or her therapy. There-

fore, it is becoming critical to understand the genetic basis of common diseases, for

example, which genes predispose and rare genetic variants contribute to diseases, and

so on. Our study focuses on helping researchers, medical practitioners, and pharma-

cists in having a broad view of genetic variants that may be implicated in the likelihood

of developing certain diseases. Our focus here is to create a comprehensive database

with mobile access to all available, authentic and actionable genes, SNPs, and clas-

sified diseases and drugs collected from different clinical and genomics databases

worldwide, including Ensembl, GenCode, ClinVar, GeneCards, DISEASES, HGMD,

OMIM, GTR, CNVD, Novoseek, Swiss-Prot, LncRNADisease, Orphanet, GWAS

Catalog, SwissVar, COSMIC, WHO, and FDA. We present a new cutting-edge gene-

SNP-disease-drug mobile database with a smart phone application, integrating infor-

mation about classified diseases and related genes, germline and somatic mutations,

and drugs. Its database includes over 59 000 protein-coding and noncoding genes; over

67 000 germline SNPs and over a million somatic mutations reported for over 19 000

protein-coding genes located in over 1000 regions, published with over 3000 arti-

cles in over 415 journals available at the PUBMED; over 80 000 ICDs; over 123 000

NDCs; and over 100 000 classified gene-SNP-disease associations. We present an

application that can provide new insights into the information about genetic basis of

human complex diseases and contribute to assimilating genomic with phenotypic data

for the availability of gene-based designer drugs, precise targeting of molecular fin-

gerprints for tumor, appropriate drug therapy, predicting individual susceptibility to

disease, diagnosis, and treatment of rare illnesses are all a few of the many transfor-

mations expected in the decade to come.
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1 INTRODUCTION

Since the beginning of scientific discoveries, it has been crit-
ically central to understand the cause of disease, pain, and
senescence.1 Over the centuries, quests for the answers have
led us to take giant leaps. It was only in the last century that
the discovery of antibiotics freed us from many of the dreaded
diseases of the past. Today, we stand on the threshold of the
new medical revolution, just as big and far-reaching. Despite
of all our scientific knowledge, much of medicine today is
still based on the conventional symptomatic treatment and
performing learned trials for symptom relief, which works
for most patients but not all. The current medical model is
based on disease classification, which is routinely composed
of data from healthcare units brought from different streams,
which includes imaging, pathology, genomics, electrophys-
iology, and others.2 Treating on symptomatic basis can be
complex for multifaceted and multisymptomatic conditions.
However, genetic research can assist in producing individual
treatment solutions, rather than what works for the average
person, and with a precise understanding of who is at risk
for critical diseases like diabetes, high blood pressure, or can-
cer. This will bring systematic approach to healing, allowing
for rapid disease detection at an early stage, accurate charac-
terization of disease, and assign preventive measures needed
before the disease even appears. Also, timely discovery and
association of genetic variants with diseases will help develop
a more effective therapy tailored to an individual’s precise
genetic makeup, reducing adverse drug reactions. As biologi-
cal data accumulates at larger scales and at exponential rates,
because of higher-throughput and lower-cost DNA sequenc-
ing technologies, it has become essential to develop innova-
tive, smart, and modern bioinformatics applications to help
improve research quality and data sharing. New tools will pro-
vide a progressive understanding of heterogeneous genomics
and clinical findings and facilitate increases in clinical uti-
lization of information in these databases and translation to
healthcare.

It has been over 100 years since the term “Gene” was
introduced,3 and its meaning has progressively evolved in sev-
eral scientific directions.1,4,5 A gene is a unit of hereditary,
made up of segment of DNA sequence that carries genetic
information, which defines a biological function.6 The chem-
ical structure of the genome is double-stranded DNA, and
the smallest unit of genetic information is the base pair (bp),
which is two nucleotides paired by hydrogen bonds across
the double helix. The human genome contains 3 billion bps
that form tens of thousands of genes, yet its complex struc-
ture is made up of only four molecules: adenine (A), cyto-
sine (C), guanine (G), and thymine (T).7 Most genes direct
our cells to make a specific protein necessary for some func-
tion, and collections of proteins with other organic molecules
perform all the tasks needed for life, for example, cell

signaling, building body structures, and fighting diseases.
Most human genes have a discontinuous structure, with the
protein coding regions, or exons, interrupted by noncoding
regions, or introns.8 An average human gene has nine exons,
and the longest known human gene called titin (TTN) has 365
exons spanning 109 224 bp and encodes a protein comprising
35 991 amino acids.9 For a long period of time, researchers
used a broad estimate of gene count at more than 50 000
genes, including 21 000 protein-coding genes.10 However,
this number has been repeatedly overturned with advance-
ments in genetics and genomics research.

The completion of the Human Genome Project11,12 was
a major scientific development in human genomics and
biomedical sciences. Its findings suggested that all humans
are 99.9% genetically identical and only 0.1% of genetic vari-
ations are responsible for the phenotypic differences, such as
physical traits (eg, height, intelligence, hair, and eye color),
disease susceptibility, and drug responses, among individu-
als in populations.13 The human genome harbors enormous
gene-encoded protein diversity and expression differences,
and variability between individuals due to DNA polymor-
phisms that underlay the differences between us, which impor-
tantly can impart susceptibility to certain diseases and resis-
tance to medications. A major goal of medical genetics is to
identify genes that when altered lead to human disease, but not
all-recognizable DNA sequence alterations result in disease.14

Most alterations, or mutations, are simple differences, such as
restriction fragment length polymorphisms, single nucleotide
polymorphisms (SNPs), that may not change the expres-
sion or coding of a gene, but some specific mutations can
change gene instructions, and ultimately create a protein mal-
function, which may cause disease. Human variability is
dynamic and fundamental to the survival and advancement
of humans. Genetic variations are the differences in DNA
sequence within the genome of individuals in populations.15

Their discovery dates back to 1950s when association stud-
ies to link specific variants in biological candidate genes to
disease risk emerged.16 If we can identify which genetic vari-
ations are associated with specific diseases, we will be better
equipped to find new treatments and even cures. Also iden-
tifying genetic variations will help us better understand why
some people respond differently to similar medications. Com-
parisons of frequencies of genetic variants among affected and
unaffected individuals revealed correlations between blood-
group antigens and peptic ulcer disease17; in the 1960s and
1970s, common variation at the human leukocyte antigen
(HLA) locus was associated with autoimmune and infectious
diseases18; and in the 1980s, apolipoprotein E was implicated
in the etiology of Alzheimer’s disease.19 Still, only about a
dozen extensively reproduced associations of common vari-
ants were identified in the 20th century.20

In general, mutations can be grouped into two different
types: germline and somatic.20 Germline mutations are
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variations found in all cells of an organism, including germ
line cells. They play an important role in evolution by giving
every human its unique genetic makeup but also give rise to
hereditary diseases. Somatic mutations are not inherited but
acquired during lifetime in somatic cells of an organism and
might cause tissue-specific tumors. They are present in the
genomes of all dividing cells, both normal and neoplastic.
They occur as a result of misincorporation during DNA
replication or through exposure to exogenous or endogenous
mutagens.21 Cancer, as a disease of genome alterations,
arises through the sporadic acquisition of multiple somatic
mutations.22 All cancers arise as a result of the acquisition of
these abnormalities, including base substitutions, deletions,
amplifications, and rearrangements. The extent to which each
of these mechanisms contributes to cancer varies markedly
between different genes, and also between different cancer
types.

Early efforts to analyze common variations in the genome
were hampered by lack of a reference genome and cost-
effective means of identifying, or genotyping, SNPs.23 In
the early 2000s, cheaper genotyping technologies enabled
the availability of vast number of SNPs, which provided the
first needed map with information about the genetic related-
ness of SNPs by The SNP Consortium24 and launched the
HapMap project of human genetic variation.25 Today, genetic
mutations responsible for thousands of conditions, such as
cancer, hypertension, and heart diseases, have been identified
by scientists. These associations cannot be easily deciphered,
because they are often impacted by interactions between
dozens of different genes, many of which are caused by
single gene elements and the environment. To identify these
complex and widely prevalent elements, scientists may have
to profile the genetic signatures of thousands of people, even
multiple populations, and not just a few individuals. This high
density of genotype data allows for unraveling the clinical and
therapeutic relevance of genetic variants. The genomic and
epigenomic (chemically modified genome)26 interpretation
has led to the fundamentals of development and progres-
sion of human diseases,27 categorized as multifactorial,
mitochondrial,28 chromosomal,29 and monogenic30 diseases.
All human disease classifications are maintained by the World
Health Organization (WHO) with the standard creation of
International Classification of Disease (ICD) codes and their
related medications organized by the Food and Drug Admin-
istration (FDA) in the form of National Drug Code (NDC)
codes (applicable in the United States). With the emergence
of new-generation gene sequencing techniques, numerous
databases have surfaced for gene annotation. They are acces-
sible through web and desktop interfaces and claim to provide
information about genes and related diseases, for example,
Disease Ontology,31 DiseaseEnhancer,32 DISEASES,33

DisGeNET,34 eDGAR,35 GeneCard,36 Genetic Test-
ing Registry (GTR),37 MalaCard,38 Online Mendelian

Inheritance in Man (OMIM),39 miR2Disease,40 Human Gene
Mutation Database (HGMD),41 Disease Network Database
(DNetDB),42 ClinVar,43 Orphanet,44 Gene2Function,45

Swiss-Prot,46 LncRNADisease,47 Lnc2Cancer v.20,48 and so
on. These databases are useful, but none of them cover all
the currently available genome, classified diseases and drugs
data in a standardized, integrated, and annotated format.1

Time-to-time technological advancements have heavily
revolutionized the field of genomics, especially when it is
about, for example, triple code development, gene num-
ber proposition, genetic mapping, data banks, gene-disease
maps, catalogues of human genes and genetic disorders,
big data, and next-generation sequencing (NGS).49 With
advancements at such an exponential pace, innovative, smart,
and modern bioinformatics applications are necessary to
help improve the quality and transition of healthcare. Artifi-
cial intelligence (AI) and internet of things (IoT) is becom-
ing one of the landmark developments in personalized and
public health.50,51 Millions of AI- and IoT-based medical
devices (eg, sensors, actuators, smartphones, tablets, wear-
able devices, laptops, etc) are in use worldwide, with effec-
tive responses.52 Its applications include patient’s activity
tracking systems,53,54 monitoring physiological signals (eg,
heart rate, electrocardiography, body temperature, position,
and blood pressure),55 observing environmental conditions56

and object detection,57,58 and many more. Still, there is no
AI- and IoT-based solution available, which can facilitate pre-
cision medicine and clinical genomics research with detailed
information about all available and actionable genes, somatic
and germline mutations, and integrating ICD and NDC lists in
an effective way. Millions of people worldwide getting their
DNA sequenced and would like to have information about
their genomics profiles, which includes information about
their genes and mutations, when most of the people are unable
to interpret such information. We believe that our study and
developed application is a potential solution to fill this infor-
mation gap by helping people with the provision of high-
quality information associated with their genome and clinical
profiles.

The convergence of science, medicine, and information
technology today has created a unique possibility to man-
age our human health in new ways. As Apple’s relevance in
the healthcare space grows, the iPhone is becoming an inte-
gral part in advancing the fundamental science by unfold-
ing the complexities of disease biology and understanding
of the human genome variations, making them accessible
through smart devices. Carrying this goal forward, we present
to the biomedical research community, a mobile database
for iOS smartphone and tablet devices for simple, easy-to-
use access to the information based on all available genes
and SNPs collected from the sequenced human genome, and
their relevant diseases and drugs data. It is another milestone
towards achieving the goals of personalized medicine, as it
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will bring swift excess to gene and mutation data in genomic
research providing scientists and clinicians with variant-by-
variant information of mutations that altered coding instruc-
tions of genes. App’s interactive infographics let researchers
see at a glance all mutations reported for the input gene, and its
corresponding gene, mutation, disease, drug and study infor-
mation, and its efficient querying ability offers the user with
an important knowledge discovery tool, just a click away.

Extensive growth of biological data with an increasing
number of developed biological databases aims to assist
human research in drawing pathways leading from genes to
disease depending on the variable data types. Most of the
available databases are not timely updated and do not intu-
itively give corresponding disease information but require
users to constantly shuttle between different pages and
options until they find the most appropriate results.59,60 Not
all databases and tools specifically focus on the relationship
between genes, SNPs, diseases, and drugs.61-63 One platform
that has proven to be an efficient tool in several areas,
including healthcare, is the smartphone application.47,48 As
smart devices have become increasingly popular, there is still
no iOS app publicly available that can provide unified access
to genomic and healthcare databases with easy navigation
and free portable access to all available genes, germline and
somatic mutations, and related diseases and drugs for efficient
and robust classifications. Our focus is to create a comprehen-
sive database with mobile access to authentic and actionable
genes, SNPs, and classified diseases and drugs, considering
the foundation for clinical and genomics research, pathology,
epidemiology, and precision medicine. Overall study is
divided into following three aims: healthcare database devel-
opment of classified diseases and drugs with their medical
codes; genomics database implementation of authentic and
actionable genes and variants, and their annotation with
diseases; and iOS app development for mobile access to
individualized and annotated information. Our research aims
include centralized and annotated gene-SNP-disease-drug
database, which will not only store, organize, and share data
in a structured and searchable manner but will also facilitate
data retrieval with an iOS application for iPhone and iPad. The
greatest strength of our approach is unearthing the biological
roots of complex and rare diseases. It is a comprehensive
approach to facilitate searching for unknown disease variants
that have not previously been associated with their respective
diseases. To harness the power of genes, SNPs, and other
variants reported, our presented solution will contribute as a
state-of-the-art leading mobile application, for the research
community for gene-variant search. It is a powerful applica-
tion to address the needs of clinical research to uncover previ-
ously unsuspected, yet important, biological variants, mech-
anisms, and pathways that could be potentially targeted with
drugs.

2 METHODS AND MATERIALS

NGS advancements have facilitated and accelerated the pro-
cess of identifying genetic variations. Adoption of NGS with
whole-genome and RNA sequencing in a diagnostic con-
text has the potential to improve disease risk detection in
support of precision medicine and drug discovery. Several
bioinformatics pipelines have been developed to strengthen
variant interpretation by efficiently processing and analyzing
sequenced data, whereas many published results show how
genomic data can be proactively incorporated into medical
practices and raise utilization of clinical information. Inno-
vative and smart systems are necessary to help improve the
quality and transition of healthcare by studying heterogeneous
healthcare and genomics data together.

Our focus here was to develop a well-structured, compre-
hensive, centralized, and integrated gene-SNP-disease-drug
database, which stores, organizes, and shares data in a struc-
tured and searchable manner but facilitates data retrieval
with smartphone application and provides visualization fea-
tures for analytics. Database includes all available and action-
able genes collected from global sources, including those
approved by The American College of Medical Genetics and
Genomics (ACMG)64 and Memorial Sloan Kettering (MSK)
IMPACT,65 germline and somatic mutations maintained by
the Genome-wide Association Studies (GWAS)23 Catalog
(The NHGRI-EBI Catalog of published genome-wide associ-
ation studies) and Catalogue Of Somatic Mutations In Cancer
(COSMIC),66,67 classified diseases by the WHO, and drugs
maintained by the FDA. In this study, we present PAS, a
nonprofit, academic, and publicly available iOS app, which
invites global users to freely download it on iPhone & iPad
devices, quickly adopt its easy to use interface, and search for
genes, SNPs, and related diseases and drugs. Presented app
provides smart distillation (data cleansing and restructuring)
and abundant distribution (involvement of a gene in multiple
disease pathways and phenotypes) of genes associated with
classified diseases, supporting both scientists and providers
with greater emphasis and easy one-tap browsing, saving time
in scanning through genes, SNPs, and developing gene-SNP-
disease lists for a research study. It promotes interoperability
(multiplatform usage) and comparability (multiple ICD codes
for a disease phenotype) in data presentation of genes, SNPs,
and ICD codes to map health conditions to their correspond-
ing diseases, to benefit every type of user (eg, researchers,
medical practitioners, pharmacists, life science students, or
even patients).

On a macro level, the more accurate data are, the bet-
ter is the clinical assessment and patient management for
the greater good of public health, allowing to track and
respond to global health threats faster and compare best prac-
tices with the international community. Database of the app
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T A B L E 1 Database description and statistics of ICD codes

Categories Count
Total diagnosis codes 84 186

Total ICD 10 codes 70 663

Total ICD 9 codes 13 523

Distinct diseases 82 384

Distinct diseases based on ICD 10 codes 70 629

Distinct diseases based on ICD 9 codes 13 518

involves medical classified codes, disease, drugs, and related
information, such as signs and symptoms, abnormal find-
ings, complaints, social circumstances, and external causes
of injury. Such information is supplementary part of cre-
ated relational database of PAS, which mainly includes infor-
mation about WHO-maintained 13 523 ICD-9 and 70 663
ICD-10, and FDA-approved 123 701 NDC codes (Table 1).
Having detailed information associated with medical codes
is very helpful, especially when a user is a medical profes-
sional and relating with medical records of patient for specific
conditions. Initial genomics data includes standard human
reference genome and disease-gene-variant data collected
from different genomics databases worldwide, including Clin-
Var, GeneCards, DISEASES, HGMD, OMIM, GTR, CNVD,
Ensembl, GenCode, Novoseek (www.novoseek.com), Swiss-
Prot, LncRNADisease, Orphanet, LincSNP 2.0,68 MiRNA
SNP Disease Database (MSDD),69 COSMIC, and GWAS
Catalog

The criteria for selecting genomics databases included
information about genes and associated diseases. We were
mainly interested in finding, if any clinical genomics database
is available, which provides information about all avail-
able and actionable genes and link those to classified dis-
eases and their ICD codes maintained by the WHO. We
had to adopt time-consuming and laborious data evalua-
tion and extraction process. We first learned about avail-
able databases, their associated online websites and tools, file
formats, and data structures.1 We created individual lists of
data extracted from all the sources, and written different data
parsers to classify data and upload data in to our database.
We have included not only protein coding genes but also
functional RNAs as they provide great resources of related
diseases.

Our compiled genes dataset (includes Gencode release
29) consists of total 59 293 genes (19 989 are protein
coding and 39 304 are nonprotein coding) (Table 2). The
nonprotein coding genes are of 24 different types (processed
transcript, lincRNA, antisense, immunoglobulin genes,
bidirectional promoter lncRNA, polymorphic pseudogene,
transcribed unitary pseudogene, transcribed unprocessed
pseudogene, transcribed processed pseudogene, sense

T A B L E 2 Gene database description and statistics

Categories Count
Genes-disease combinations 98 064

Gene types 26

Chromosomes 24

Genes (including aliases) 13 216

Genes (Ensembl IDs) 10 598

Unique diseases 12 257

Genes-disease combinations based on actionable genes 32 089

Distinguished genes-disease source combinations 809

Cancer leading genes 8063

T A B L E 3 SNP database description and statistics

Categories Count
SNP-disease combinations 101 439

SNPs 67 727

Strongest SNP risk allele 73 070

SNP gene IDs 13 979

Reported genes 19 669

Regions 1045

Disease traits 3041

Literature (PUBMED articles) 3186

Contexts 119

overlapping, scRNA, noncoding, unprocessed pseudogene,
unitary pseudogene, vaultRNA, TRC gene, sense intronic,
snRNA, processed pseudogene, to be experimentally con-
firmed genes, T cell receptor genes, pseudogenes, and macro
lncRNA) located at 23 pairs of genomic chromosomes and
mitochondrial DNA, and with over 200 000 gene-disease
combinations. Germline mutation dataset includes over
67 000 SNPs reported for over 19 000 genes, located in over
1000 regions, published with over 3000 articles in over 415
journals available in the PUBMED, and over 100 000 clas-
sified SNP-disease combinations, whereas somatic mutation
dataset encompasses human genes with over 15 million SNPs
coding mutations across over a million samples (Table 3).
Total of 223 key cancer census genes have been subjected
to deep, exhaustive curation by expert scientists, gathering
information from 26 251 papers to date,66 merged with
genome-wide annotations from 466 whole genome and large-
scale systematic screens publications, as well as open access
data from The Cancer Genome Atlas70 and the International
Cancer Genome Consortium.71 All the reported figures have
been calculated by querying our PAS database using SQL,
where all the relevant information extracted from various
sources is restructured and integrated among normalized
relations.

http://www.novoseek.com
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2.1 Healthcare database development of
classified diseases and drugs

Electronic health record (EHR) operational and analytical sys-
tems depend on two main clinical entities: diagnoses and
medications.72,73 The first medical classification system was
released in 1700, and underwent a long evolution through the
late 18th century until 1948, when the WHO took responsi-
bility with the classification of the ICD codes.72-74 To avoid
redundancies and misinterpretations, both are defined and
standardized by medical professionals through universally
assigned lists of clinical codes based on ICDs. The clinical
code-sets offer substantial clinical value to healthcare, which
includes new diagnoses and treatments in clinical research
and population health. These codes are entered in the EHR
system by the medical professionals.74 WHO designs, main-
tains, and updates the ICD codes to standardize nomenclature,
hierarchically systematize, categorize, and structure disease
names in medicine. ICD-9 is still active, which will eventu-
ally be replaced by the 10th or later 11th version. Both ICD-9
and ICD-10 versions are currently used for administrative and
public health statistics, medical databases to report diagnoses,
classifying morbidity data for indexing, medical care review,
and capturing basic health statistics. Comparing both ver-
sions, ICD-9 diagnosis codes are generally broad, while ICD-
10 are more specific and contain much more detail, which will
allow better assessment of the quality, safety, efficacy, and
research of healthcare data. ICD classification is an integral
part of most information systems, for both printed and paper-
less forms.

Potential errors in the usage of ICD codes lie more with
their specificity, which is a result of formulation and designing
based on disease nomenclature,75,76 misdiagnosis,77 and doc-
umentation in electronic and paper records.78 The degree to
which the severity of these consequences is realized depends
on the education of medical professionals and availability
of tools to increase the awareness on code applicability and
potential discrepancy sources.79 In the United States, the
FDA maintains NDC for uniquely labeling and identifying
commercially available drug products. NDC is composed of
FDA-assigned code labels: product codes to identify spe-
cific drug strength, dosage strength, and formulation; and
package codes to categorize package sizes and types. These
codes are well adopted in the United States, especially among
pharmaceutical manufacturers, wholesalers, healthcare insti-
tutions, Medicaid, Medicare, and managed care organizations
for inventory control, identification of potential drug-drug
interactions, medical precautions and drug claims, utiliza-
tion, review, physician order entry, and clinical patient pro-
file screening and counseling. Like ICD codes, NDC codes
have also been inspected for quality and comprehensive-
ness by the FDA in the United States.80,81 Most medical

professionals have to memorize these healthcare codes or con-
sult a reference book or a website when needed. For medical
users, to fully benefit from ICD and NDC classifications, a
user-friendly comprehensive database with associated details
is needed.

Our focus is to create database tool that provides effi-
cient access to clinical disease and drug classification codes,
considered as one of the foundations for clinical operations
and research using medical records. We have developed an
integrated, comprehensive, and centralized database enabling
efficient management and access to the most recent ver-
sions of ICD-9, ICD-10, and NDC for epidemiology, health
management, clinical purposes, and scientific research. This
mobile module assists personnel especially from clinical,
pharmaceutical, and life science communities using medical
databases to validate their data, build upon classified code
lists, match disease definitions, share clinical data as research
objects, and produce study replications. As most of the med-
ical codes and terminologies are difficult to understand and
link to genomics data, our social pledge is to educate individ-
uals by providing them with an app to query, easily explore,
and gain information on the classification of signs, symptoms,
diagnoses, medications prescribed by healthcare institutions,
and genes and SNPs.

PAS can prove to be a fundamental clinical decision
support system application by making the “clinical language”
as meaningful and accurate for system communication with
complete information exchange. Inaccurate information
can compromise the integrity of the clinical content that is
transmitted from one setting to another whether it is between
providers, EMTs, ambulances, clinics, hospitals, and other
settings of care. This may be the only information available
for clinicians to rely on at the point of care. Developing
and implementing a centralized mobile accessed repository
with access to both NDC and ICD, can assist healthcare
providers, researchers, and pharmaceutical companies to
integrate their health information systems interorganization-
ally, exchange product-specific drug information, establish
drug dispensing among pharmacy communities, develop
clinical decision-support systems for disease state manage-
ment, provide point-of-care drug information and patient
counseling services, determine the validity of research, and
perform effective comparisons between studies.

2.2 Genomics database development of genes
and variants

Currently, challenges in synthesizing the existing data
resources are due to lack of technical standards for exchange
and reporting of actionable genetic variants and associated
phenotype, thus limiting the interoperability.1 Many com-
plex diseases, such as cancer, develop with the sporadic
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acquisition of genome alterations. These alterations may
cause functional cellular issues or be inert. Not all mutations
contribute equally to the cancer type in which they are
found. Although the number of unique variants for each
cancer genome can be very high, only a few variants will be
critical for the development of the tumor. This necessitates
the need of bioinformatics tools linked to comprehensive
knowledge bases for identifying genetic variants for potential
clinical action. In this part of the study, we looked at the
existing resources that provide disease-variants information
and then designed and developed a new database based
on the collection of curated distinct and actionable genes
data from available genomics sources worldwide, including
CNVD,82 Ensembl,83 GenCode,84 ClinVar, GeneCards,
DISEASES, HGMD, OMIM, GTR, Orphanet, Novoseek
(www.novoseek.com), Swiss-Prot, and LncRNADisease.
Disease Ontology provides information about human dis-
ease ontologies; DiseaseEnhancer offers disease-associated
enhancers; DISEASES delivers disease-gene associations,
cancer mutations, and GWAS-based SNPs; DisGeNET is
the catalogue of genes and variants, associated with human
diseases; eDGAR provides information about disease-gene
associations with annotated relationships; GTR shares
information about genetic-based disorders; MalaCard is the
collection of gene-disease associations; SwissVar groups
single amino acid polymorphisms; miR2Disease offers
information about human diseases involving microRNA
deregulation; HGMD is the collection of published germline
mutations in genes associated with human inherited diseases;
ClinVar offers information about single amino acid polymor-
phisms; Orphanet provides information about rare diseases;
and Gene2Function maps orthologs among human genes and
common genetic model species (Table 4).1

Scientists around the world have performed large-scale
GWAS23 based on the simple idea that if a genetic vari-
ant increases disease risk, it should be more frequent among
disease cases than healthy controls. Their breakthrough
study initially revealed 24 significant disease-associated DNA
variants.23 The richness of genetic variations in the human
genome has been further corroborated by the several whole
genome-sequencing studies, revealing plenty of new SNPs,
insertions and deletions (indels), copy number variants, and
other structural variations. Later, several thousands of GWAS
have produced tens of thousands of strong associations
between genetic variants and one or more complex traits.23

GWAS require high marker density or resolution, in which
several hundred thousands of SNPs are needed spanning
the whole genome, to achieve comprehensive coverage and
adequate statistical power to detect unknown disease vari-
ants through linkage disequilibrium.23,85,86 Most of the SNPs
are predicted to be neutral without functional effects and
due to their abundance in the human genome, SNPs have
become useful genetic markers in GWAS. The proportion of

mutations causally implicated in cancer is still unknown espe-
cially due to the high number of variations between different
tumors.66 Patient stratification into subpopulations based on
their genetic risk factors will allow us to understand the role
the environment plays in triggering disease. Ultimately, com-
prehensive answers will require much larger patient popula-
tions, detailed clinical databases, and sophisticated technical
approaches to translate GWAS findings into medical practice.

Further extending the database, we added collection of
germline and somatic mutations released globally, including
GWAS Catalog (data mapped to genome assembly), COS-
MIC, CNVD, SwissVar (https://swissvar.expasy.org), and so
on. The criteria for selecting variant databases included clas-
sification of germline and somatic mutations and their asso-
ciations with diseases. We were interested in finding muta-
tion databases, which report all available and actionable genes
with germline and/or somatic mutations with direct or indi-
rect association with classified diseases and their ICD codes.
Due to the heterogeneous, complex, and high volume, variant
data evaluation and extraction process was time-consuming
and laborious. It took us months to download, classify, upload,
and integrate data in to SQL servers. For annotation, we inte-
grated mutations with their respective genes, and linked that
information to related diseases. We performed extensive data
quality assessment to ensure authentic, up-to-date and stan-
dardized information. Our database is freely available public
repository offering annotated disease, drug and genomics data
by integrating genes, SNPs, diseases, and drugs.

Our study intended to correlate the genotype with disease
phenotype, and to identify all the genetic variations that are
associated with the diseases. The objective was to create
broad database, which will help uncover common DNA
differences among people who influence traits, functions,87

or raise the disease risk.88 Our comprehensive approach
provides access to the information related with biological
roots of common and rare diseases to facilitate probing for
anonymous disease variants.89,90 Our designed database has
the potential to extend and support integration of genomic
information into EHR systems defining the population
frequency of variants by assisting curation of massive
population biobanks.91,92 Some studies have benefitted from
identifying high-risk patients and crafting precision medicine
therapies for complex diseases (cancer),93-95 metabolic dis-
eases (type 2 diabetes), autoimmune diseases (psoriasis), and
psychiatric diseases (schizophrenia)96 by discovering gene
variants associated with disease development. The outcome
of these revolutionizing studies raises the fact that well
structuring and packaging of the gene-variant data could pave
way for discovering the genetic roots of common heritable
disorders, more accurate identification of people at risk,
better prevention strategies, and more effective therapies with
fewer adverse effects. This is where our app comes as a com-
plement to the utilization of genomics and healthcare data in

http://www.novoseek.com
https://swissvar.expasy.org
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refining analytical approaches and pursuing functional role
of rare variants.

We open up the world of somatic variations in cancer as
they are used in clinical studies and molecular pathology to
characterize tumor types, to improve the best suited treatment
choice, and to predict response to treatment.97,98 In a clinical
setting, these discoveries are named “secondary findings,” or
“secondary variants (SVs)” and have to be distinguished from
“incidental findings” that are found in the genes linked to the
tested disease.99 This requires extra workload needed for vari-
ant interpretation and confirmation.100,101 For this reason, we
address the needs of clinical research as it provides a great
resource database of published gene variants, which can be
easily integrated into any system to filter out candidates for the
discovery of causal variants. This can aid the clinical genetics
community to form expert panels, to perform high-level cura-
tion for variant interpretations for clinical significance and
identifying genetic variants for yielding new therapeutic tar-
gets and biomarkers for antibodies and vaccines.

2.3 iOS app development for mobile access to
annotated information

With the growing trend of adapting smart phone applications
into biomedical research, it will be helpful to develop com-
prehensive, integrated, and searchable mobile database for
genes, variants, and related disease and drugs. We have devel-
oped an iOS app with Swift programming language, using
the XCODE integrated development environment for MacOS
(Figure 1). Its database is modeled and hosted within the
MySQL database management system, deployed with in a
highly secured environment. The secure socket layer (SSL),
otherwise known as transport layer security, is implemented
for authentication purposes, and data integrity and confiden-
tiality. PAS is based on mobile interface linked to a dedicated
database server. Database is not the part of app but can be
accessed via web server. Dynamic web-based modules are
developed using the PHP scripting language to facilitate data
migration between the iOS app and MySQL database server.
One of the most difficult and complex tasks of implement-
ing an iOS app connecting a mobile interface via PHP pro-
grammed modules to an external web-based MySQL server
for data exchange is the integration of all modules devel-
oped using different programming languages and processed
through different compilers/interpreters that sometimes cause
logical errors, which are hard to debug. Using a secure key,
SSL establishes an encrypted link between web services and
the mobile app.

We established efficient machine-to-machine and human-
to-machine connectivity-based networked communication.
We designed five-layered architecture, based on perception,
processing, business, application, and network layers. Percep-

tion is the physical layer with graphical user interface to get
user input and deliver output (Supplementary Material: PAS
Guide and Workflow Design). Processing is the middleware
layer, responsible for handling user requests. Business layer
provides overall IoT system actions and functionality, for-
wards processed user requests to the database server via web
server, and brings the results to the user interface. Application
layer delivers application-specific services to the user. Net-
work layer is responsible for receiving data from the percep-
tion layer and transmitting it to the application layer through
available network technologies, and support data management
from storing to processing with the help of middleware. The
rapid growth in genomics data sources and types requires
robust and automatic translation to different formats. One of
the greatest challenges here was to deal with the daunting
complexity of the genomics data, as the diverse structures of
its databases and exported files are with different numbers of
fields and data types. We developed a data extraction, trans-
fer and loader (ETL) software in Java, which adopts super-
vised learning method to understand and validate structure of
data source. In our case, data were available in different file
formats (eg, csv, excel file, text, etc), which were uploaded
using newly developed ETL software. We run ETL process
for weeks to upload the data, especially somatic mutations, as
the numbers were in millions.

Developed app is tested using XCODE-provided simulator
and real Apple mobile devices with the most recent iOS
versions, and is reviewed and approved by the Apple, and is
freely available to download at the App Store. The graphical
user interface of PAS is very flexible and can be installed and
well executed at both iPhone and iPad devices. Furthermore,
it facilitates automatic vertical and horizontal resolution con-
figuration. Its technology benefits include enhanced security,
filtered audience, better user experience, flexible user inter-
face, stable movement and orientation, internet access, and
consistent system environment. While development, app was
divided into three different modules: clinics, genomics, and
clinical genomics. Product line architecture of app is based
on the Butterfly model,102,103 where all major modules are
capable of performing individual key roles and can integrate
with each other. The overall design and workflow is flexible
to accommodate new releases and updates of genes, SNPs,
diseases, and drugs without requiring its users to install its
new version but automatically updating database. Having
updates at the user interface, automatics upgrade notifications
will be served to the user for downloading latest released
version of the app. Gene module is designed to simplify
navigation across the landscape of gene annotation resources
by an efficient mobile record search engine, which is based
on standardized genes and related diseases to help explore
multipurpose clinical and genomics concepts in meaningful
ways. Germline and somatic SNP modules are composed of
mutations reported for genes and their combinations with
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F I G U R E 1 PAS components design,
development, and data flow. PAS is an iOS app
developed with Swift programming language,
XCODE integrated development environment
for MacOS, MySQL database management
system, PHP scripting language, and
UNIX-based web and database servers

disease traits, when disease and drug modules are based
on ICD-9, ICD-10, and NDC. The normalized relational
database includes lists of WHO-maintained ICD-9 and
ICD-10 lists downloaded from the Center for Medicare &
Medicaid Services, and FDA-approved NDC codes.

The graphical user interface implements human-computer
interaction principles (Figure 2). It provides user profile,
login, and password management modules, which requires
new users to first create an account and login with valid
credentials. The major reasons to request users to first register
and login is to apply security features to the app to track
its usage and backtrack in case of any trouble, breach, and
violation. In the future, we are looking forward to implement
AI and machine learning-based features to help users in
finding data of their interest based on their search history, and
having their profile will be extremely useful in such cases.
Moreover, having users email address is useful, especially
to inform for major updates to the app and database. At
successful login, users are directed to the main menu leading
to the clinics, genomics, and clinical genomics interfaces.
Genomics leads to three subinterfaces: genes, SNPs, and
somatic SNPs. Genes allow users to search for genes and
relational information, which includes gene name, Ensembl
ID, type, and chromosome. SNPs allow users to search for
SNP and relational information, which includes reported
gene, mapped gene, SNP ID, chromosome, chromosome
position, region, context, platform, and PUBMED ID.
Somatic SNPs allow users to search for somatic mutations for
a gene with detailed gene, mutation, and sample information,
which includes reported gene name, accession number, ID
tumor, gene coding sequences (CDS)104 length, sample
name, ID sample, primary site, mutation ID, Site subtype,
mutation, mutation description, mutation CDS, Genome
Reference Consortium Human (GRCH), mutation genome
position, functional analysis through hidden Markov mod-

els (FATHMM) prediction,105 FATHMM score, mutation
somatic status, sample type, tumor origin, ID study, age, and
PUBMED ID for the published study.

Clinical genomics leads to three subinterfaces: genes &
disease, germline SNP & disease, and somatic SNP & dis-
ease. The gene to disease interface let users search for genes
and related diseases, and vice versa. SNP to disease interface
let users search for related diseases, which includes reported
gene, SNP, chromosome, context, disease, and study. The
somatic SNP & disease interface gives concise information on
gene search, which includes reported gene name, primary site,
primary histology, histology subtype, mutation ID, mutation
description, mutation genome position, and accession num-
ber. Clinic leads to four subinterfaces: ICD-All, ICD-9, ICD-
10, and NDC. ICD-All allow users to search for ICD-9, ICD-
10, or disease-related information for both ICD-9 and ICD-10
databases. The ICD-9 interface let users search only ICD-9
and similarly, the ICD-10 interface only searches for ICD-10
code lists and related details. The NDC interface enables users
to search for NDC and related details, which includes product
ID, product NDC, product type name, proprietary name, non-
proprietary name, dosage form name, route name, marketing
category name, application number, labeler name, substance
name, active numerator strength, active Ingred unit, pharm
classes, and listing records certified through.

3 RESULTS

PAS is an easy-to-use application designed to simplify
navigation across the landscape of gene annotation resources
by an efficient mobile record search engine, which is based
on standardized genes and related diseases to help explore
multipurpose clinical and genomics concepts in meaningful
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F I G U R E 2 PAS graphical user interface and work flow design

ways. Here, we present reproducible results to help users
better understand the data mining, management, search,
and analytics capabilities of all four modular apps and
integrative-databases of PAS.

Validating PAS (Figure 3), we designed use case for
10 most common infectious diseases, which includes gene
results with 22 chlamydia (sexually transmitted infection
caused by the bacterium Chlamydia trachomatis)106 (Fig-
ure 3A), 86 influenza (viral infection that effects respiratory
system)107 (Figure 3B), 31 staph (infection caused by the
Staphylococcus genus of bacteria)108 (Figure 3C), 103 herpes
(infection caused by Herpes Simplex Virus)109 (Figure 3D),
16 shigellosis (diarrheal disease caused by a group of bac-
teria called Shigella)110 (Figure 3E), 102 syphilis (sexually
transmitted infection caused by the bacterium Treponema
pallidum)111 (Figure 3F), 185 pneumonia (infection of the
lungs)112 (Figure 3G), 325 hepatitis-C (viral infection that
causes liver inflammation)113 (Figure 3H), 20 common cold
(viral infection of your nose and throat)114 (Figure 3I), and
17 salmonellosis (bacterial disease that affects the intestinal
tract)115 (Figure 3J).

Validating PAS (Figure 4), we designed two use cases
based on three different most common genetic diseases:
diabetes (group of metabolic disorders characterized by a
high blood sugar level),116 schizophrenia (serious mental
disorder),117 and autoimmune diseases (condition arising
from an abnormal immune response to a normal body part).118

In first use case: 2174 results are obtained while looking
for all available SNPs related to the diabetes (Figure 4A),
2583 results for autoimmune disease (Figure 4B), and 2286
results for schizophrenia (Figure 4C). Obtained results also
include information about reported genes, chromosomes, con-
texts, diseases, and studies. In second use case: we randomly
selected three SNPs mainly lined to autoimmune diseases,
diabetes, and schizophrenia, and looked for all possible asso-

ciations with major and other diseases. SNPs for autoim-
mune diseases include major histocompatibility complex,
class II, DR Beta 1 gene HLA-DRB166 (mainly associated
with rheumatoid arthritis), tumor necrosis factor receptor type
1 gene (TNFRSF1A)95 (mainly associated with multiple scle-
rosis and ankylosing spondylitis), and protein tyrosine phos-
phatase nonreceptor type 22 gene (PTPN22)29 (mainly asso-
ciated with increased risk of type 1 diabetes, systemic lupus
erythematosus, vitiligo,119 autoimmune thyroid disorder,120

and ulcerative colitis121 but is protective against Crohn’s dis-
ease). Obtained results present 216 SNP-disease combina-
tions for the HLA-DRB1 (Figure 4D), 35 for the TNFRSF1A
(Figure 4E), and 44 for the PTPN22 (Figure 4F). SNPs for
diabetes include hepatocyte nuclear factor 1 gene (HNF1),94

hepatocyte nuclear factor 4-alpha gene (HNF4A)94 (involved
in monogenic conditions) and paired box 4 gene (PAX4)94

(identified in East Asian population). Obtained results include
142 SNP-disease associations for the HNF1 (Figure 4G), 46
for the HNF4A (Figure 4H), and only 2 for PAX4 (Fig-
ure 4I). SNPs for schizophrenia include dopamine receptor
D2 gene (DRD2), calcium voltage-gated channel auxiliary
subunit beta 2 gene (CACNB2), and glutamate metabotropic
receptor 3 gene (GRM.3)40 Obtained results present 10 SNP-
disease combinations related to the DRD2 (Figure 4J), 45
related to the CACNB2 (Figure 4K), and 16 related to the
GRM3 (Figure 4L).

We designed another use case to validate PAS for gene-
variants (Figure 5), which include somatic mutations (hall-
mark for cancer) related to eight different reported genes:
estrogen receptor 1 gene (ESR1),128 AKT serine/threonine
kinase 1 gene (AKT1),129 Erb-B2 receptor tyrosine kinase
2 gene (ERBB2), breast cancer type 1 susceptibility pro-
tein gene (BRCA1),5 breast cancer type 2 susceptibility pro-
tein gene (BRCA2),5 RNA binding motif protein 10 gene
(RBM10),99 protein tyrosine phosphatase nonreceptor type 13
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F I G U R E 3 PAS (iPhone 11 Pro) screenshot of gene results from searches for the 10 most common infectious diseases in the United States: (A)
22 chlamydia, (B) 86 influenza, (C) 31 staph, (D) 103 herpes, (E) 16 shigellosis, (F) 102 syphilis, (G) 185 pneumonia, (H) 325 hepatitis-C, (I) 20
common cold, and (J) 17 salmonellosis

gene (PTPN13), and protein phosphatase 6 catalytic subunit
gene (PPP6C).93 Obtained results present 216 combinations
of mutations and related diseases for “ESR1” (Figure 5A and
I), 178 for “AKT1” (Figure 5B and J), 600 for “ERBB2” (Fig-
ure 5C and K), 344 for “BRCA1” (Figure 5D and L), 574
for “BRCA2” (Figure 5E), 125 for “RBM10” (Figure 5F),
110 for “PTPN13” (Figure 5G), and 71 matches for “PPP6C”
(Figure 5H).

Validating PAS for disease codes (Figure 6), we designed
four use cases based on four different most common diseases:
diabetes, influenza, fever, and sterile. In all use cases, we
looked for available codes (ICD, ICD9, ICD10, and NDC)
related to these four diseases. Obtained results for diabetes
include total 577 ICD (Figure 6A), 69 ICD9 (Figure 6B), 508
ICD10 (Figure 6C), and 6 NDC (Figure 6D) codes. Obtained
results for influenza include total 44 ICD (Figure 6E), 16
ICD9 (Figure 6F), 28 ICD10 (Figure 6G), and 14 NDC (Fig-
ure 6H) results. While looking for fever, we found total 110
ICD (Figure 6I), 48 ICD9 (Figure 6J), 62 ICD10 (Figure
6K), and 284 NDC (Figure 6L) results, and obtained total 18
ICD (Figure 6M), 9 ICD9 (Figure 6N), 9 ICD10 (Figure 6O),

and 138 NDC (Figure 6P) results for sterile. High resolution
images of figures (3, 4, 5 and 6) are attached in supplementary
material.

Since last few months, an infectious disease i.e., Coro-
navirus (COVID-19) caused by the SARS-CoV-2130 has
effected the whole world. Despite many significant sci-
entific and medical discoveries, the genetics of pandemic
COVID-19 remains far from clear. As of today (04/16/2020)
over 657 720 cases have been confirmed and over 33 460
deaths have been reported in USA as a result of COVID-
19, when over 2 101 164 people have been effected and
over 140 773 have died worldwide. However, over 53 322
people have recovered in USA, and over 532 830 globally
(https://google.com/covid19-map/?hl=en). Highlighting the
useful contribution of our app and database in this situation,
users can look for the relevant disease (Coronavirus) specific
information (Fig. 7A), genes (Fig. 7B and 7C), and variants
(Fig. 7D and 7E) including ACE2 and TMPRSS2.131

PAS brings the power of quicker excess to mutation data
in healthcare, especially cancer research as an iOS app and
a unique resource as a cancer-variant database. Over 450
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F I G U R E 4 PAS (iPhone 11 Pro) screen shots present searched results for all possible SNPs related to diabetes (2174), immune (2583), and
schizophrenia (2286) diseases; searched results for diabetes-related SNPs: HNF1 (142), HNF4A (46), and PAX4 (2); searched results for auto
immune disease-related SNPs: HLA-DRB1 (216), TNFRSF1A (35), and PTPN22 (44); and searched results for schizophrenia-related SNPs: DRD2
(10), CACNB2 (45), and GRM3 (16)

research articles are indexed on PubMed, and only ∼5% of
those are supplemented with clinical codes,72 and few for
NDC. Drawing on patient-based classified clinical entities of
interest often requires iterative code-based searches in med-
ical databases and help from clinical experts. The resultant
information could lead to a particular disease condition as
a combination of codes representing diagnoses, symptoms,
prescribed drugs, and diagnostic tests, as well as a simple
code or list. In such cases, our app aims to assist clinicians
and researchers with easy navigation and free portable access
to diagnostic and drug codes for efficient and quick disease
and drug classifications. Individual practices can also benefit
from PAS with better metrics to measure their performance
relative to their peers, contain costs, spot disease risks, iden-
tify patients in need of immediate disease management, and
uncover opportunities for greater efficiency. This will enable
physicians to funnel the right patients into the right programs,

and better refine disease management for those already in a
program, outreach to the patients to deliver preventative care
versus more serious and costly care when a condition becomes
an emergency. The comparability factor for quality measure
reporting is of special interest to organizations, while patients
may want to look up the medical billing codes. The codes
may be of interest to the medical biller who can send the
coded claim to the health insurance company for processing.
Researchers may use the data to determine disease incidence
and prevalence across geographic areas, ages, or in conjunc-
tion with other diseases.

4 DISCUSSION

The pursuit of the genetic roots of common illnesses is, at its
heart, a quest for better prevention and treatment of disease.
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F I G U R E 5 PAS (iPhone 11 Pro) screen shots present eight searched results for all possible SNPs related to the eight different genes: 216 results
for “ESR1” (A), 178 results for “AKT1” (B), 600 results for “ERBB24” (C), 344 results for “BRCA1” (D), 574 results for “BRCA2” (E), 125 results
for “RBM10” (F), 110 results for “PTPN13” (G), and 71 results for “PPP6C” (H). Figure 4 also presents four examples of searched results for all
possible SNPs and their diseases relationships: 216 results for entered and searched keyword “ESR1” (I), 178 results for entered and searched
keyword “AKT1” (J), 600 results for “ERBB24” (K), and 344 results for “BRCA1” (L)

We are entering the era of personalized medicine in which an
individual’s genetic makeup will eventually determine how a
doctor can tailor his or her therapy. Therefore, it is becoming
critical to understand the genetic basis of common diseases,
for example, which genes predispose individuals to diseases,
which gene interactions affect disease risk, and how do rare
genetic variants contribute to diseases? Human diseases are
at the heart of extensive research encompassing genomics,
bioinformatics, systems biology, and systems medicine. To
get new insights into disease taxonomy, etiology, and patho-
genesis, it is important to understand how diseases are related
to each other.42 In the past, various efforts have been made
in deciphering diseases to facilitate predictive diagnosis and
thereby guide treatment factors, which include drawing dis-
ease relationships using clinical manifestations,118 healthcare
records, images and data generated using wearable technology

and AI,50 along with information encapsulated within related
genes,122 signaling,123 and metabolic pathways,124-126

microRNAs,127 chemo-centric views,128 phenotypic
characteristics, microbes,129 and proteins.132 Differences
among humans can be divided into two broad categories:
biological and environmental. Variation is inherent in humans
and it is the result of fundamental biological and environmen-
tal processes, ensuring vitality, ability to adapt to changing
environments and even the very survival. The former includes
genetic mutations, while the environment induces somatic
mutations. A typical gene can have a multitude of variants
that have not yet been documented to have a relationship
with a disease or a phenotype. Gene-disease data are highly
significant at every level of biological research and health-
care but with inconsistencies and inabilities in terms of gene
annotation, specificity of disease classification terminologies
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F I G U R E 6 PAS (iPhone 11 Pro) screen shots present searched results obtained during use cases for four different diseases: diabetes, influenza,
fever, and sterile. Diabetes includes total 577 ICD (A), 69 ICD9 (B), 508 ICD10 (C), and 6 NDC (D). Influenza includes total 44 ICD (E), 16 ICD9
(F), 28 ICD10 (G), and 14 NDC (H). Fever includes total 110 ICD (I), 48 ICD9 (J), 62 ICD10 (K), and 284 NDC (L). Sterile includes total 18 ICD
(M), 9 ICD9 (N), 9 ICD10 (O), and 138 NDC (P)

F I G U R E 7 PAS (iPhone 11 Pro) screen shots present searched results obtained for infectious disease i.e., Coronavirus (Fig. 7A), genes (Fig. 7B
and 7C), and variants (Fig. 7D and 7E) including ACE2 and TMPRSS2
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adds to the complexity and lack of an efficient integrative
searchable system that makes it difficult to comprehend the
underlying implications.

Genome-scale (genome, transcriptome, proteome,
metabolome, microbiome, and epigenome) science is
becoming increasingly common with the advancement of
high-throughput technologies. The technological devel-
opments have facilitated and accelerated the process of
identifying genetic variations, especially with the arrival
of NGS technologies, which have made whole genome
sequencing and the 1000 Genomes Project feasible.133,134 A
key challenge in this realm is NGS interpretation. Scientists
are faced with the daunting challenge of identifying candidate
genes that are relevant to their biological system of interest.
Most often, the researcher only has direct knowledge of a
few, if any, candidate genes. The clinical interpretation of
the significance of specific gene variants can be unique to a
patient. Variability in interpretation for sequence variants is
due, in part, to the lack of standard curated information to
support clinical decision making.1 Currently, the investiga-
tion of existing databases is required to assess the potential
significance of even one sequence variant, and that is a
cumbersome, time-consuming, and increasingly unfeasible
process with regard to the identification and reports of
variants in actionable genes because of the absence of a
standard centralized platform for connecting genes to their
disease phenotypes.135 In this study, we present our research
to collect, explore, and share genes and disease information to
support pathology and epidemiology for the implementation
of precision medicine. It is founded on clinical, scientific,
and modern technologies posit to support healthcare through
free portable public research enabling scientific data retrieval
using efficient mobile-based tools.

One platform that has proven to be an efficient tool in
several areas, including healthcare, is the mobile applica-
tion. Since the release of the first iPhone in 2007, Apple
has sold more than a billion iPhones worldwide. As iOS sys-
tems have become increasingly popular and the medical com-
munity is flocking to iPhones and iPads, there is no iOS
app publically available, which can provide unified access to
genomic, clinical, and pharma databases with easy naviga-
tion and free portable access to genes and related diseases
and drugs for efficient and robust classifications. The rea-
sons could be extensive heterogeneity of clinical and genomic
data collection and management, or addressing complexi-
ties of implementing an Apple mobile app. The objective
of our research is to create centralized gene-SNP-disease-
drug database, which not only stores, organizes, and shares
data in a structured and searchable manner but also facilitates
data retrieval with smartphone application, including visual-
ization features for analytics and implementing all available
and actionable genes-based data classification. Looking at the
existing gaps and unmet clinical, research and market needs of

healthcare, genomics, pharmaceutical, and biomedical com-
munities, we offer a new solution with a social pledge to
help individuals by providing them with an interactive app to
query, easily explore, and access information on gene anno-
tation and classified disease phenotype with greater visibil-
ity and easy browsing. The gene-SNP-disease-drug querying
ability offered by the app provides the user with an impor-
tant knowledge discovery tool, just a click away from any
location.

Employing the power of mobile technology to integrate
multiple data streams is certainly challenging, since it involves
a huge amount of data collection, structuring, management,
processing, authentication, integration, and sharing. However,
it is tremendously rewarding to assist the clinicians to directly
interpret a patient’s genomic profile and collaborate with the
scientists to translate variant data to therapy. The genetic
architecture of complex diseases remains elusive. It is unclear
how much each type of genetic variation contributes to inher-
ited risk and the relative proportion of rare versus common
variants. When collecting the data sources, along with the last
maintenance update year, it was noticed that some databases
have not been updated in the last few years and some have very
limited data (eg, over a few hundred or a thousand genes).1

Most databases and tools have multiple sources at backend,
which at times prove to be a double-edged sword. On the one
hand, more data sources enrich the capacity of the databases
and on the other hand, too many data sources may make it dif-
ficult to avoid entry of uncertain or erroneous data. We tried
to address this data heterogeneity by standardizing the data on
a single platform.

Mapping genes to their diseases and at the same time,
mapping the diseases to their respective codes will provide
a crosscut to find drugs and the therapeutics for specific
patients when our database is applied to real human medical
records linking their disease diagnosis to known and identi-
fied causative genes and variants. The underlying assumption
here is that creating a database with smart distillation and
abundant distribution of genes and SNPs linked to the clas-
sified diseases and drugs through their description and IDs
(eg, ICD and NDC) can support both clinical and research
environments.1 We have performed and reported (Table 4)
comparison of different gene-disease databases. We evalu-
ated, whether these provide information related to genes, gene
to disease, disease to ICD code, data types, data sources,
gene capacity, latest updates, searched results, and user friend-
liness. There are only few databases available (eg, Disease
Ontology, DISEASES, and Orphanet), which provide ICD
codes for each disease but not directly linked to the genes.
Such database must not be redundant and should only include
human reference genome and disease-based information col-
lected from valid sources available worldwide. It is very
important to facilitate interested users with efficient, user
friendly, easy navigation, and free portable access to the
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database using platforms that have proven to be efficient tools
in several areas, including healthcare, for example, iOS appli-
cations.

We started this research project by conducting an exten-
sive study at available gene and disease annotation reposi-
tories and resources for research and clinical purposes.1 We
enhanced the scope of our research project with the imple-
mentation of a new gene-disease database (PAS-Gen).136

The goal was to collect all distinct, authentic, and action-
able genes-based information and related diseases from max-
imum possible available sources. In this paper, we have
presented further extended research to our research project,
with the inclusion of over a million somatic mutations, over
100 thousand germline mutations, and available clinical rel-
evant drug and disease codes, and their variable associa-
tions. In the future, we are looking forward to extending the
scope of our database and application by adding more useful
data science and visualization features. We will implement
multifunctional modules based on machine learning algo-
rithms, which will help clinical and genomics data integra-
tion and facilitate natural language processing-based search.
Currently, we are focused on Homo sapiens and in the future,
we will be extending our research and development, includ-
ing available genomes of other species, especially Mus mus-
culus, Drosophila melanogaster, and microbes. Furthermore,
we are looking forward to expanding our research project
with the development of new project web page and online
tools.

5 CONCLUSIONS

This is the era of Big Data, where human-related biologi-
cal databases continue to grow not only in count but also
in volume, posing unprecedented challenges in data storage,
processing, exchange, and curation. We developed a cutting-
edge gene-SNP-disease-drug database accessible through a
smart phone application, integrating information about clas-
sified diseases and related genes, germline and somatic muta-
tions, and drugs. The study focused on developing a tool that
might help others (mainly researchers, medical practitioners,
and pharmacists) in having a broad view of genetic variants
that may be implicated in the likelihood of developing cer-
tain diseases.1 We have developed a platform that can pro-
vide new understandings into the information about genetic
basis of human complex diseases and contribute to assimilat-
ing genomic with phenotypic data for the availability of gene-
based designer drugs, precise targeting of molecular finger-
prints for tumor, appropriate drug therapy, predicting individ-
ual susceptibility to disease, diagnosis and treatment of rare
illnesses are all a few of the many transformations expected
in the decade to come.
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