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Lipids are key macromolecules that perform a multitude of biological functions ranging
from maintaining structural integrity of membranes, energy storage, to signaling
molecules. Unsurprisingly, variations in lipid composition and its levels can influence
the functional and physiological state of the cell and its milieu. Cellular senescence
is a permanent state of cell cycle arrest and is a hallmark of the aging process, as
well as several age-related pathologies. Senescent cells are often characterized by
alterations in morphology, metabolism, chromatin remodeling and exhibit a complex
pro-inflammatory secretome (SASP). Recent studies have shown that the regulation of
specific lipid species play a critical role in senescence. Indeed, some lipid species even
contribute to the low-grade inflammation associated with SASP. Many protein regulators
of senescence have been well characterized and are associated with lipid metabolism.
However, the link between critical regulators of cellular senescence and senescence-
associated lipid changes is yet to be elucidated. Here we systematically review the
current knowledge on lipid metabolism and dynamics of cellular lipid content during
senescence. We focus on the roles of major players of senescence in regulating lipid
metabolism. Finally, we explore the future prospects of lipid research in senescence and
its potential to be targeted as senotherapeutics.
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INTRODUCTION

Senescence is a cell-fate decision that is triggered in response to many different stressors including
genotoxic stress, telomere attrition/damage, oncogene activation, and mitochondrial dysfunction
(Herranz and Gil, 2018). In contrast to quiescence (cell cycle arrest), cellular senescence is a
terminal state of growth arrest, where cells cannot re-enter the cell cycle despite mitogenic growth
signals (Pack et al., 2019). Senescent cells resist apoptosis, at least partially due to an upregulation
of survival pathways such as the BCL-2 family (Zhu et al., 2015; Yosef et al., 2016). Cellular
senescence has been documented to have both beneficial and detrimental roles in maintaining
health (He and Sharpless, 2017), and has been linked to embryonic development, wound healing,
tumor suppression, as well as metastasis and aging. “Acute” senescence is a programmed cell-fate
decision and is usually associated with tissue repair and homeostasis (Krizhanovsky et al., 2008; Jun
and Lau, 2010; Rajagopalan and Long, 2012). In contrast, “chronic” senescence is associated with
stochastic, persistent macromolecular damage and often associated with disease and aging (van
Deursen, 2014). The permanent cell-cycle arrest of senescent cells is accompanied by a senescence
associated secretory program (SASP). The SASP consists of pro-inflammatory factors such as
cytokines, chemokines and extracellular matrix remodeling factors.
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IDENTIFICATION OF SENESCENT CELLS

The field is challenged by the lack of a single universal marker for
cellular senescence. Currently, senescent cells are identified based
on multiple markers (Figure 1), that allow for distinction between
quiescent and senescent cells. The most prominent features of
senescent cells include, an enlarged, flat cell morphology with
an increase in the cytoplasm-to-nucleus ratio. A recent study
suggested that the ratio of DNA to cytoplasm is critical to
maintain cell function, and dysregulation of this ratio possibly
contributes toward aging (Neurohr et al., 2019). Senescent cells
also display an increase in the lysosomal enzyme, senescence-
associated-β-galactosidase (SA-β-gal), and thus display increased
SA-β-gal activity (Dimri et al., 1995; Hall et al., 2017). Single
cell analysis, identified that cells with high SA-β-gal activity also
exhibit larger cell size (Biran et al., 2017). It is important to note
that SA-β-gal is often associated with senescent cells, but can
be observed upon serum starvation or upon confluency in cell
culture. Another feature of senescent cells is the accumulation
of pigment granules in the lysosomes known as lipofuscin
(Evangelou et al., 2017). However, lipofuscin accumulation is
observed with age in many cells and organisms, including
those that do not typically have other features of cellular
senescence, e.g., C. elegans (Pincus et al., 2016). Lack of DNA
replication and arrest of the cell cycle usually in G0/G1 phase
are features of senescent cells, but do not distinguish between
quiescence and senescence.

The two key signaling pathways upregulated for establishment
and maintenance of senescence are p53/p21 and p16 (discussed
in detail below). The burden of p21- and p16- positive expressing
cells increases with age in mammals, however, currently the
understanding of what percentage of cells are senescent is
incomplete. A recent cross-sectional study in humans, examining
three different age groups and multiple tissues, identified that
p21- and p16-positive cells increase with age in the skin, pancreas
and kidney (Idda et al., 2020). In contrast, p16-positive cells
are observed in brain cortex, liver, spleen, and intestine (colon),
whereas p21-positive cells increase in the dermis with age.
Interestingly, some tissues, such as lung and muscle did not show
any changes in these markers. Although a comprehensive study, it
is important to note that this study was cross-sectional in design,
as well as underlying health conditions may not have been fully
examined. Nonetheless, a conclusion to be drawn from this study
is that different cells and tissues accumulate different markers of
senescence and may display varying burden of senescent cells.

Dynamic chromatin changes are a hallmark of senescent
cells. Senescence-associated heterochromatin foci (SAHF) and
telomere-associated foci (TAFs) are commonly used as markers
for cellular senescence. However, these heterochromatin changes
have been associated with senescence caused by nuclear DNA
damage or telomere dysfunction, rather than other senescence-
inducing stressors (Di Micco et al., 2011). A common chromatin
feature in senescent cells is the generation of chromatin
fragments that are released into the cytoplasm. The loss of
nuclear lamina (Lamin B1) is observed in senescent cells,
leading to “leaky” nucleus, and is thought to promote chromatin
fragments (CCFs) in the cytoplasm (Di Micco et al., 2011;

Dou et al., 2015, 2017). The CCFs activate the cyclic GMP–AMP
synthase (cGAS) and the stimulator of interferon genes (STING)
pathway (cGAS-STING pathway) and further establish SASP
factors (Vizioli et al., 2020), thus reinforcing senescence and
affecting neighboring cells.

Last but not least, an integral part of senescent cells is
their ability to drive the SASP phenotype. SASP consist of
pro-inflammatory cytokines [interleukin (IL)-1α, IL-1β, IL-
6, and IL-8], chemokines (CCL2), and extracellular matrix
remodeling factors such as matrix metalloproteinases (MMPs),
serine/cysteine proteinase inhibitors (SERPINs) such as
plasminogen activator inhibitor-1 (PAI-1) and tissue inhibitors
of metalloproteinases (TIMPs) (Coppe et al., 2010; Eren et al.,
2014). With advances in technology, recent studies have
uncovered that different senescence-inducing stressors, as well
as different cell types may lead to unique SASP being expressed
(Basisty et al., 2020). SASP is thought to be transcriptionally
controlled and released into the cytoplasm, as soluble factors or
in exosomes (Lehmann et al., 2008; Ozcan et al., 2016; Takahashi
et al., 2017), to influence neighboring cells (Ito et al., 2017).
Understanding of SASP regulation is incomplete, although,
p53, NF-κB, P38 MAPK, NOTCH, mTOR, and mitochondrial
NAD+/NADH ratio have recently emerged as modulators of
the SASP phenotype (Freund et al., 2011; Herranz et al., 2015;
Nacarelli et al., 2019).

In this Review, we first describe the rewiring of lipid
metabolism during cellular senescence. This review mostly
focuses on cellular senescence observed with aging. We then
review the link between major regulators of senescence and their
role in lipid metabolism. Lastly, we discuss lipid classes that
are altered in senescent cells and how they contribute to the
senescence phenotype and outline tools that can help examine the
causal role of lipids in driving cellular senescence.

METABOLIC LANDSCAPE OF
SENESCENT CELLS

Aging is associated with dysregulated lipid metabolism (Mutlu
et al., 2021). Several studies show that lipid composition changes
with age in several species, including humans. Particularly,
increased ratio of poly- and mono- unsaturated fatty acids
have been recently found to be increased with age (Papsdorf
and Brunet, 2019). However, whether cellular senescence, a
key feature of aging is responsible for these lipid changes has
been enigmatic so far. Lipids are an important fuel source that
generate energy, as well as create crucial biological intermediates
including lipid mediators, second messengers, and ketone bodies.
Lipids can act as central metabolites that play a role in cellular
signaling, both in an autocrine and paracrine manner, provide
cell and organelle structure, and are fundamental for maintaining
cellular homeostasis. Recent studies highlight the role of lipids
in establishing cell fate decisions, such as cell division, apoptosis
and cellular senescence (Ito and Ito, 2016). As described above,
hallmarks of cellular senescence consists of increased mass
of organelles such as, lysosomes and mitochondria, increased
cellular size, loss of nuclear membrane integrity and SASP
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FIGURE 1 | Features of senescent cells. Senescent cells are in a state of permanent cell cycle arrest and display several key features including lysosomal changes
(SA-β-gal and lipofuscin), p53, p21, and/or p16 expression and a SASP program consisting of multiple cytokines, chemokines, and ECM remodeling enzymes.
Senescent cells reprogram their metabolism as well heavily altering lipid metabolism.

factors that can be “transported” by exosomes (Lizardo et al.,
2017). Lipids are essential to each of these “senescence features,”
including exosomes that are typically lipid enriched extracellular
vesicles (Skotland et al., 2019) and therefore lipids are inextricably
linked to the process of cellular senescence.

Several studies report an accumulation of lipid droplets
in senescent cells compared to proliferating cells (Ogrodnik
et al., 2014, 2019; Cox and Redman, 2017; Flor et al., 2017;
Lizardo et al., 2017; Chee et al., 2021). Deregulated lipid
accumulation in senescent cells can be due to increase in lipid
uptake, upregulated lipid biosynthesis pathways or de-regulated
lipid breakdown. Interestingly, senescent cells display increased
lipid uptake (Flor et al., 2017), however, whether inhibition
of lipid uptake can prevent or delays cellular senescence is
unclear. Lipid levels are also controlled through a complex
mechanism of lipid biosynthesis and breakdown. Advances
in technology such as non-targeted “omic” approaches have
highlighted the importance of lipid metabolism in cellular
senescence. For example, a recent proteomic study of senescent
cells, induced by DNA damaging agents, uncovered that lipid
processing and metabolism genes including those involved in
lipid binding, storage, biosynthesis and breakdown are severely
altered (Flor et al., 2017). Fatty acids (FA) are essential building
blocks for triglycerides (TGs) and phospholipids, and act as
an energy source. Fatty acids are synthesized by the addition
of malonyl-CoA to an acyl chain by one of two enzymes:
acetyl-CoA carboxylase (ACCase) and fatty acid synthase (FAS).
Although understudied, the role of FA biosynthesis in cellular
senescence is possibly regulated in a context- and stress-
dependent manner. Enlargement of cells and accumulation of
membranous organelles such as, lysosomes and mitochondria
are key hallmarks of senescence, and rely on lipid biosynthesis
(Kim et al., 2010; Correia-Melo et al., 2016). Consistent with
this theory, mouse hepatic stellate cells and human primary
fibroblasts showed an increase in lipid biosynthesis, dependent
on FASN, during initial establishment of cellular senescence
(Fafian-Labora et al., 2019). FASN is upregulated prior to
induction of late-stage senescence, and is increased with age in

mouse liver. Interestingly, pharmacological or genetic inhibition
of FASN, reduced p53-induced senescence, as well as, SASP
(Borghesan et al., 2019; Fafian-Labora et al., 2019). Whether
FASN is required for maintenance of cellular senescence and
upregulated in a p53-independent manner is currently unknown.
Oncogene-induced senescence (OIS) is a robust mechanism
activated by oncogenic signaling due to an activating mutation
of an oncogene or an inactivation of a tumor suppressor.
Targeted metabolomic and bioenergetic analysis revealed that
different modalities of senescence such as OIS and replicative
senescence, led to very different metabolite patterns. In this
study, Ras-induced OIS elevated levels of long chain free fatty
acids (LCFA). Concomitantly, OIS reduced lipid biosynthesis
by negatively regulating ACC, a rate limiting step for lipid
biosynthesis (Quijano et al., 2012). It is important to note that
these contradictory results about the role of lipid biosynthesis
in senescence may be due to analyzing a different “stage” of
cellular senescence, or different stress modality of senescence
(aging versus OIS) or because of differences in cell-type (primary
cells versus cancer cells).

Although the role of lipid biosynthesis in cellular senescence
may not be straight-forward, FA breakdown has been consistently
observed during senescence. A few reports indicate that lipid
breakdown particularly through mitochondrial β-oxidation plays
a paramount role in cellular senescence. Increased mitochondrial
function has long been associated with senescence. Fatty acid
oxidation (β-oxidation) is the mitochondrial multi-step process
of breaking down a fatty acid into acetyl-CoA units. Long
chain fatty acids (LCFA) are activated by acyl-carnitines and
imported into the mitochondria for β-oxidation via a rate limiting
enzyme carnitine palmitoyltransferase (CPT). Upon completion
of β-oxidation, the generated acetyl-CoA can enter the TCA
cycle, link to oxidative phosphorylation (OXPHOS) or can lead
to acetylation of histones and other proteins. Indeed, recent data
suggests that lipids contribute heavily toward histone acetylation
and control gene transcriptional programs (McDonnell et al.,
2016). During replicative senescence in myoblasts, several acyl-
carnitines were increased, suggesting that senescent cells rely

Frontiers in Physiology | www.frontiersin.org 3 March 2022 | Volume 13 | Article 796850

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-796850 March 12, 2022 Time: 11:2 # 4

Hamsanathan and Gurkar Role of Lipids in Senescence

heavily on β-oxidation (Baraibar et al., 2016). Additionally,
these senescent myoblasts had increased levels of monoacyl
glycerols and glycerol-3-phosphate, as well as decreased mono-
and polyunsaturated long chain fatty acids (>18 carbons),
whereas medium chain fatty acids remained unaffected. This
suggests that senescent cells increase lipid breakdown, however,
whether this lipid mobilization and breakdown is used for energy
production, gene transcription or generation of SASP (bioactive
lipids) is unclear. Interestingly, an increase in FASN during
establishment of the senescence program is also associated with
an increase in CPT function and oxygen consumption rate
(OCR). Consistent with this, inhibition of CPT1A during OIS,
prevented cellular senescence and SASP establishment (Quijano
et al., 2012). Collectively, these studies suggest that β-oxidation
is required to drive cellular senescence (Fafian-Labora et al.,
2019). It is important to note that one study reported that
inhibition of β-oxidation could possibly promote senescence
(Baraibar et al., 2016), Here, loss of CPT1C in lung fibroblasts,
promoted lipid accumulation in cells and induced cellular
senescence through lipotoxicity. One possibility is that lung
fibroblasts uniquely depend on lipid β-oxidation, and inhibition
of this process drives lipotoxicity and cellular senescence (Chen
et al., 2021). Overall, these studies point toward major rewiring
of lipid metabolism during establishment and maintenance of
cellular senescence.

LIPID COMPOSITIONAL CHANGES
DURING CELLULAR SENESCENCE

Although several studies show accumulation of lipid droplets
(LDs) during cellular senescence, the content of these LDs
may be far more critical. Lipids are divided into three groups,
triglycerides (TAGs) (utilized for energy), steroids (cholesterol
and hormones) and phospholipids (utilized for membrane
structures). Here, we summarize the associated changes in
composition of these lipids during senescence.

Triglycerides
A study to decipher the transcriptomic and lipidomic changes
during replicative senescence showed that lipid uptake mediated
by CD36 is upregulated in senescent cells (Saitou et al., 2018).
This feature is also consistent with DNA damage, oncogenic
and chemical stress-induced senescence (Lizardo et al., 2017;
Chong et al., 2018). Moreover, there is an enrichment of TAGs
containing long- and very long-chain fatty acids, with at least
one polyunsaturated fatty acyl (PUFA) chain (Saitou et al., 2018).
Another study reported that DNA damage-induced senescence is
accompanied with the upregulation of the triglyceride synthesis
enzyme, diacylglycerol acyltransferase 1 (DGAT1). This study
suggests that rather than lipid uptake, TAG biosynthesis may
play a crucial role in establishment of senescence (Flor et al.,
2017). The caveat though is that in this study the TAG species
were not directly measured. It is therefore possible that both
uptake and biosynthesis of TAGs may play a role in promoting
cellular senescence.

Cholesterol
Cholesterol homeostasis is critical to health. It is an important
building block for hormones, vitamin D and integral to
cell membrane integrity; however, excess cholesterol can have
detrimental effects. Few studies have examined the role of
cholesterol on cellular senescence. Naked mole rats (NMR) are
known for their exceptional longevity, resilience to endogenous
and exogenous stressors and cancer resistance. Interestingly,
NMR fibroblasts had elevated levels of cholesterol-enriched lipid
droplets (LDs), dependent on the Wnt/β-catenin pathway (Chee
et al., 2021). Inhibition of cholesterol synthesis using lovastatin,
an HMG-CoA reductase inhibitor, promoted senescence-like
phenotype in NMR fibroblasts. Of note, only SA β-gal and 8-
hydroxy-2′-deoxyguanosine (8-OHdG), a biomarker for DNA
damaged by oxidative stress was measured in this study.
Furthermore, the Wnt/β-catenin-cholesterol axis seems specific
to NMR, as overexpression of β-catenin in mice or rat fibroblasts
did not show any elevation in LDs (Chee et al., 2021). On the
contrary, lipid profiling of OIS induced by ERBB2 (a member
of the epidermal growth factor receptor), revealed increased
cholesterol levels accumulated in vacuoles of senescent cells
(Cadenas et al., 2012). This study suggests that high cholesterol
levels are possibly a feature of senescence, although whether
this accumulated cholesterol is a driver of senescence is not
fully understood. In contrast, when mouse bone marrow stem
cells (BMSCs) were exposed to low dose of cholesterol, it
delayed oxidative stress-induced cellular senescence. Indeed, low
levels of cholesterol promoted proliferation of BMSCs. Oxidative
stress is known to damage macromolecular structures including
cellular membranes, and since cholesterol is a major component
of cell membranes, exogenous supplementation of cholesterol
may help recovery from acute damage (Zhang et al., 2016).
Further studies to examine the impact of cholesterol dosage on
senescence in vivo is required to ascertain its exact role in the
senescence phenotype.

Phospholipids
Phospholipids are amphiphilic lipids that play important
metabolic and structural roles. In a study looking at ERBB2
induced senescence (OIS), phospholipid with shortened acyl
chains and unsaturated acyl chains in phosphatidylglycerol
was observed (Cadenas et al., 2012), accompanied by
increased membrane fluidity. This study also identified that
mitochondrial lipids were altered, specifically, PG(34:1),
PG(36:1) (increased) and LPE(18:1), PG(40:7) and PI(36:1) were
reduced in senescent cells leading to loss of membrane potential.
A comprehensive study compared and analyzed metabolites
in replicative senescence, DNA damage-induced senescence
and OIS in a human embryonic lung fibroblast (WI-38), using
NMR spectroscopy. Interestingly, senescent cells displayed
increased glycerophosphorylcholine-to-phosphocholine ratio.
Importantly, glycerophosphorylcholine levels were particularly
elevated in senescent cells compared to proliferating or
quiescent cells, suggesting that this could be a unique feature
of senescence (James et al., 2015). Bioactive phospholipids
play an important role in “communication” and consist of
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lysophospholipids, ceramides, and sphingomyelin (Horn and
Jaiswal, 2019). They can be released as secreted molecules or
part of exosomes, and possibly play a role in extravesicular
formation and release observed during senescence (Tepper
et al., 2000; Nurminen et al., 2002; Trajkovic et al., 2008; Bianco
et al., 2009; Hirsova et al., 2016). Hydrolysis of phospholipids
by phospholipases, such as cPLA2, leads to lysophospholipids.
An increase in lysophospholipids has been observed in
senescent cells (Buratta et al., 2017; Narzt et al., 2021), and
furthermore, lysophospholipids are shown to induce senescence
in cholangiocytes (Shimizu et al., 2015). They can also act as
a “find me” signal, but impair phagocytosis, possibly leading
to inefficient clearance of senescent cells with age (Narzt et al.,
2021). Phospholipids also influence the synthesis of eicosanoids
that are known inflammatory mediators, thus contributing to the
SASP phenotype (discussed in detail below). Thus, phospholipids
play a varied role during senescence, including establishment of
senescence, paracrine signaling and evasion of senescent cells.

MAJOR LIPID PLAYERS IN
SENESCENCE

Oxidized Fatty Acids
One of the major components of complex lipids in mammalian
cells are polyunsaturated fatty acids (PUFAs) with atleast
one bis allelic carbon and chain lengths ranging from 18
and above. PUFAs are precursors for potent metabolites
that are involved in numerous pathophysiological events.
One of the most well-studied families are eicosanoids, a
class of oxygenated derivatives of arachidonic acid (C20)
that include prostaglandins, leukotriens, lipoxins, hydroxy
eicosatetraenoic acids, hydroperoxy eicosatetraenoic acids,
and epoxy eicosatetraenoic acids. These bioactive lipids are
derived enzymatically through the cyclooxygenase (COX),
lipoxygenase (LOX), and cytochrome P450 (CYP) reactions
or non-enzymatically through free radical reactions. Together,
these bioactive lipids regulate diverse sets of both homeostatic
and inflammatory processes. Pharmacological inhibition of
the cysteinyl leukotrienes via LT antagonists, LY255283 and
montelukast sodium, or ALOX5 inhibitor, BW-B70C, reduced
the profibrotic effect of senescent cells on naive fibroblasts
in vitro (Wiley et al., 2019) and attenuated TNFα-induced
up-regulation of SA-β-Gal, p53, p21, and PAI-1 expression in
primary human chondrocytes associated with osteoarthritis
(Song et al., 2018). Increase in COX-2 activity has been shown
to be associated with aging (Badawi et al., 2005; Chung et al.,
1999; Baek et al., 2001). For example, COX-2 expression was
upregulated in kidney, liver, heart and prostrate in old rodents
(Hayek et al., 1997; Kim et al., 2001; Badawi et al., 2004; Choi
et al., 2014; Tung et al., 2015), and in aging human tissues as
well, especially kidney and skin (Melk et al., 2004; Kang et al.,
2006; Surowiak et al., 2014). Although the cause- or-causal
relationship is not clear, it was shown that in an inducible Cox-2
transgenic mice, post-natal expression of COX-2 led to several
premature aging phenotypes (Kim et al., 2016). Further, the
lung fibroblasts from these animals expressed higher levels of

senescence-associated SA-β-Gal, p16, p53, and phospho-H2Ax
(Kim et al., 2016).

The age-related changes in COX-2 are often accompanied
by an elevation in the prostaglandin synthesis. COX system is
the major pathway catalyzing the conversion of arachidonic acid
into prostaglandins, PGG2 and subsequently to PGH2 followed
by the production of the bioactive lipids—PGE2, PGI2, PGD2,
PGF2α—and thromboxane A2 by tissue-specific synthases. An
upregulation in COX-2 expression and ensuing PGE2 production
was observed during normal and stress-induced senescence
of dermal, prostrate and lung human fibroblasts. Exogenous
supplementation of arachidonic acid enhanced COX-2 activity
and PGE2 production and subsequently accelerated the incidence
of key senescence features like flat and enlarged cell morphology,
SA-β-Gal activity and the cell cycle arrest (Dagouassat et al.,
2013). In a study to understand the mechanisms of lung
senescence linked with chronic obstructive pulmonary disease
(COPD), it was shown that prostaglandin E2 released by
pulmonary fibroblasts exerted both autocrine and paracrine
effects to induce fibroblast senescence. This was accompanied
with inflammation by EP2 and EP4 receptors, COX-2–dependent
reactive oxygen species signaling (Dagouassat et al., 2013).
Wiley et al. recently showed that senescent cells produced and
accumulated 1a,1b-dihomo-15-deoxy-delta-12,14-prostaglandin
J2, which together with other prostaglandin D2-related lipids
promoted senescence arrest and SASP through activation of
RAS signaling. In mice with drug-induced senescence, a dose
of Navitoclax, a senolytic drug (eliminates senescent cells)
elevated the levels of prostaglandin in blood and in urine.
This study highlights the importance of prostaglandin lipids as
biomarkers of senolysis.

Another primary oxidation product of arachidonic acid is
hydroperoxy-eicosatetraenoic acid (hydroperoxyeicosatetraenoic
acid, HpETE), generated via lipoxygenase (LOX) activity. Due
to its regiospecificity nature, lipoxygenases are classified as
arachidonate 5-, 8, 12-, and 15-lipoxygenase (5-LOX, 8-LOX, 12-
LOX, and 15-LOX), which inserts oxygen at carbon 5, 8, 12,
or 15 of arachidonic acid peroxidases. The primary oxidation
products of HpETE are unstable and reduced further to its
corresponding alcohol hydroxy-eicosatetraenoic acid ( 5-, 8-,
12-, and 15- hydroxy-6-trans-8,11,14-cis-eicosatetranoic acid,
HETE) by glutathione peroxidase. The enzyme 5-LOX can act
on 5-HETE to generate an unstable epoxide leukotriene A4
(LTA4), which can serve either as an intracellular intermediate
in the synthesis of leukotriene B4/C4 (LTB4 and LTC4).
Leukoterines (LTs) are the second major class of biologically
active signaling lipids that plays a key role in inflammation and
fibrosis. Idiopathic pulmonary fibrosis (IPF) is an interstitial
lung disease with elevated senescent cell burden. It was shown
that leukoterines secreted by senescent cells exacerbated IPF by
promoting pulmonary fibrosis (Wiley et al., 2019) and kidney
fibrosis by unilateral ureteral obstruction in mice (Kamata et al.,
2019). Senescence induced irrespective of different modalities
(oncogene-, stress-, and radiation-induced) in IMR-90 fibroblasts
promoted secretion of leukoterines, as well as expression of
enzymes involved in the biosynthesis of LTs (Wiley et al., 2019).
Cysteinyl leukoterines such as LTC4 has been shown to accelerate
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acute kidney injury and drive renal pathogenesis in response to
chemotherapy-induced senescence (Rubinstein and Dvash, 2018;
Wiley, 2020). In line with these findings, leukotrienes increasingly
released from senescent cells, irrespective of the senescence-
inducer, and appear to function in parallel to SASP factors.

Besides lipoxygenases and cyclooxygenases, the third class
of enzymes involved in eicosanoid synthesis are epoxygenases
or cytochrome P450 (CYP) enzymes. Cytochrome P450
epoxygenases (CYP2C and CYP2J) synthesize epoxides, such as
epoxyeicosatrienoic acid (EETs) in four different regioisomers
(5, 6-, 8, 9-, 11, 12-, and 14,15-) that are recognized as specialized
pro-resolving mediators (Alkayed et al., 1996; Zhang et al.,
2007; Li et al., 2012). EETs have a wide range of protective
actions such as anti-inflammatory, anti-apoptotic, vasodilatory
and pro-angiogenic (Node et al., 1999; Iliff et al., 2009). The
levels of EETs are often determined through production of
dihydroxyeicosatrienoic acid (DHET) isoforms via soluble
epoxide hydrolase (sEH) (Morisseau and Hammock, 2013).
Gene deletion of soluble epoxide hydrolase was shown to
improve blood flow and reduce infarct size following cerebral
ischemia in reproductively senescent female mice (Zuloaga et al.,
2014). 14,15-EET inhibited rat mesenteric arterial endothelial
senescence, down-regulated p53 expression in aged endothelial
cells and improved the impaired endothelium-dependent
vasodilatation in aged rats through activation of mTORC2/Akt
signaling pathway (Yang et al., 2014). Injection of 11,12-EET
accelerated wound healing, tissue repair and reduced production
of proinflammatory factors TNFα, IL-6, MMP and IL-1β

in type 2 diabetic models of B6.VLepob/J (leptin-deficient,
ob/ob) mice. In another study, both forms of EETs 11,12 and
14,15 epoxyeicosatrienoic acid rescued deteriorated wound
healing in ischemic conditions (Sommer et al., 2019). Orally
active subset of 14,15-EET analogs, termed EET-A, EET-B,
and EET-C22 reduced cardiac and renal injury in spontaneous
and angiotensin hypertension as well as promoted recovery
after Ischemia/Reperfusion Injury by reducing contractile
dysfunction (Campbell et al., 2017). Although several studies
have highlighted the deleterious impact of cellular senescence
in numerous chronic diseases, it is also recognized for its
beneficial role in tumor suppression, wound healing and tissue
regeneration. These studies highlight the contribution of CYP
generated pro-resolvin lipid mediators in wound healing.

Oxidized Phospholipids
Polyunsaturated fatty acyl containing phospholipids are prone
to lipid peroxidation and form oxidized phospholipids (OxPLs)
that play a significant role in apoptosis and inflammation.
OxPLs are generated enzymatically through lipoxygenases or
non-enzymatic attack through reactive oxygen species. However,
irrespective of the mode, identical primary oxidation products
(i.e., peroxyl radicals and hydroperoxides) are produced initially
that subsequently undergo further oxidation in a stochastic
manner and release a heterogenous mixture of bioactive
OxPL species. In general, lipid peroxidation and levels of
OxPLs increase with age. OxPLs generated via cytoplasmic
hydroxyl radicals exacerbated cellular senescence in Toll-like
receptor 4-knockout (TLR4-/-) OKD48- and IDOL-Tg mouse

models (Sakai et al., 2019). Inhibition of TLR2 with oxid
ized-1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine
(OxPAPC), a well-studied oxidized product of a common
phospholipid in mammalian cell membranes, 1-palmitoyl-
2-arachidonoyl-sn-phosphatidylcholine (PAPC) significantly
reduced IL-1α and IL-1β mRNA induction in oncogene induced
senescence of IMR90 cells. In another study targeting OxPLs by
transgenic overexpressing of E06-svFv, a single chain variable
fragment that binds to phosphatidyl choline head group of OxPL
attenuated age-associated trabecular bone loss in both female
and male mice (Palmieri et al., 2021). Similar E06-svFv transgene
mechanisms to inactivate OxPLs have been studied with age-
associated diseases such as atheroscleosis, steatohepatitis (Sun
et al., 2020) and macular degeneration (Handa et al., 2015)
suggesting neutralizing OxPLs as a promising therapeutic
target for some of the age-associated diseases. Cardiolipins,
major phospholipids in mitochondria are extremely prone to
lipid oxidation. With mitochondria being the critical organelle
handling oxidative stress, oxidation of cardiolipin can lead
to organelle dysfunction and generate lipid peroxides further
exacerbating oxidative stress and promoting senescence.
Knock out of ALCAT-1, an enzyme that promotes cardiolipin
peroxidation protected against onset of cellular senescence and
preserved mitochondrial function by reducing sensitivity to
lipid oxidation.

Greenberg et al. (2008) proposed the “lipid whisker”
hypothesis as a novel feature of membrane architecture in
senescent or apoptotic cells. These cells are distinguished by the
presence of protruding “whiskers” as a result of phospholipid
oxidation via lipid peroxidation or oxidative stress. The oxPL
whiskers such as oxidized phosphatidylserine contribute to
pattern recognition for common receptors like CD36 that play
a major role in engulfment and phagocytosis of senescent cells
(Podrez et al., 2002; Greenberg et al., 2006, 2008).

Sphingolipids
Sphingolipids are a class of complex phospholipids with a
hydrophobic core consisting of an amino alcohol, sphingosine
and a long-chain fatty acid chain. Bioactive forms this class such
as sphingosine, sphingosine-1-phosphate, ceramide, ceramide-1-
phosphate, dihydroceramide are known to modulate a plethora
of cellular functions such as cell migration, growth regulation,
adhesion, apoptosis, senescence and inflammatory responses
(Hannun and Obeid, 2018).

Several studies have highlighted the role of sphingolipids
in both development and aging (Giusto et al., 1992; Lightle
et al., 2000; Cutler and Mattson, 2001; Hannun and Obeid,
2018). For example, aging induces accumulation of sphingosine
and ceramides in liver and brain tissues and alterations in
sphingolipid metabolism increases the risk and progression
of age-related disease (Giusto et al., 1992; Lightle et al.,
2000). A systemic study on sphingolipid metabolic enzymes
in kidney, liver and brain tissues of day-1 to 720-day-old rats
revealed a significant increase in activities of the sphingolipid
catabolic enzymes (SMase and ceramidases) (Sacket et al., 2009).
Impairment of ceramide and sphingolipid synthesis genes in
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yeast, worms and flies extended lifespan (Cutler and Mattson,
2001; Rao et al., 2007; Yi et al., 2016).

In senescent human dermal fibroblasts (HDF), ceramide
levels and a sphingomyelinase activity were markedly elevated.
Exogenous ceramide induced senescent phenotype in young
HDF at concentrations that mimics endogenous ceramide
levels in senescent cells and recapitulated molecular changes
of senescence, suggesting ceramides act as mediators of
senescence (Venable et al., 1995). Of note, in therapy-induced
senescence, exogenous addition of sphingomyelin increased
ceramide levels that induced apoptosis and decreased senescence.
This is possibly explained by ceramide levels- no inhibition
of cell cycle progression at low ceramide levels, induction of
senescence at moderate levels, and initiation of apoptosis at high
levels (Modrak et al., 2009). In another study, deficiencies in
ceramide transfer protein (CERT) in primary mouse embryonic
fibroblasts led to senescence and dysregulated sphingolipid
metabolism by increasing hexosylceramides production (Rao
et al., 2007). Increased hexoceramides such as glucosylceramide
led to age-related impairments in CD4(+) T cell function
and immunosenescence (Molano et al., 2012). Several studies
have suggested that sphingolipid metabolism as effectors or
modulators of the p53 tumor suppressor pathway, particularly
sphingomyelinase and sphingosine kinase I (SK1), which are
directly regulated by p53, contributing to ceramide-induced
senescence in cells (Dbaibo et al., 1998; Oskouian et al.,
2006; Heffernan-Stroud and Obeid, 2011). For example, the
expression of sphingosine kinase I (SK1), a downstream target
of p53, was significantly elevated in p53-knockout mice that
developed thymic lymphoma, and p53-deficient mice lacking
SK1 were protected from thymic lymphoma. Mechanistic
studies revealed that p53 tumor suppression caused by loss of
SK1 was mediated by increased sphingosine and ceramides,
resulting in tumor senescence. Non-canonical sphingolipids
such as deoxyceramides has been shown to be depleted during
tumor-induced senescence and increasing the levels of 1-
deoxyceramides reduced the senescence phenotype in human
colorectal cancer cells. The imbalance in deoxyceramide levels
can affect sphingolipid signaling and alter membrane remodeling
(Millner et al., 2020). Despite the fact that several evidences point
to the multiple roles of bioactive sphingolipids in aging, these
intriguing findings warrant more research into the functional role
of sphingolipids in senescence.

Lysophospholipids
Lysophospholipids are multifunctional lipid mediators and are
formed from hydrolyzed phospholipids with either an alkyl
or acyl chain (Rivera and Chun, 2008). The lysophospholipids
(LPLs) are broadly categorized as lysoglycerophospholipids
and lysosphingolipids. The common ones in circulation are
lysophosphatidylcholine (LPC), lysophosphatidic acid (LPA),
lysophosphatidylserine (LPS), sphingosine, sphingosine-1
phosphate (S1P), and sphingosylphosphorylcholine (SPC) that
are derived from corresponding phospholipids. Among the
LPLs, lysophosphatidylcholine is the most abundant class (Ojala
et al., 2007) and activates multiple signaling pathways that
are involved in oxidative stress and inflammatory responses

(Kakisaka et al., 2012; Bansal et al., 2016). They are also major
secretory components of extracellular vesicles, which has recently
gained a lot of attention as key players within the secretome of
senescent cells (Urbanelli et al., 2016; Buratta et al., 2017). For
example, biochemical characterization of extracellular vesicles
released by fibroblasts subjected to H-Ras induced senescence
indicated a significant enrichment in LPCs species (16:0;
16:1; 18:1; 18:2; 20:4, and 26:0). Both, replicative- and stress-
induced-senescent dermal fibroblasts showed elevated levels of
lysophosphatidylcholines. The LPC exhibited SASP activity by
eliciting chemokine release in non-senescent fibroblasts and
obstructed TLR2–6/CD36 signaling in macrophages (Narzt
et al., 2021). Cholangiocyte senescence in biliary tract cancer
has been linked to an increase in LPC levels and the resulting
cytotoxicity. LPCs induced upregulation of components of SASP
interleukin-8 (IL-8), IL-6, transforming growth factor-β and
PAI-1, as well as p21 and SA-β-gal activity in MMNK-1 human
cholangiocyte cells.

Studies have also shown association between aging and
lysophosphatidic acid (LPA) signaling. For instance, alterations
in LPA1 receptor was linked to the presence of depression and
cognitive deficits in the elderly population (Moreno-Fernandez
et al., 2018). Age-dependent changes in cAMP profiles were
induced by LPA as noted in young and senescent human
fibroblasts (Jang et al., 2006). LPA were detected at significantly
higher concentrations in the cerebral cortex synaptosomes of
aged rats (Pasquare et al., 2009). Knockdown of LPA3 led to cell
senescence in mesenchymal stromal cells (Kanehira et al., 2017).
Another finding showed that LPA regulates ROS levels and cell
senescence through LPA3 to alleviate cell aging in Hutchinson–
Gilford progeria syndrome (Chen et al., 2020). Together these
studies reveal a key role of lysophospholipid signaling and its
wide spread effects in the process of aging and senescence.
Figure 2 illustrates the key lipid players involved in senescence.

MAJOR MOLECULAR PLAYERS OF
CELLULAR SENESCENCE AND THEIR
ROLE IN LIPID REGULATION

p16
Cellular senescence is initiated and maintained through
two critical pathways: p16INK 4A/Rb and/or p53/p21cip1. It is
important to note that both, p16 and p53, are well known tumor
suppressors. p16 inhibits cyclin dependent kinases, CDK4 and
CDK6, thus maintaining Rb in a hypophosphorylated form and
blocking cell cycle progression (Figure 3). Expression of p16
is a key factor for maintaining long-term senescence (Serrano
et al., 1997; Yamakoshi et al., 2009). A recent study isolated
high expressing p16-positive cells, specifically macrophages,
and showed that these cells exhibit several other markers of
senescence, including SA-β-gal, reduced proliferation and
accompanying SASP (Liu et al., 2019). This suggests that high
expression of p16 is indeed associated with cellular senescence.
Additionally, several single nucleotide polymorphisms (SNPs)
have been identified in the CDKN2a/b locus (encoding the
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FIGURE 2 | Major lipid species involved in senescence. Species illustrated in red increase with senescence, whereas species in orange and green regulate and
inhibit it, respectively.

p16INK4a, ARF, and p15INK4b transcripts) and associated with
multiple age-related pathologies (Jeck et al., 2012; Fortney et al.,
2015). Furthermore, p16 expression is largely undetectable in
young mice, Krishnamurthy et al. (2004), Liu et al. (2009) but is
strongly associated with aging in multiple mouse tissues (Burd
et al., 2013). Similarly, other “drivers” that accelerate aging
features, for example high fat diet, drives p16 expression through
epigenetic modulation of its coding region (Zhang et al., 2018).
Consistent with p16 being a major player in cellular senescence,
genetic ablation of p16-positive cells, using the INK-ATTAC
(Baker et al., 2011) and p16-3MR mice (Demaria et al., 2014),
reduced senescent cell burden and improved healthspan, both
in a progeria model, as well as naturally aged WT animals. Of
note, preventing the accumulation of p19ARF-positive cells,
another tumor suppressor that regulates p53 stability did not
delay or prevent age-related pathologies (Baker et al., 2008),
suggesting that p16 is crucial for maintenance of senescence, at
least in mice models.

In humans, peripheral blood T lymphocytes exhibit increased
expression of p16INK 4a with age, tobacco smoking and physical
inactivity. Similarly, p16-positive senescent T cells increase with
age in mice (Yousefzadeh et al., 2021). In addition to aging,
senescent T cells have been isolated from a number of tumors
including lung and breast cancer (Meloni et al., 2006; Gruber
et al., 2008; Urbaniak-Kujda et al., 2009). These senescent T
cells from the tumor microenvironment seem to be dysfunctional
and have reduced antitumor activity (Liu et al., 2018; Zhao
et al., 2020). Interestingly, such senescent T cells with increased
p16 expression display unbalanced lipid metabolism, leading to
accumulation of lipid droplets (Liu et al., 2021), consistent with
senescent cells in other tissues. Inhibition of the group IVA

phospholipase A2, reprogrammed metabolism and prevented T
cell senescence, suggesting that unbalanced lipid metabolism
could be a key driver of T cell senescence (Liu et al., 2021).
However, whether p16 directly controls lipid metabolism is
still unknown in this model. One recent study did identify a
direct link between p16 expression and lipid metabolism. During
fasting, inhibition of p16 in primary hepatocytes enhanced
activation of PPARα, a transcription factor with a major role in
lipid metabolism, and increased fatty acid oxidation (Deleye et al.,
2020; Figure 3). Consistent with this, p16 overexpression reduced
mitochondrial activity and fatty acid oxidation, and led to
accumulation of lipid droplets both in vitro and in vivo. However,
p16 is known to have roles outside of senescence and these
studies did not analyze cellular senescence in this fasting model.
Of note, several studies (described above) suggest that elevated
lipid β-oxidation is observed in senescent cells. Therefore,
further studies exploring if p16 controls lipid catabolism during
senescence will uncover insights into how p16 maintains long-
term senescence.

p53
p53 is one of the most well-studied tumor suppressor, and is
activated in response to various stressors including DNA damage,
telomere attrition, mitochondrial, oxidative or oncogenic
stress. Post-translational modification of p53, including
phosphorylation, acetylation, sumoylation, ubiquitination
and neddylation, regulate its activity. Upon acute stress, p53
is activated and can modulate DNA repair and quiescence
(Vousden and Prives, 2009; Kasteri et al., 2018). However,
chronic activation of p53 promotes cellular senescence (Sharpless
and Depinho, 2006; Salama et al., 2014). p53 indirectly
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FIGURE 3 | The role of major players of senescence in lipid metabolism. P16INK 4a, p53, and p21 are major cell cycle regulators that control cellular senescence.
INK4a/ARF encodes both p16 and ARF. MDM2 is an E3 ligase that ubiquitinates and leads to degradation of cellular senescence. ARF can inhibit MDM2 and
therefore stabilize p53. P21 is a bonafide target of p53 and is partially responsible for cell cycle arrest and cellular senescence. P16 inhibits cyclin dependent kinases
(CDK) thus maintaining Rb in a hypophosphorylated state and preventing E2F transcription factor activity. On the right are modulators of lipid metabolism that are
regulated by p16, p53, and p21 (? = Possibly regulated by p16).

downregulates the expression of several genes required for cell
cycle progression. Although the role of p53 in regulating the cell
cycle is well-understood, recent studies indicate that p53 can also
regulate metabolism and in particular lipid metabolism.

p53 enhances fatty acid oxidation and oxidative
phosphorylation (OXPHOS), while inhibiting fatty acid
synthesis. The role of p53 in suppressing lipid synthesis is
prominent in the p53 knock out mouse models that exhibit
obesity (Wang S. J. et al., 2016). Interestingly, induction of
cellular senescence increases oxygen consumption and inhibits
fatty acid synthesis, suggesting that p53 may play a pivotal
role in rewiring the metabolic circuitry of senescent cells
(Quijano et al., 2012). Inhibition of fatty acid synthesis by p53
is predominantly through repression of the master regulator of
fatty acid synthesis, SREBP1 (Yahagi et al., 2003). SREBPs control
the expression of multiple lipogenic enzymes, including acetyl-
CoA carboxylase (ACC), ATP citrate lyase (ACLY), and fatty acid
synthase (FASN) (Yahagi et al., 2003; Eberle et al., 2004). These
observations stem from a model of obese (ob/ob) mice, that
displayed elevated p53 and a concomitant downregulation of
SREBP-1 and its targets, possibly by reducing promoter activity.
Indeed, p53 deletion in the ob/ob mice partially rescues SREBP-1
expression (Yahagi et al., 2003).

Carnitine palmitoyltransferase 1A and 1C (CPT1A, CPT1C),
the rate limiting enzyme for fatty acid oxidation and aid
in the transport of fatty acids into the mitochondria are
transcriptionally regulated by p53 (Sanchez-Macedo et al., 2013).
Carnitine O-octanoyltransferase (CROT) another enzyme that
facilitates export of fatty acids from the peroxisomes has also
been identified as a p53 target (Goldstein et al., 2012). Once

exported from the peroxisomes these fatty acids can undergo
mitochondrial β-oxidation. Similarly, Acad11 that catalyzes the
first step of mitochondrial fatty acid oxidation, is a transcriptional
target of p53 (Jiang et al., 2015). DNA damage with doxorubicin,
an agent that induces double strand breaks and activates p53,
upregulated Acad11 expression in a p53-dependent manner
(He et al., 2011; Jiang et al., 2015). Malonyl-CoA decarboxylase
(MLYCD) is a mitochondrial enzyme that converts malonyl-CoA
to acetyl-CoA and a critical regulator of fatty acid oxidation.
In a recent study in mice exhibiting ribosomal stress, MLYCD
transcription was controlled through p53 binding to its promoter
and intron regions, and reduced lipid accumulation in the liver
(Liu et al., 2014). Another bonafide p53 target, Lipin1 has three
p53 binding sites in intron 1, and is important for adipose tissue
development. DNA damage, particularly double strand breaks
(DSBs) by γ-irradiation, that activates p53 leads to increased
Lipin1 expression in several tissues including spleen and thymus
(Assaily et al., 2011). Recent data in mouse myoblast C2C12
cells, shows that upon glucose starvation p53 upregulates Lipin
1 and fatty acid oxidation (Assaily et al., 2011). Additionally,
Lipin1 has also been shown to interact with PGC-1α, another
p53 target, to promote fatty acid oxidation (Finck et al., 2006;
Sen et al., 2011). Clearly, activated wild-type p53 does seem to
play a role in lipid metabolism, particularly fatty acid oxidation.
However, whether chronic p53 activation that is known to
promote cellular senescence, leads to similar changes has not
yet been fully elucidated. Fatty acid oxidation is linked to
OXPHOS, and provides reduced equivalents to the OXPHOS
pathway. p53 has several targets that play a role in OXPHOS,
including cytochrome c oxidase 2 (SCO2) (Matoba et al., 2006)
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and the mitochondrial encoded cytochrome c oxidase 1 (MT-CO1)
(Okamura et al., 1999). p53 is also shown to translocate into
the mitochondria and can interact with mitochondrial DNA
polymerase γ (Achanta et al., 2005), control mitochondrial
biogenesis through PGC1α, regulate mitochondrial DNA
copy number and mitochondrial mass through p53-controlled
ribonucleotide reductase (p53R2) (Bourdon et al., 2007) and
is also involved in clearance of dysfunctional mitochondria
by mitophagy through mitochondria-eating protein (Mieap)
(Kitamura et al., 2011).

Interestingly, short-chain dehydrogenase reductase (DHRS3)
that is localized to lipid droplets has also been identified as
a target of p53 (Beilstein et al., 2016). There are two p53
responsible elements in the DHRS3 promoter, and several reports
show that activated p53 promotes buildup of lipid droplets
concomitant with an increase in DHRS3 (Kirschner et al.,
2010; Deisenroth et al., 2011). In addition to FAO, OXPHOS
and lipid droplet dynamics, p53 is also involved in cholesterol
homeostasis. Caveolin 1 is a structural protein that binds to
cholesterol. In an in vitro study, in human dermal fibroblasts,
caveolin 1 was induced upon overexpression of p53 (Bist et al.,
2000). This led to reduced intracellular cholesterol, suggesting
the possible role of p53 in cholesterol efflux. The HMG-CoA
reductase pathway is important for cholesterol synthesis and
several enzymes in this pathway are p53 targets including 3′-
hydroxy-3′-methylglutaryl-coenzyme A reductase, MVA kinase,
farnesyl diphosphate synthase and farnesyl diphosphate farnesyl
transferase 1 (Laezza et al., 2015). However, there are opposing
reports on whether p53 activates or represses the HMG-CoA
reductase pathway. Both studies use WT p53 expressing cell
lines, however, one study uses astrocytes and glioblastoma cell
lines whereas the other uses mouse embryonic fibroblasts, SK-
HEP-1 and HCT116 cells (Laezza et al., 2015; Moon et al., 2019;
Figure 3). Currently the role of HMG-CoA reductase pathway in
cellular senescence is not clear, although a few reports suggest that
inhibiting this pathway in pre-malignant cells promotes cellular
senescence and inhibits tumorigenesis.

p21
A bonafide transcriptional target of p53 is p21WAF1/CIP1, a
21 kDa protein encoded by the CDKN1A gene (el-Deiry et al.,
1993). p21 interacts with cyclin dependent kinases (CDKs), thus
maintaining RB in a hypophosphorylated state and inhibiting
cell cycle progression (Harper et al., 1993; Chen et al., 1996).
Since, p21 binds several cyclin/CDK complexes, including CDK1,
2, 4 and 6, it can promote arrest at any stage of the cell
cycle. In contrast p16 specifically binds to inactivate CDK4
and CDK6, thus arresting cells in G0/G1 phase (Harper et al.,
1993; Pavletich, 1999). p21 can also bind proliferating cell
nuclear antigen (PCNA) (Waga et al., 1994) and inhibit the
cell cycle. It is important to note that p21 can be activated in
a p53-independent manner (Aliouat-Denis et al., 2005; Abbas
and Dutta, 2009). As mentioned above, p16 expression is
required to maintain a senescent state. In contrast, p21 is crucial
for initiation of senescence (Noda et al., 1994; Hernandez-
Segura et al., 2017). Indeed, mice lacking p21WAF1/CIP1 showed
defects in embryonic senescence leading to developmental

defects (Munoz-Espin et al., 2013; Storer et al., 2013). Of note,
embryonic senescence is a transient program thought to be
beneficial and is resolved in a timely manner. Furthermore,
several reports show that p21 expression does not persist in
senescent cells (Stein et al., 1999; Sharpless and Sherr, 2015).

Role of p21 in lipid metabolism is not well understood. p21
does have an apparent role in adipocyte maintenance, however,
outside of adipogenic effects not much is known about p21
in regulating lipid metabolism. There are some studies that
report p21 as a pro-adipogenic factor. Knockdown or loss
of p21 inhibited adipocyte differentiation (Inoue et al., 2008).
Consistent with this, phosphorylation of p21 by MPK-38 led to
nuclear translocation and increased association with peroxisome
proliferator-activated receptor γ (PPARγ), thus inhibiting the
role of PPARγ in adipogenesis. Furthermore, in this study
expression of p21 rescued the metabolic phenotypes observed.
Contradicting these studies, loss of p21 showed an increase in
adipocyte hyperplasia (Naaz et al., 2004). In this study loss of p21
led to spontaneous adipose conversion and adipocyte hyperplasia
in mice. However, effects in the study of Inoue et al. were
observed in the terminal differentiation phase of the adipogenic
program, whereas the anti-adipogenic effects were evident in
the earlier determination phase of adipogenesis. Interestingly,
p21 was identified as a target of SREBPs. Both SREBP-1a and
SREBP-2 binding sites exist in the p21 promoter (Inoue et al.,
2005). Furthermore, SREBP-1a led to p21 expression and cell
cycle inhibition, under conditions of lipid deprivation. Consistent
with this observation, SREBP null mice had reduced expression
of p21 (Figure 3). It will be of great interest to examine whether
expression of p21 leads to differential lipid changes during “acute”
versus “chronic” senescence. Although, p16, p53, and p21 are
key molecular players in cellular senescence their exact role in
modulating lipid metabolism, reprogramming lipid composition
and generation of bioactive lipid species is not well explored.

POTENTIAL ROLE OF LIPIDS AS
THERAPEUTICS IN TARGETING
SENESCENCE

Cellular senescence is a defining feature of aging, as well
as a contributor to chronic non-healing wounds and general
tissue aging pathology. Several key bioactive lipids such
as cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids
(EETs), leukoterines, lipoxins described above are known to
play a significant role in tissue repair. In fact, EETs have
been shown as a viable angiogenic therapeutic strategy for its
ability to accelerate wound epithelization (Sander et al., 2013).
Long term inhibition of PGE2 degradation significantly reduced
pulmonary fibrosis lesions in mouse model of bleomycin-
induced lung senescence. In contrast, profibrotic leukotriene
synthesis is elevated in IPF. Although PGE2 inhibition holds
great promise as a stand-alone treatment or in combination with
currently approved therapies for idiopathic pulmonary fibrosis,
modulating eicosanoid metabolism in context of senescence can
open up therapeutic avenues and provide mechanistic clues into
tissue aging. Although the above studies have highlighted the
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beneficial role of senescent cells in wound healing, it is still
a paradox as to how these senescent cells also impair wound
healing in aging. A temporal lipidome analysis of senescent cells
from different tissues would provide insights into lipid changes
that occur in senescent cells of aged tissues, as well as allow for
the development of tailored senescence-targeting therapeutics.

TOOLS TO IDENTIFY FUNCTIONAL
LIPIDS AND CURRENT CHALLENGES

The ubiquitous and structurally diverse nature of lipids molecules
and its varied abundance across cells and tissues contributes
to the complexity in the process of lipid identification. There
are various techniques available for studying individual lipids
and the lipidome, each with its own set of constraints.
Understanding the benefits and limitations of these approaches
is therefore crucial in identifying lipids within a biological
model. With the emergence of lipidomics, there has been
several advancements in analytical techniques such as soft
ionization methods, high resolution mass spectrometry, tandem
mass spectrometry, MS imaging and development of spectral
libraries and lipid database such as LIPIDMAPS. This has
led to not only identifying novel lipids but also unravel
mechanisms responsible for pathophysiological conditions,
biomarkers for early diagnosis and drug targeting (Quehenberger
et al., 2010; Wang M. et al., 2016). Advances in high-
resolution lipidomics platforms have made it possible to
investigate lipidome changes associated with aging and age-
associated diseases (Wong et al., 2019). For example, both
targeted and untargeted lipidomics approaches provided
insights into phospholipid remodeling in senescent cells,
led to the identification of 15d-PGJ2 as a biomarker of
senolysis and elevated ceramide C16:0 levels as prognostic
marker for functional decline (Wennberg et al., 2018; Millner
and Atilla-Gokcumen, 2020; Wiley et al., 2021). Despite
advancements made in this field, the complexity in terms of
chemistry, diversity, and abundances necessitates the continued
pursuit of technical innovation. For example, identifying
certain isomers of eicosanoids, a variety of sphingolipids,
phospholipid intermediates are still challenging to be quantified
accurately. Developing the informatics tools or libraries
to interpret a multitude of lipid species and large sets of
lipidomics data has been challenging. Nevertheless, a lot
of progress has been made toward fine tuning of high-
resolution mass spectrometry and precise identification of lipid
structures. Multi-omic data integration approaches, dynamic
lipidomics to asses turnover kinetics, single cell lipidomics has
generated a lot of interest and holds promise in advancing
the field forward.

UNANSWERED QUESTIONS IN THE
FIELD

With advances in technology, we have unraveled that lipids do
play a role in cellular senescence. However, we are left with
several unanswered and interesting questions: Do different stages
of cellular senescence (e.g., initiation versus late senescence)
have different lipid compositions? If so is it causal in initiation
or maintenance of senescence? While the lipids discussed in
this review have been linked to senescence, more research is
needed to establish cause or consequence effect. In addition to
this, the link between major senescent players- p53, p21, or
p16, and lipid alterations is still to be uncovered. Importantly,
it will be interesting to understand whether lipids could act
as biomarkers for senescence and/or senolysis, hence making
intervention possible in the near future.

Cellular senescence, in summary is a cell-fate process
associated with several age-related pathologies including
frailty, Alzheimer’s disease, Parkinson disease, atherosclerosis,
idiopathic pulmonary fibrosis, chronic obstructive pulmonary
disease, and osteoarthritis (Schafer et al., 2017; Chinta et al., 2018;
Sagiv et al., 2018). Indeed, the National Institutes of Health (NIH)
has recently started a new initiative, The Common Fund’s Cellular
Senescence Network (SenNet) Program, to better understand
the key hallmarks of cellular senescence and map the burden
of senescent cells in human. This further highlights the critical
need of understanding cellular senescence. Additionally, directed
removal of senescent cells or associated SASP improves health
considerably, at least in animal models (Zhu et al., 2015; Jeon
et al., 2017; Bussian et al., 2018; Guerrero et al., 2019; Zhang
et al., 2019). Further understanding the role of lipids in cellular
senescence will open new therapeutic approaches for several
age-related diseases.
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