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Alzheimer's disease (AD) is the most common cause of dementia in late life. It is difficult to

precisely diagnose AD at early stages, making biomarker search essential for further

developments. The objective of this study was to identify protein biomarkers associated

with aluminum ions toxicity (AD-like toxicity) in a human neuroblastoma cell model, SH-

SY5Y and assess potential prevention by NAP (NAPVSIPQ). Complete proteomic techniques

were implemented. Four proteins were identified as up-regulated with aluminum ion

treatment, CBP80/20-dependent translation initiation factor (CTIF), Early endosome anti-

gen 1 (EEA1), Leucine-rich repeat neuronal protein 4 (LRRN4) and Phosphatidylinositol
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3-kinase regulatory subunit beta (PI3KR2). Of these four proteins, EEA1 and PI3KR2 were

down-regulated after NAP-induced neuroprotective activity in neuroblastoma cells. Thus,

aluminum ions may increase the risk for neurotoxicity in AD, and the use of NAP is sug-

gested as a treatment to provide additional protection against the effects of aluminum

ions, via EEA1 and PI3KR2, associated with sorting and processing of the AD amyloid

precursor protein (APP) through the endosomal system.

Copyright © 2019, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan

LLC. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Alzheimer's disease (AD), first described by a German neurol-

ogist Alois Alzheimer in 1906, dramatically affects the brain.

The symptoms of AD include language problems, short-term

memory loss, slow loss of memory, and unpredictable

behavior. Dr. Alzheimer found postmortem brain tissue

changes in a woman who had died of an unusual mental

illness. The original findings included multiple abnormal

clumps (amyloid plaques) and tangled bundles of fibers

(neurofibrillary tangles). Plaques, tangles and loss of connec-

tions between nerve cells (neurons) in the brain are the main

features of AD. AD is themost common cause of dementia late

in life and it is a devastating neurological disorder accounting

for about 50% of all dementias, which involve multiple pa-

thologies in the complex biological systemof the brain [1]. AD is

a neurodegenerative disease, which means progressive brain

damage coupled with gradually increasing symptomatic

severity. The processes resulting in the catastrophic brain

damages associatedwith AD is still an enigma, and it is difficult

and time-consuming to diagnoseADat its very early stage [2,3].

Aluminum is the third ranking element (after oxygen

and silicon) in the crust of earth, and is the most abundant

metallic element. Previously, studies have indicated that

physiological concentrations (30 and 300 mmol/L) of aluminum

ions can promote the mitosis of epithelial cells. Less than

physiological concentrations of aluminum ions may interact

with DNA and protein synthesis in cells, similar to other toxic

trace elements. It is also indicated that excessive intake of

aluminum ions may be one of the risk factors for AD and

damage to the nervous system [4].

Previous studies have also indicated some candidate

screening biomarkers for AD may be tau and phosphorylated

tau in saliva [5], and a-2-macroglobulin, amyloid, and apoli-

poproteins in serum [6e8]. The most reproducible biomarker

findings were decreased expression of b-amyloid1e42 and

increased expression of tau and phospho-tau (ptau-181) in

cerebrospinal fluid (CSF) samples [5,9e12]. However, obtaining

CSF for clinical diagnosis in the early stage of AD is chal-

lenging. A diagnosis is made primarily on clinical grounds

and, to date, there are no well-defined biochemical bio-

markers available for early stage diagnosis.

Previously, complete proteomics of AD serum identified

activity-dependent neuroprotective protein (ADNP, 124 kDa) as

the only protein decreasing in AD vs. matched controls [13].

Furthermore, serum ADNP levels paralleled intelligence test

performance in elderly individuals [14]. Originally, ADNP was
discovered as a glial cell mediator of a vasoactive intestinal

peptide associated with neuroprotection and essential for brain

development [15e17]. In the hippocampus, cerebral cortex, and

cerebellum, the highly conserved ADNP gene is abundantly

expressed [18,19]. It is implicated inmaintenance of cell survival

through chromatin remodeling, cytoskeletal protection modu-

lation of p53 expression [20e25]. In a previous study, the mRNA

expression of ADNP in hippocampus and cerebellum in early

stage of AD was detected using mouse model [19]. NAP also

protects cerebral cortical neurons against the major AD toxic

peptide b-amyloid1e42 and inhibits b-amyloid1e40 aggregation

[26,27]. Several studies have shown that ADNP was involved in

neuroprotection, central nervous system (CNS) development

and immunoregulation for the brain damage [17,18,24,25,28].

The expression of ADNP may be related to neurogenesis in the

hippocampus as part of endogenous compensatory mecha-

nisms triggered by AD onset and b-amyloid toxicity [19,21e23].

Structure activity studies identified a short octapeptide

sequence in ADNP, NAP, as a multi-functional protective

peptide, (Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln; single-letter code,

NAPVSIPQ, ADNP amino acid sequence from 354 to 361) [15].

NAP plays an important role in neuronal differentiation and

the survival of neurons in different pathological conditions

[29]. The structure of NAP allows membrane penetration,

which interacts with tubulin binding and enhances microtu-

bule assembly toward cellular protection in astrocytes to in-

crease neurite outgrowth and to protect neurons and glial

cells against toxicities [30,31]. NAP directly interacts with

microtubule end-binding proteins (EBs) and has an impact on

the microtubular processes mediated by EBs, such as tau-

microtubule association, microtubule dynamics and assem-

bly, and neurite outgrowth [32e34]. It also presents anti-

oxidative and anti-apoptotic properties and exerts protective

actions against different types of cholinergic neurotoxicity.

NAP also prevents neuronal death associated with chronic

neurodegenerative disorders [31]. Thus, the mechanisms of

NAP may include anti-inflammatory effects, antioxidant ac-

tivity, inhibition of protein aggregation and interaction with

microtubules [35]. In previous studies, it has been indicated

that NAP could prevent ethanol-induced developmental

toxicity, embryotoxicity, and has a potential importance of

decreasing ethanol effects on the pathophysiology of fetal

alcohol syndrome (FAS) [36,37]. In AD research, the apolipo-

protein E (APOE) E4 allele has been implicated as a risk factor

[38]. NAP also provides neuroprotection in Apo E deficiency

[15] and is able to break amyloid aggregation and protect

against b-amyloid toxicity [27,38,39]. Neurofibrillary tangles,
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composed of hyperphosphorylated tau aggregation, are one of

the major pathological hallmarks of AD [40]. NAP treatment

may reduce the tau pathology and the extent of phosphory-

lation at the early stages of AD [41]. NAP mimics the neuro-

protective activity protein and can cross the blood-brain

barrier (BBB). Thus, the use of NAP is suggested for treatment

as an additional protection in injured brain patients [28,42].

In this study,wewill set out to elucidate the neuroprotective

activity of NAP in vitro. To understand the physiological signif-

icance of NAP, the SH-SY5Y cell model was developed by using

aluminum ions as the toxic element. We aimed to investigate

the effect of NAP on neuroprotection and neurogeneration in a

prodromal stage of AD, and set out to elucidate the pathways

involving NAP activities during aluminum exposure in a

neuronal model system, utilizing proteomic approaches.
2. Methods and materials

2.1. SH-SY5Y cell culture

The human neuroblastoma cell line, SH-SY5Y was obtained

from Bioresource Collection and Research Center of Taiwan.

Cells were grown in a 1:1 mixture of ATCC-formulated Eagle's
Minimum Essential Medium and F12 Medium, which was

complemented by: 100 U/ml penicillin and fetal bovine serum

to a final concentration of 10%. SH-SY5Y cells were incubated

at 37 �C in 5% CO2 for 12 h for investigation of the adhesion of

the cells. After 24 h incubation, the aluminum chloride (AlCl3)

and NAP were added into the medium for cell culture for 24 h.

Previous studies have shown Zinc and NAP effect on micro-

tubule dynamics in shorter periods of time (e.g. 2e4 h) [32e34].

However, effects on cell shape were seen after 24 h [32]. We

therefore chose the 24 h time period with plans to also

investigate shorter and longer time periods of incubation in

follow up studies. It should be noted though that aluminum

ion concentrations higher than 300 or 100 mM were toxic to

cells for the exposure of 48 and 72 h (see results).

2.2. BrdU and LDH assay

Cell proliferation was determined by BrdU cell proliferation

assay kit (Millipore). The assay was performed according to

the manufacturer's instructions. Briefly, 1 � 103 SH-SY5Y cells

were seeded in a sterile 96-well tissue culture plate and

incubated for 48e72 h. Then, SH-SY5Y cells were incubated in

the culture medium containing BrdU reagent for 2 h. Fixing

solution had been added before the absorbancewasmeasured

at 450 nm by ELISA reader.

The cell cytotoxicity study was performed with the lactate

dehydrogenase (LDH) leakage assay leakage into the culture

medium. The LDH assay was based on the conversion of

lactate to pyruvate in the presence of LDH with a parallel

reduction of NAD. The formation of NADH from the above

reaction resulted in a change of absorbance at 340 nm.

2.3. Determination of malondialdehyde concentration

Lipid peroxidation was determined by measuring the amount

of malondialdehyde (MDA) using a TBARS Assay Kit
(Thiobarbituric Acid Reactive Substances Assay Kit, Cayman

Chemical). To prepare the color reagent, 530 mg of thio-

barbituric acid (TBA) was weighed and added into a beaker

containing 50 mL of diluted TBA acetic acid solution. Subse-

quently, 50 mL of diluted TBA sodium hydroxide was added

and mixed until the TBA was completely dissolved. Each cell

lysate sample (100 mL) was added into a 15 mL centrifuge tube

and thoroughly mixed with 100 mL of TBA SDS solution. Then,

4 mL of the color Reagent was added into the 15 mL centrifuge

tube, and the mixture was incubated in boiling water for a 1 h

reaction time. The 15 mL centrifuge tube was then removed

and placed in an ice bath for 10 min to stop the reaction. The

resulting solution was centrifuged at 1600 g at 4 �C for 10 min,

and then set at room temperature for 30min. The supernatant

(100 mL) was loaded into the wells of a microplate, and the

absorbance was measured at 520 nm using an ELISA reader.

2.4. Free radical scavenging activity using DPPH

The antioxidant activity of the aluminum ion with NAP treat-

ment was determined using 1,1-diphenyl-2-picrylhydrazyl

(DPPH) radical. DPPH is a stable free radical with purple col-

oring and has a maximum absorption at 520 nm. The free

radical-scavenging assay was based on the decoloration of the

compound when reduced by a free radical scavenger. Briefly,

0.5 mM DPPH ethanolic solution was freshly prepared in

reserve. Each cell lysate sample (50 mL) was added to 750 mL of

DPPH ethanolic solution and diluted with an extra 200 mL of

ethanol. Then, 750 mL of DPPH ethanolic solution and 250 mL of

ethanol weremixed as a control. The resulting solution (150 mL)

was loaded into the wells of a microplate, and the absorbance

was then measured at 520 nm using an ELISA reader. Quintu-

plicates of the control and the cell lysate samples were

performed.

The DPPH radical scavenging activity (%) was calculated

using the following formula:

radical scavenging activity ð%Þ ¼
�
1� Ai

Ao

�
� 100

where A0 and Ai are the absorbance of control and test

samples, respectively.

2.5. ELISA analysis

Each cell lysate sample was analyzed for the concentrations

of expectant and candidate proteins in duplicate, using

commercially available enzyme-linked immunosorbent assay

(ELISA) kits. The protein concentrations were tested by stan-

dard protocols, as suggested by the manufacturer. The ELISA

reader model was Multiskan EX (Thermo scientific, Vantaa,

Finland). Statistical significance was determined by using the

two-tailed Fisher exact test at p < 0.05 and ROC analysis.

2.6. Protein identification by proteomic approaches

After incubation with aluminum ion and NAP for 24 h, SH-

SY5Y cells are washed using phosphate-buffered saline and

lysed using radioimmunoprecipitation assay (RIPA) cell lysis

buffer. Cell lysates were centrifuged at 1500 g for 10min at 4
�
C

and filtered through a 0.8 mm filter. Cell lysate samples (100 mL)
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Fig. 1 e The cell proliferation and viability of SH-SY5Y cells

treated with aluminum were measured by (A) BrdU and

(B) LDH assays. (mean ± standard error, 6 repeats, *p < 0.05,

t-test).
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were reduced, alkylated, and then digested with trypsin ac-

cording to standard protocols [43]. Formic acid (2 mL)was added

to each sample prior tomass spectrometric analysis for protein

identification. Complex peptidemixtureswere separated using

RP-nano-HPLC-ESI-MS/MS (nanoACQUITY UPLC, Waters, Mil-

ford, MA, USA coupled to an ion trap mass spectrometer LTQ

Orbitrap Discovery Hybrid FTMS, Thermo, San Jose, CA, USA).

Each cycle of one full scan mass spectrum (m/z 400e2000) was

followed by four data-dependent tandem mass spectra, with

collision energy set at 35%. For protein identification, Mascot

software (Version 2.2.1, Matrix Science, London, UK) was used

to search the Swiss-Prot human protein sequence database.

Positive protein identifications were defined when the Mowse

scores were considered significant (p < 0.05). All Mascot results

were manually confirmed by visual assessment of the MS/MS

spectra for overall quality. It required a readily observable se-

ries of at least 4 y ions. Only a small fraction of searches pro-

duced significant matches according to the inclusion criteria.

Proteins were annotated by similar searches using UniProtKB/

Swiss-Prot databases (SIB Swiss Institute of Bioinformatics,

Lausanne, Switzerland). The proteineprotein interaction

pathways were performed by String 9.1 Web software

(SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland).

2.7. Western blot

Protein extracts were prepared in RIPA cell lysis buffer and

each protein sample (1 mg/mL, 10 mL) was electrophoresed

through a precast gel (NuPAGE®Novex® 4e12% Bis-Tris Gel,

1.5 mm, 10 wells, Invitrogen™, Carlsbad, CA). Proteins were

transferred from the gel to a polyvinyldifluoride (PVDF) mem-

brane by means of the semidry technique using the Criterion

Blotter (Bio-Rad) at 100 V for 60 min, and blocked with 5%milk

in PBS (adjusted to pH 7.4) containing 0.05% Tween-20. Mem-

braneswere then separately incubated overnight with primary

antibodies (CTIF, LRRN4, 1 mg/mL, 1:500). After washing, mem-

branes were incubated with HRP-conjugated secondary anti-

bodies for one hour (1:10000). Proteins were detected with

an enhanced chemiluminscent (ECL) system, and quantitative

analysis of Western blotting was carried out using the

ImageQuant-TL-7.0 software.

2.8. Cell morphology observed by immunochemical
straining

The nuclei and cytoskeleton of the cells were stained with 40-
6-diamidino-2-phenylindole (DAPI, SigmaeAldrich, USA) and

vimentin (vimentin DyLight®488 antibody, Epitomics, USA).

For immunochemical staining of the morphology of SH-SY5Y

cells via a confocal microscope, two kinds of antibodies (anti-

EEA1, PA1-063A, Thermo Fisher Scientific and anti-PI3KR2,

ab28356, abcam) were incubated separately and followed by

staining with Alexa Fluor®568 goat anti-rabbit IgG (A-11011,

Invitrogen). Cells were visualized and their images were taken

using a laser confocal microscope (IX81, Olympus, UK).

2.9. Statistical analysis

All calculations used the SigmaStat statistical software

(Jandel Science Corp., San Rafael, CA, USA). All statistical
significances were evaluated at 95% of confidence level or

better. Data are presented as mean ± standard error.
3. Results

3.1. Cell proliferation and viability of SH-SY5Y cells
treated with aluminum ion

To study the effect of aluminum ion on SH-SY5Y cells, BrdU

and LDH assays were used to test the viability of cells cultured

in different concentrations of aluminum ion. Fig. 1A shows

the proliferation rate of SH-SY5Y cells in the presence of

0e1000 mM of aluminum ions for 48 and 72 h with BrdU assay.

No significant inhibitions to cell proliferation were observed

when cells were treated with up to 400 mM of aluminum ions

for 48 h or 200 mM of aluminum ion for 72 h. Nevertheless,

dramatic inhibition of cell proliferation was noted in cells

treated with aluminum ions at concentrations higher than

500 mM and 300 mM, particularly in the cells exposed for 48 and

72 h. Viability of SH-SY5Y cells in the presence of aluminum

ions tested by the LDH assay, showed that aluminum ion

concentrations higher than 300 or 100 mM were toxic to cells

for the exposure of 48 and 72 h, respectively (Fig. 1B).

https://doi.org/10.1016/j.jfda.2018.11.009
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3.2. Aluminum ion exposure induces stress response

Potential stress responses driven by the exposure to

aluminum ions were studied in SH-SY5Y cells. The ROS in the

cellswere quantifiedwith amethod based onDPPH, showing a

dose-dependent increment of ROS induced by aluminum ion

(Fig. 2A). Measurement of MDA levels also indicated that cells

exposed to aluminum ions exhibited higher level of MDA

(Fig. 2B), the indicator of lipid peroxidation during oxidative

stress. In the following experiments, treatment of 100 mM of

aluminum ions for 48 h was taken as the standard procedure

to study the impact of aluminum ions in SH-SY5Y cells.

3.3. The level of b-amyloid in SH-SY5Y cells treated with
aluminum ion

Further studies explored how the exposure to aluminum ions

affected the cellular level of amyloid precursor protein

(APP) and b-amyloid in SH-SY5Y cells. The generation of the

neurotoxic b-amyloid peptide from sequential APP proteolysis

is the crucial step in the development of AD. The concentra-

tion of APP in SH-SY5Y cells was found to be loweredwhen the

cells were cultured in the presence of aluminum ions, and
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such aluminum-mediated APP reduction was partially

diminished by the concurrent treatment of NAP (Fig. 3A). The

APP down-regulation with aluminum ion may be related to

the change in APP metabolism to b-amyloid sequences. Thus,

the concentration of b-amyloid1e42 was found higher in the

cells treated with aluminum ions, and the supplement of NAP

diminished such increment of b-amyloid1e42 level (Fig. 3B).

The level of b-amyloid1e40 was also higherwhen the cells were

treatedwith aluminum ions, and the supplement NAP, (unlike

what has been found for b-amyloid1e42) further increased

b-amyloid1e40 level 1.3 folds higher (Fig. 3C). The level of

b-amyloid1ex showed a similar trend as b-amyloid1e40, in that

the presence of aluminum ion slightly increased the

b-amyloid1ex level in SH-SY5Y cells while the supplement of

NAP further boosted b-amyloid1ex level about 3 folds higher

(Fig. 3D). In summary, treatments of aluminum ion increased

the level of all the 3 types of b-amyloid in SH-SY5Y cells, yet

supplements of NAP exclusively diminished the raise of

b-amyloid1e42 but further increased the level of b-amyloid1e40

and b-amyloid1ex. It may due to the fact that the NAP

enhanced the decomposition of the b-amyloid1e42, which is

caused by the aluminum ion and thus caused increases in the

fragments of b-amyloid1e40 and b-amyloid1ex.

3.4. The level of Tau protein and activity-dependent
neuroprotective protein (ADNP) in SH-SY5Y cells

We also quantified the level of Tau protein, one of the key

pathological factors of Alzheimer's disease, and ADNP, a

negative regulator of b-amyloid precipitation, in SH-SY5Y cells

treated with aluminum ions by ELISA methods. The exposure

to aluminum ion did not alter Tau protein levels in SH-SY5Y

cells, but the addition of NAP increased the level of Tau by

2.5 fold (Fig. 4). Measurements of the level of ADNP indicated

that the treatment with aluminum ion decreased the ADNP

level, while the supplement of NAP could completely diminish

such decrement of ADNP induced by aluminum ion (Fig. 5).

3.5. Identification of differentially expressed proteins
induced by aluminum ion

To identify the candidate proteins that may be related to

aluminum ions, we identified differential protein expression

by nano-HPLC-ESI-MS/MS. The experimental results demon-

strated that a total of 2953 unique proteins, were identified

from SH-SY5Y cell. When a protein was identified by three or

more unique peptides possessing Mascot scores that passed

the above criteria, the protein was considered present in the

sample. Most of the 2953 proteins were identified at minimal

confidence level, that is, only one unique peptide sequence

was matched. Among these 2953 proteins, 256 proteins were

identified with higher confidence levels (at least three unique

peptide sequences matched). Of these 256 proteins, CTIF,

EEA1, LRRN4, PI3KR2 were up-regulated and found in the

samples of SH-SY5Y cell with aluminum ion treatment (Table

1). Expression of EEA1 and PI3KR2 proteins (but not of CTIF and

LRRN4) was reduced by NAP (Figs. 6 and 7). Thus, the EEA1 and

PI3KR2 were further studied for their expression and cellular

localization. Fig. 8 demonstrated the expression and the

localization of EEA1 proteins, showing cytosolic presence of

https://doi.org/10.1016/j.jfda.2018.11.009
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EEA1 in aluminum ion treated cells but not non-treated cells

(Fig. 8AeH). Interestingly, the EEA1 expression induced by

aluminum ion was found diminished when cells were

co-treated with NAP (Fig. 8IeL). Similar results were noted for

the expression of PI3KR2, in that aluminum ion treatment

induced high expression of the protein (Fig. 9AeH) yet con-

current treatment with NAP largely diminished such induc-

tion (Fig. 9IeL).

The proteineprotein interaction pathwayswere performed

by String 9.1Web software, and four proteins identified in this

study were marked by red arrows (Fig. 10). Using the

proteineprotein interaction pathway analysis, the main
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Fig. 4 e Confirmations of Tau expression in SH-SY5Y cells

with aluminum ion and NAP treatment were measured by

ELISA methods. (mean ± standard error, 6 repeats,

*p < 0.05, t-test).
finding of aluminum ion treated cells is that influence of the

mTOR pathway in SH-SY5Y cells which may result in cell

proliferation which is required for survival of the majority of

cell. We have also shown that ADNP interacts with MAP1LC3B

[44], and NAP enhances this interaction (green arrows) and an

indirect interaction between EEA1 and MAP1LC3A, suggest an

interaction with the autophagy process at the level of protein

expression and at the level of protein binding [45,46].

Furthermore, NAP was shown to enhance protective auto-

phagy [44]. Tau and b-amyloid are marked by blue arrows

(Fig. 10).
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repeats, *p < 0.05, t-test).
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Table 1 e Four differentially expressed proteins identified in aluminum ion treated SH-SY5Y cells.

Accession
No.a

Protein name MW
(Da)

Mascot
score

Match
queries

pI Sequence
coverage

Peptide Protein function

O43310 CBP80/20-dependent

translation initiation

factor

67,544 29 6 6.10 16% R.NNSSDVDTK.L þ 2 Deamidated (NQ)

R.SSTGEPFR.V þ 2 Phospho (ST)

R.DKMLCPSESMLTR.S þ Oxidation

(M); Phospho (ST)

- MENSSAASASSEAGSSR.S þ Deamidated (NQ);

Oxidation (M); 2 Phospho (ST)

M.ENSSAASASSEAGSSR.S þ Deamidated (NQ);

6 Phospho (ST)

- MENSSAASASSEAGSSR.S þ Deamidated (NQ);

5 Phospho (ST)

Specifically required for the pioneer round of

mRNA translation mediated by the cap-binding

complex (CBC), that takes place during or right

after mRNA export via the nuclear pore complex

(NPC). Acts via its interaction with the NCBP1/

CBP80 component of the CBC complex and

recruits the 40S small subunit of the ribosome via

eIF3. In contrast, it is not involved in steady state

translation, that takes place when the CBC

complex is replaced by cytoplasmic cap-binding

protein eIF4E. Also required for nonsense-

mediated mRNA decay (NMD), the pioneer round

of mRNA translation mediated by the cap-

binding complex playing a central role in

nonsense-mediated mRNA decay (NMD).

Q15075 Early endosome antigen

1

162,367 21 4 5.5 4% M.LRRILQR.T þ Deamidated (NQ)

R.ENQSLQIKHTQALNRK.W þ Deamidated (NQ)

R.ENQSLQIKHTQALNRK.W þ 4 Deamidated (NQ)

K.MEKEALMTELSTVKDK.L þ Oxidation (M);

2 Phospho (ST)

Binds phospholipid vesicles containing

phosphatidylinositol 3-phosphate and

participates in endosomal trafficking.

Q8WUT4 Leucine-rich repeat

neuronal protein 4

78,794 34 3 6.82 6% R.AFACFPALQLLNLSCTALGR.G þ 2

Carbamidomethyl (C); 2 Deamidated (NQ)

R.STYAQGTTVAPSAAPATRPAGDQQSVSK.A þ 6

Phospho (ST)

R.QTLPLLLLTVLRPSWADPPQEK.V

May play an important role in hippocampus-

dependent long-lasting memory

O00459 Phosphatidylinositol 3-

kinase regulatory

subunit beta

81,574 35 6 6.2 16% R.LKSRIAEIHESR.T þ 2 Phospho (ST)

R.APALGPAVRALGATFGPLLLR.A þ Phospho (ST)

R.TWYVGKINRTQAEEMLSGK.R

R.TWYVGKINRTQAEEMLSGK.R þ Deamidated (NQ)

R.TWYVGKINRTQAEEMLSGK.R þ 2 Deamidated (NQ)

K.IRDQYLVWLTQKGAR.Q þ 2 Deamidated (NQ);

Phospho (Y)

Binds to activated (phosphorylated) protein-

tyrosine kinases, through its SH2 domain, and

acts as an adapter, mediating the association of

the p110 catalytic unit to the plasma membrane.

a Swiss-Prot/TrEMBL accession number was given from https://world-2dpage.expasy.org/swiss-2dpage/.
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Fig. 6 e The detection of CTIF protein expression on

SH-SY5Y cells. Western blotting of CTIF and b-actin from

SH-SY5Y cells cultured with aluminum ion and NAP.

The signals were quantified and the data are presented as

the mean ± standard error; p < 0.05 indicates statistical

significance, as determined by the unpaired Student's
t-test.
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Fig. 7 e The detection of LRRN4 protein expression on

SH-SY5Y cells. Western blotting of LRRN4 and b-actin from

SH-SY5Y cells cultured with aluminum ion and NAP.

The signals were quantified and the data are presented as

the mean ± standard error; p < 0.05 indicates statistical

significance, as determined by the unpaired Student's
t-test.
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4. Discussion

4.1. Toxicity of aluminum ion to SH-SY5Y cells

Aluminum ions have been reported to influence numerous

cellular reactions that may cause various adverse effects on

the mammalian central nervous system [47]. The only oxida-

tion state of aluminum, aluminum ion, has strong affinity for

negatively charged and/or oxygen-donor ligands, including

inorganic and organic phosphates, carboxylate, and deproto-

nated hydroxyl groups, that facilitate its binding to many

biological (macro-)molecules in cells, e.g. DNA, RNA, Proteins,

ATP, amino acids. As a result, exposure to aluminum ion lead

to altered gene expression, energy metabolism, enzymatic

catabolism, that causes apoptotic death of neurons and glial

cells [48]. As we have shown above, the exposure of SH-SY5Y

cells to aluminum ions higher than 100 mM causes significant

decrease in cell proliferation and viability (Fig. 1). We also

observed an increased level of ROS when SH-SY5Y cells were

treated with higher concentration of aluminum ion (Fig. 2A).

Moreover, aluminum ion concentrations correlated with

oxidative stress in SH-SY5Y cells (Fig. 2B), in accordance to

previously reported in vivo results [49,50]. We suggest that

aluminum ions increase oxidative stress which in turn com-

promises viability of neuronal cells, and chronic and/or high-

dose administration of aluminum ion may impair brain

functions, such as cognition and memory [51e55].
4.2. Aluminum ion alters the level of b-amyloid in
SH-SY5Y cells

The accumulation of b-amyloid and hyper-phosphorylated

Tau proteins in senile plaques were generally recognized as

a hallmark of AD, and recently quite a few bio-chemical,

toxicological, and genetic studies have suggested that the

AD-like pathological symptoms caused by aluminum ionwere

related to amyloid accumulation [56,57]. We have found that

in SH-SY5Y cells the level of APP droppedwhen aluminum ion

was administered (Fig. 3A), though some studies in mice

and rats have shown that oral/injective administration of

aluminum ion increases the APP levels [58,59] and other

studies of PC12 and NBP2 cells have found that the APP level

was not altered by aluminum ion exposure [60,61]. The drop of

APP levelmay be a consequence of the substantial increases in

b-amyloid level (Fig. 3); the level of b-amyloid1e42 was about 5

fold higher when cells were treated with aluminum ion

(Fig. 3B), though the aluminum ions induced only about a 20%

increment of b-amyloid1e40 and b-amyloid1ex (Fig. 3C, D).

Interestingly, Castorina et al., have reported that in SH-SY5Y

cells the beta-site APP-cleaving enzyme 1, BACE1 and BACE2,

two of the main enzymes participating in the processing of

b-amyloid, were slightly down-regulated by the exposure of

aluminum ion [62]. Thus, we suggest that aluminum ions

promote APP to be processed to b-amyloid without up-

regulations of BACE1 and BACE 2, resulting particularly the

accumulation of b-amyloid1e42.
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Fig. 8 e Analyses of representative samples of SH-SY5Y cells expression of DAPI, Vimentin and EEA1 were shown.

Immunochemical stains for DAPI (blue), vimentin (green) and EEA1 (red) for SH-SY5Y cells cultured with aluminum ion and

NAP for 24 h. (Scale bars, 10 mm, Confocal microscope, 400X).
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4.3. The effects of NAP in aluminum ion-mediated
alteration of amyloid and Tau proteins

NAP has been reported for its neuroprotective effects against

b-amyloid25e35/1e40 toxicity/aggregation [41], Tau hyper-

phosphorylation associated with ADNP deficiency, and exci-

toxicity [27,63,64]. NAP has also been shown to promote

neuronal survival in cerebral cortical cultures derived from
Fig. 9 e Analyses of representative samples of SH-SY5Y cells ex

Immunochemical stains for DAPI (blue), vimentin (green) and P

and NAP for 24 h. (Scale bars, 10 mm, Confocal microscope, 400
newborn rats [65], and reduced the level of b-amyloid1e40 and

b-amyloid1e42 in mice [66]. Here we showed that NAP partially

diminished the drop of APP level induced by aluminum ion

(Fig. 3A), and nearly completely relieved the boost of

b-amyloid1e42 induced by aluminum ion (Fig. 3B). However,

the increments of b-amyloid1e40 and b-amyloid1ex induced by

aluminum ion have not been diminished by the concurrently

administrated NAP (Fig. 3C, D). On the contrary, NAP
pression of DAPI, Vimentin and PI3KR2 were shown.

I3KR2 (red) for SH-SY5Y cells cultured with aluminum ion

X).
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Fig. 10 e The proteineprotein interaction pathways were

illustrated. Proteins identified in this study are marked by

arrows. For those 4 proteins, they may effect the mTOR

pathway, which is responsible for the proliferation and is

required for survival of the majority of cell.
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treatments further increased the levels of b-amyloid1e40 and

b-amyloid1ex about 1.3e3 fold. We concluded that NAP is

able to diminish aluminum ion-induced b-amyloid1e42 and

changes the composition of b-amyloid proteins, and such al-

terations in b-amyloid may be the key of NAP's neuro-

protective activity.

It has been reported that NAP is able to reduce hyper-

phosphorylation of Tau proteins and prevent the deposition

of neurofibrillary tangles without significant alteration of Tau

level [18,67e69]. In SH-SY5Y cells, we have found that NAP

induced high accumulation of Tau protein in the background

of aluminum ion exposure (Fig. 4), though the impact of such

elevated Tau in vivo needed to be further investigated. It is

possible that NAP inhibition of PI3KR2, which resulted in the

activation of CDC42 and GSK3B, thus the concentration of

total Tau was increased. These results suggested the potential

role played by NAP in the biogenesis of Tau protein, perhaps

by increasing Tau-microtubule interaction and reducing the

free available Tau [34,42].

We also found that NAP diminished aluminum ion-

mediated down regulation of ADNP (Fig. 5). Interestingly, the

NAP-mediated ADNP regulation was found counteractive to

the level of b-amyloid1e42 (Fig. 3B), in agreement with our

suggestion that NAP might be capable to rescue aluminum

ion-induced neurodegeneration. In our previous animal

study, we also found the ADNP was down-regulated in the

brain of old mice [70]. IHC stain showed themajor locations of

ADNP in neuron and Purkinje cell of brain (Fig. 11A, B). In

Fig. 11C, D, the ADNP showed lower expression and neuronal

cells also appeared to shrink in the old mouse brains. The

same reductions were observed byWestern blotting (Fig. 11E).

Our results place ADNP at a pivotal regulatory point
suggesting that changes in ADNP expression may affect aging

sensitivity. More studies are needed to clarify the mechanism

of how NAP could possibly protect neuronal cells during

aluminum ion exposure.

4.4. Aluminum ion-induced protein expression

CBP80/20-dependent translation initiation factor (CTIF) is the

starting factor of translation. A previous report indicated that

CTIF may affect the methylation of DNA, causing a mutation

of APP protein and onset of AD [71]. Another study also re-

ported that the expression of CTIF was higher in the AD-

associated gene mutant H4-SW cell line and increased the

secretion of b-amyloid [72]. In our experiment, the expression

of CTIF in the treatment group of aluminum ion was higher

than that of the control group. This result showed that

aluminum ionsmay promote the expression of CTIF to induce

DNA methylation, which causes APP protein to produce large

amounts of beta-amyloid deposition in the brain, but NAP did

not inhibit the performance of CTIF.

Leucine-rich repeat neuronal protein 4, referred to as

LRRN4, was found on human chromosome 20 and composed

of 740 amino acids containing fibronetin type III protein and 10

repeats of leucine-rich type I transfer membrane protein in

the central nervous system. The function of LRRN4 is essential

in the hippocampus [73]. The NLRR4 gene is associated with

learning ability and long-term memory [74,75]. Animal ex-

periments indicated that LRRN4 gene is related to long- and

short-term memory [74]; diseases associated with LRRN4 are

within the nervous system but the pathogenesis of AD is still

unclear.

Four up-regulated proteins were identified with the pro-

teomic analysis in aluminum ion-treated SH-SY5Y cells in this

study, and two of these proteins, EEA1 and PI3KR2, were

observed for their expression and localization under confocal

microscopy with immunostaining (Figs. 8 and 9). EEA1 is one

of the crucial protein group members that bind to phospho-

lipid vesicles and participate in endosomal trafficking [76,77].

It has been suggested that AD is related to defects of endo-

somal sorting [78,79]. Recently, it has been reported that

phosphatidylinositol-3-phosphate (PI3P) regulates sorting and

processing of APP through the endosomal system, which is

the binding ligand of EEA1 [80], implying an involvement of

EEA1 in amyloidogenesis. In our study, aluminum ions were

found to induce EEA1 expression that was diminished by

concurrent administration of NAP (Fig. 8). Interestingly, the

aluminum ion-induced expression of EEA1 positively corre-

lated to the level of b-amyloid1e42 in the background of

aluminum ion exposure (Fig. 3B). Thus, we suggested that

EEA1 is a novel NAP-sensitive biomarker correlated to cellular

b-amyloid1e42 level, though the functional impact of upregu-

lated EEA1 expression to neurodegeneration requires more

experimental evidences in vivo.

The expression of PI3P-kinase regulatory subunit (PI3KR2)

was also found to be positively correlated to b-amyloid1e42

(Fig. 9), whichwas reported to be an activator ofmany signaling

cascades involved in cell growth, survival, proliferation,

motility and morphology, including PI3K/Akt/mTOR pathway

that controls cell proliferation and apoptosis [81,82]. In

neuronal cells, several studies have suggested that b-amyloid

https://doi.org/10.1016/j.jfda.2018.11.009
https://doi.org/10.1016/j.jfda.2018.11.009


Fig. 11 e The ADNP expression in the brains of mice. Histopathological examination of mice brain. (A) neuron and (B)

Purkinje cell (Red arrow). Analyses of representative samples of the mice brains expression of ADNP were shown.

Immunochemical stains for ADNP (red) for 3 months old mice (C) was showed the significal increased than 1 year old mice

(D) (200X, Scale bars, 50 mm). The results of Western blotting which were showed the ADNP concentration in mice brain (E).
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may trigger PI3K/Akt/mTOR signaling to promote cell prolifer-

ation to counteract b-amyloid's apoptotic neurotoxicity

[83e85]. This could be one of the reasons that PI3KR2was found

positively correlated to aluminum ion-induced b-amyloid1e42

accumulation (Fig. 9). Moreover, we highlight the potential

interplay between EEA1 and PI3KR2, i.e. PI3KR2 regulates the

production of PI3P which is the endosomal binding ligand of

EEA1. Future, further studies may focus on the relevance of

such interplay to aluminum ion-induced b-amyloid1e42 accu-

mulation, NAP-mediated neuronal protection, and phosphor-

ylation of Tau protein. We look forward to these new insights

that may shed light on the development of AD.

We assume that aluminum is a key risk factor for AD

[45e62], however many other risk factors exist and it is an

open question if those share similar mechanisms, Further-

more, our study is limited in the time/dose/model choice

aspects. Regardless, the discoveries made here open new

horizons for AD study toward better understanding of the

disease.
5. Conclusions

Many investigations have focused on the development of

biomarkers as a noninvasive diagnostic tool. The use of pro-

teomic techniques to identify disease-specific protein bio-

markers is a powerful tool for defining the prognosis of

disease and gaining deep insight into disease mechanisms in

which proteins play major roles. Our present study further

demonstrated a relationship between aluminum ion, NAP and

neuroblastoma cells. In our preliminary proteomic data, the
aluminum ion-induced accumulation of b-amyloid1e42 may

enhance the risk for AD. According to our previous proteomic

data, ADNP levels may serve as a new and direct therapeutic

indicator for NAP treatment, as also demonstrated in the

recent study [86]. In this study, the protein expression of EEA1,

PI3KR2, CTIF and LRRN4 was up-regulated in the aluminum

ion treated cells, but only that of EEA1, PI3KR2was diminished

after NAP addition. These results pave the path to further

tests, mandated for demonstrating the reproducibility of the

potential biomarkers in disease models and in clinical trials.

In conclusion, these proteins are valuable for the identifica-

tion of differentially expressed proteins involved in the

proteomics database and for screening biomarkers for further

study of AD.
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