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Osteoporosis and neurodegenerative diseases are two kinds of common disorders of
the elderly, which often co-occur. Previous studies have shown the skeletal and central
nervous systems are closely related to pathophysiology. As the main structural scaffold
of the body, the bone is also a reservoir for stem cells, a primary lymphoid organ, and an
important endocrine organ. It can interact with the brain through various bone-derived
cells, mostly the mesenchymal and hematopoietic stem cells (HSCs). The bone marrow
is also a place for generating immune cells, which could greatly influence brain functions.
Finally, the proteins secreted by bones (osteokines) also play important roles in the
growth and function of the brain. This article reviews the latest research studying
the impact of bone-derived cells, bone-controlled immune system, and bone-secreted
proteins on the brain, and evaluates how these factors are implicated in the progress
of neurodegenerative diseases and their potential use in the diagnosis and treatment of
these diseases.
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INTRODUCTION

Neurodegenerative diseases are characterized by the gradual loss of structure and function of
selectively vulnerable neurons in different regions of the brain, affecting millions of people
worldwide. Neurodegenerative disorders can be clinically identified by their representative
features, mostly exhibiting extrapyramidal and/or pyramidal movement disorders, cognitive or
behavioral disorders. Most patients suffer multiple clinical symptoms rather than pure phenotype
(Dugger and Dickson, 2017). The related mechanism of neurodegenerative diseases has been
studied. For example, the most common kind of dementia worldwide, Alzheimer’s disease (AD), is
pathologically characterized by the extracellular amyloid-β (Aβ) peptides accumulation in senile
plaques and the formation of intracytoplasmic neurofibrillary tangles in the brain (Querfurth
and LaFerla, 2010; Livingston et al., 2017). And Parkinson’s disease (PD) is characterized by loss
of dopaminergic neurons and insufficient synthesis of dopamine in the substantia nigra (SN)
area (Dauer and Przedborski, 2003; Maiti et al., 2017), and the accumulation of intracytoplasmic
α-synuclein polymers (Lewy bodies) in the brain (Goldman et al., 1983). Multiple sclerosis (MS)
which shows both neuroinflammatory and neurodegenerative characteristics had been found it
results from chronic demyelinating of the central nervous system (CNS; Compston and Coles,
2008). For the majority of MS patients (85–90%), tissue damage is more caused by inflammation
rather than neuronal degeneration in the first 5–12 years of onset, whereas the balance between
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inflammatory response and neuronal degeneration shifts to the
latter at the secondary stage of progression. However, for a minor
proportion of MS patients (10–15%), neuronal degeneration
plays a major role throughout the disease (Steinman, 2009).

With the increasing trend of social aging, neurodegenerative
diseases and osteoporosis have become severe social issues.
The bone-related effect in neurodegenerative diseases has so
far gained an increased awareness of several epidemiological
findings. A meta-analytic study showed that compared with
healthy controls, AD patients have a lower hip bone mineral
density and are more likely to suffer from hip fractures (Zhao Y.
et al., 2012). Also, osteoporosis is regarded as a risk factor for
AD, since osteoporosis correlates with the cognitive deficit and
its severity in adults older than 50 (Zhou et al., 2011; Kang
et al., 2018). Many PD patients have compulsory trunk scoliosis,
known as Pisa syndrome, which causes severe late complications
of disability (Poewe et al., 2017). In a more common scenario,
AD or PD patients suffer from bone fracture, osteoarthritis,
restricted movement, bed ulcer, and even death caused by
severe osteoporosis. Osteoporosis and an abnormal amount of
bone-derived factors in turn promote the progression of AD and
PD, especially in women over 60 years old (Yuan et al., 2019).

Bone is a multifaceted, dynamic tissue, which participated
in movement facilitation, mineral metabolism, immune
cell generation, and mesenchymal stem cells (MSCs) or
hematopoietic stem cells (HSCs) breading. Since the bone
marrow (BM) contains enormous amounts of MSCs and
serves as the primary lymphoid organ, both of which have
already been proved to have effects on the brain by many
studies, the significance of bone in the regulation of CNS
homeostasis is un-doubtable. Moreover, some hormones or
‘‘osteokines’’ from bone cells such as osteocalcin (OCN),
osteopontin (OPN), and fibroblast growth factor (FGF) 23 have
endocrine functions (Vervloet et al., 2014; Han Y. et al., 2018).
These proteins can act on the brain directly or indirectly
by regulating phosphate homeostasis or systemic energy
metabolism (Han Y. et al., 2018; Yuan et al., 2019). This review
aims to clarify the inter-relationship between the bone and
brain and to discuss its potential therapeutic implications for
neurodegenerative diseases.

BM-DERIVED CELLS

The bone organ consists of bone and Bone marrow(BM), both
of which function as a single unit (Compston, 2002). BM is
a soft and viscous tissue enclosed within the bone cortex,
containing HSCs and MSCs. HSCs are responsible for producing
blood cells, including leukocytes, monocytes, erythrocytes,
and platelets, while MSCs are contributed to osteoclasts and
osteoblasts’ origination. These stem cells are tightly involved in
the neurodegenerative progressions. Transplantation of young
BM can rejuvenate the hematopoietic system and preserve
cognitive function in old recipient mice, suggesting the beneficial
effects of BM to the brain (Castellano et al., 2015; Das et al.,
2019). Several pathways are contributed to the beneficial effects
such as these BM-derived cells migrating directly into the
brain to exert their toxicant clearance, immuno-modulative and

neuro-generative functions, or via secreting exosomes to enter
the brain and execute their biological functions (Soulet and
Rivest, 2008; Dennie et al., 2016; Nakano et al., 2016; Han K. H.
et al., 2018; Figure 1).

BM-Derived Microglia-Like Cells
Microglia are the primary immune effector cells in the CNS.
These cells are monocytes that originated from mesodermal that
invade the developing CNS in the embryonic period when the
blood-brain barrier (BBB) is not fully formed. In addition to
the primary resident microglia, another type of microglia that
originates from precursors cells in the BM has been identified
in the brain (Soulet and Rivest, 2008). To distinguish them
from the originally brain-resident microglia cells, microglial
cells originating from the outside of the brain are referred to
as ‘‘microglia-like cells’’ (Han K. H. et al., 2018). Although
BM-derived microglia-like cells can enter the CNS under normal
physiological conditions, they are preferentially presented in
regions suffering from neurodegeneration or exogenous insults
(Soulet and Rivest, 2008). In the case of ischemic stroke,
peripheral monocytes can migrate into the brain at the injury site
and differentiate into ramified microglial-like cells (Priller et al.,
2001a,b; Soulet and Rivest, 2008). This is even true for facial nerve
axotomy and hypoglossal nerve axotomy models, in both cases
the mouse models’ BBBs are not damaged (Priller et al., 2001a,b;
Soulet and Rivest, 2008). In vitro studies showed Aβ-eliminating
microglia-like cells could be differentiated from the BM-derived
HSCs (Kuroda et al., 2020b) monocyte (Simard et al., 2006) and
CD11b- or CD115-positive cells (Lebson et al., 2010; Koronyo
et al., 2015). Further mechanism study showed that cells from the
human and mouse BM can becomemicroglia-like cells under the
stimulation of colony-stimulating factor-1 (Kuroda et al., 2020a).
An in vivo study showed that BM-derived microglia-like cells
can move through the BBB and accumulate inside the brain in
a CCR2 chemokine-dependent manner (El Khoury and Luster,
2008). The decreased CCR2 expression can reduce microglia
accumulation and increase the level of Aβ in the brain, suggesting
that early microglial accumulation can promote Aβ clearance in
AD mouse models (El Khoury and Luster, 2008).

We reviewed the BM-derived microglia-like cells’
contribution to microgliosis in neurodegenerative diseases.
Researchers transferred GFP-labeled myeloid cells into the
BM of irradiated AD mice, and these GFP-labeled cells were
later detected in the senile plaques in the brains (Simard et al.,
2006). Similarly, early and rapid recruitment of BM-derived
microglia to the brain also occurs in prion disease, bacterial
meningitis, and PD mouse models (Kokovay and Cunningham,
2005; Djukic et al., 2006). Intracerebral injection of externally
differentiated BM-derived microglia-like cells can also decrease
Aβ deposits and improved cognitive function in AD mouse
models (Kawanishi et al., 2018). These injected microglia-like
cells can automatically migrate toward Aβ plaques, and reduce
the number and area of these plaques (Lampron et al., 2011).
Another study used a novel transgenic ADmouse to demonstrate
that it is the peripheral blood-originated microglia, rather than
their resident counterparts, that are capable of phagocytosing Aβ

deposits (Simard et al., 2006). Besides, BM-derivedmicroglia-like
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cells could also stimulate the phagocytic functions of brain-
resident microglia in vitro and in vivo, via secreting large sums
of transforming growth factor-β (TGF-β; Kuroda et al., 2020a).
All these results suggest that BM-derived microglia-like cells
have potential cell-based disease-modifying therapy against
neurodegenerative diseases, especially AD.

BM-MSCs
BonemarrowMSCs (BM-MSCs) are pluripotent stem cells inside
the BM. It has been proved that BM-MSCs can move into the
brain and develop neuronal markers such as nestin, doublecortin,
and NeuN under physiological conditions (Dennie et al., 2016).
The CCR5 plays a critical role in regulating the BM-MSCs’
migration into the brain, both in physiological conditions and
in response to injury (Dennie et al., 2016). Thus, BM-derived
progenitors can migrate to the brain and become neurons at least
in part, by firstly differentiating into neuronal precursor cells
(Dennie et al., 2016). Apart from that, BM-MSCs can migrate to
the brain and exert strong neuroprotective effects via regulating
neurogenesis, apoptosis, angiogenesis, immunomodulation, and
eliminating Aβ plaques in the brain (Naaldijk et al., 2017;
Qin et al., 2020).

Transplanted BM-MSCs could significantly diminish the
hippocampal Aβ plaques by activating several Aβ-degrading
enzymes (Jha et al., 2015). Since vascular damage is also a
pathogenic factor of AD, BM-MSCs can promote angiogenesis
in the AD brain by secreting vascular endothelial growth
factor (VEGF), epidermal growth factor (EGF), FGF-2, and
Ang-1 (Gallina et al., 2015), and thus favor the cognitive and
behavioral recovery (Garcia et al., 2014). The MSCs can also
exert neuroprotective effects by secreting neurotrophic factors
such as neurotrophin-3 (NT-3), hepatocyte growth factor (HGF),
and brain-derived neurotrophic factor (BDNF; Wang et al.,
2010). These factors stimulate endogenous regeneration and
contribute to neurobehavioral function recovery. Animal studies
demonstrate that the immunomodulatory effect of BM-MSCs
plays a vital role in AD treatment as well (Salem et al.,
2014; Zhang et al., 2020). Transplanted BM-MSCs can attract
microglia-like cells by secreting CCL5 both in vitro and in the
AD brain (Lee J. K. et al., 2012). Despite this, the activation levels
of microglia and astrocyte were decreased in AD mice brains
after BM-MSCs transplantation, manifested as the cerebral
Iba-1 levels were down-regulated (Yokokawa et al., 2019). Our
previous study showed that the transplanted BM-MSCs could
inactivate microglia in the peri-infarct area via the CD200-
CD200R1 signaling (Li et al., 2019). Also, BM-MSCs could
lower expressional levels of pro-inflammatory genes, cytokines,
and enzymes in astrocytes (Schäfer et al., 2012; Naaldijk et al.,
2017). However, other studies report that the BM-MSCs could
accelerate the microglia activation and thus the Aβ clearance
in the AD brain (Lee et al., 2009). The BM-MSCs could
also significantly increase the number of ChAT-positive cells
and the intensity of ChAT spots in AD brains, which is
an indicator for neurogenesis, neuronal differentiation, and
integration (Mezey and Chandross, 2000; Mezey et al., 2000;
Sanchez-Ramos et al., 2000). Nestin in neural cells, a neural
precursor biomarker, is also up-regulated in the brain following

the BM-MSC transplantation (Sanchez-Ramos et al., 2000). In
fact, cells in different neurogenic stages, including proliferation,
differentiation, migration, targeting, and integration, could
be found in the hippocampus after the BM-MSC treatment
(Perry et al., 2012).

Furthermore, BM-MSCs can alleviate cognitive defects
related to various neurological disorders including traumatic
brain injury (TBI), PD, and stroke by secreting microvesicles
(MV) or exosomes (Xiong et al., 2017; Yang et al., 2017). It
has been hypothesized that vesicles from BM-MSCs facilitate
the transference of various functional factors, including
regulatory non-coding RNAs, lipids, and proteins (Reza-
Zaldivar et al., 2018). These regulatory factors within the
MSC-derived exosomes are reported to act on critical cellular
pathophysiological processes, such as energy metabolism,
inflammation, and migration (Nakano et al., 2016; Borger et al.,
2017). Li et al. (2017) reported that MSC-oriented exosomes
shift the M1 microglia polarization toward an M2 phenotype,
which ameliorates neuroinflammation and promotes functional
recovery in a TBI model. Nakano et al. (2016) reported that
BM-MSC-derived exosomes can alleviate the learning and
cognitive damage in Streptozotocin (STZ)-induced diabetic mice
by alleviating oxidative stress and promoting synaptogenesis.
Functional miRNAs in exosomes might be an important
mediator to inhibit neuronal apoptosis, promote synaptic
plasticity and remodeling, and accelerate functional recovery
(Xin et al., 2013, 2017; Cheng et al., 2018). For example, Xin et al.
(2012, 2013) reported that MSC-released exosomes can transfer
miR-133b into astrocytes and neurons in stroke rat models, and
thereby promote the neurite outgrowth in the ischemic area.
The authors further demonstrated the miR-133b exerts their
neuroprotective function via decreasing the Ras homolog gene
family member A (RhoA) and connective tissue growth factor
(CTGF) expression. Besides, a study based on miRNA profiling
and qPCR demonstrated the upregulation of miR-146a-5p in
senescent MSCs and MSC-MVs (Lei et al., 2017). MiR-146a were
also significantly upregulated in peripheral blood and cerebral
spinal fluid (CSF) during the progression of AD, amyotrophic
lateral sclerosis (ALS), and MS (Viswambharan et al., 2017).
The miR-146a transferred by BM-MSCs-secreted exosomes is
a key regulator in suppressing the astrocytic inflammation and
protecting diabetic rats from cognitive decline (Kubota et al.,
2018). Other neuroprotective mechanisms of MiR-146a-5p
include inhibiting the NF-κB signaling (Iyer et al., 2012) and
promoting remyelination (Zhang et al., 2017).

However, the neuroprotective functions of MSCs may be
restricted with age, since both the number and function of
MSCs are decreased (Lee et al., 2010; Bang et al., 2016). The
senescent MSCs commonly present enlarged and more granular
morphology, limited proliferation and differentiation capacity,
and a distinct secretory phenotype referred to as ‘‘senescence-
associated secretory phenotype’’ (SASP; Watanabe et al., 2017).
The senescence of MSCs is believed to be the underlying cause
of osteoporosis (Román et al., 2017), and neurodegenerative
diseases including AD and PD (Lei et al., 2017). Furthermore,
MSCs in the senescent late period release higher levels but
smaller-sized MSC-MVs than the early passage of MSCs
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FIGURE 1 | Bone marrow-derived cells influence the brain. BM-MSC, bone marrow mesenchymal stem cell; HSC, hematopoietic stem cell.

(Lei et al., 2017), which correlated with the phenomenon that
the levels of myeloid MVs in plasma and cerebrospinal
fluid were positively associated with neurodegenerative disease
(Joshi et al., 2014).

In conclusion, BM-MSCs can migrate into the brain to
differentiate toward neurons themselves, or recruit microglia
cells for toxicant clearance. BM-MSCs can also promote neuronal
repair and functional recovery by secreting exosomes. However,
BM-MSC’s curative effects decreased greatly in the aging process.

BM-CONTROLLED IMMUNE SYSTEM

The BM is the primary organ for producing common lymphoid
progenitors (CLPs), which are responsible for generating
innate and adaptive immune cells (Zhao E. et al., 2012).
This is why the BM is called the primary lymphoid organ.
The function of the BM and CNS is closely interconnected.
There are norepinephrine (NE)-releasing sympathetic nerve
fibers in BM, which are essential for preserving the HSC
niche, promoting the HSC mobility, and regulating their
differentiation into immune cells (Maryanovich et al., 2018). At
the same time, the changes in the immune system originated
from the BM will also affect the functions of the CNS
by various mechanisms, including promoting inflammatory
cytokines secretion, microglial activation, neuronal apoptosis,
demyelination, and tissue damage (Liang et al., 2017). With
age, the hematopoietic tissue is gradually replaced by fat tissue,
and the proliferative and developmental capacity of HSCs,
as well as the lymphogenic capacity decrease (Geiger et al.,
2013). Studies have shown that the pathogenesis of AD and
PD may be related to systemic immune dysfunction, especially
to the T cell subtypes (Pellicano et al., 2012). Compared
with the age-matched controls, the difference of immunity

in AD patients was greater than that caused by age. The
immune alterations mainly include less naïve T cells, more
terminated-differentiated cells, and more dysfunctional Treg
cells in AD patients. In PD patients, CD4+ and CD8+ T
lymphocytes are found aggregated around the SN compacta
(Brochard et al., 2009). These CD4+ cells are highly pro-
inflammatory, which can promote the microglia activation and
the degeneration of dopaminergic neurons. These studies suggest
that immune alterations can contribute to the progression of
neurodegenerative diseases (Figure 2).

CD8+ T Cells
CD8+ T cells also referred to as cytotoxic T lymphocytes
(CTL), play vital roles in the immune system to defend against
intracellular pathogens by secreting pro-inflammatory cytokines,
primarily the TNF-α and IFN-γ, or directly killing target cells via
Fas/FasL interactions or cytotoxic granules containing perforin
and granzymes (Harty et al., 2000). CD8+ T cells are also
related to the pathogenesis of neurodegenerative diseases. Studies
indicated that the CD8+ T cells outnumber the CD4+ T cells in
MS lesions (Goverman et al., 2005). Moreover, the injection of
CD8+ myelin-specific T cells rather than myelin-specific CD4+
T cells into wild-type mice can induce a demyelinating disease
similar to MS, suggesting CD8+ T cells’ unique roles in the
pathogenesis of MS (Huseby et al., 2001; Goverman, 2009).
Furthermore, in the brains of both postmortem human PD
specimens and PDmouse models, CD8+ T cells are often located
next to the activated microglia and degenerating neurons in the
SN area, which indicates that these cells might be implicated in
PD neuronal loss (Brochard et al., 2009). Additionally, CD8+ T
cells mediated inflammation and IFN-γ levels are associated with
microstructural tissue damage and neurological deficits in AD
patients (Baglio et al., 2013; Lueg et al., 2015).
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FIGURE 2 | The detrimental and beneficial roles of different immune cells in neurodegenerative diseases. With the aging bone marrow, pro-inflammatory
lymphocytes (CTL, Th1, Th17) are activated, while immunomodulatory lymphocytes (Th2, Tregs) are suppressed, thus promoting the progression of
neurodegenerative diseases. AD, Alzheimer’s disease; BBB, blood-brain barrier; CTL, cytotoxic T lymphocyte; IFN-γ, interferon-γ; MS, multiple sclerosis; PD,
Parkinson disease; SN, substantia nigra; TNF-α, tumor necrosis factor-α.

Th1 Cells
CD4+ Th1 cells referred to as type 1 T helper cells are
characterized by T-bet expression and Type 1 cytokines (mainly
IFN-γ, TNF-α, and IL-2) secretion (Romagnani, 2014). CD4+
Th1 infiltration in the brain is seen in various neurodegenerative
diseases (Liang et al., 2017). Browne et al. (2013) showed that
Th cells infiltrated in the brains of APP/PS1 mouse models
secrete abundant IFN-γ and IL-17, suggesting these Th cells are
mainly the Th1 and Th17 subsets. They further demonstrated
that it is the Th1 cells, but not Th2 nor Th17 cells, that cause
microglial activation, Aβ plaque burden increase, and impaired
cognitive function in APP/PS1 mouse models (Browne et al.,
2013). Much of the Th1 cell-mediated inflammatory damage in
the context of neurodegenerative diseases can be attributed to the
release of pro-inflammatory cytokines and the M1 polarization
of macrophages and microglia. These cellular processes could
significantly aggravate neurodegenerative diseases by promoting
neurotoxicity and tissue damage in the brain (Sanchez-Guajardo
et al., 2013). Administrating anti-IFN-γ antibody and immuno-
modulative TGF-β in AD mouse models could effectively
alleviate the Th1 cell-mediated neuroinflammation and cognitive
decline (Browne et al., 2013; Chen et al., 2015). However, some
studies show the beneficial roles of Th1 cells in AD pathology.
Intracerebroventricular (ICV) injection of Aβ-specific Th1 cells
lowers the Aβ levels and enhances neurogenesis, while exerts no
impact on apoptosis in AD mouse models (Fisher et al., 2014).
Thus, it seems that different routes of Th cells migration into the
brain might play different roles in neurodegeneration.

Th2 Cells
CD4+ Th2 cells are T helper cells expressing the GATA3 and
producing Type-2 cytokines (mainly IL-4, IL-5, IL-9, and IL-13;

Walker and McKenzie, 2018). Th2 cells mainly exhibit an
anti-inflammatory function, such as suppressing the Th1-related
IFN-γ-driven immune response and inducing macrophage to
polarize into an M2-like phenotype (Walker and McKenzie,
2018). In the Th1/Th2 balance paradigm, the Th1-secreted
IFN-γ and Th2-derived IL-10 inhibit the proliferation of each
other’s cells. CD4+ Th2 cells mainly exhibit neuroprotective
properties in the context of neurodegenerative diseases. For
example, myelin basic protein (MBP)-primed Th2 cells can
enter the brain and restrict the AD and PD neurotoxicant
induced microglial inflammation (Roy and Pahan, 2013). In MS
models, Th2 cells can inhibit the activation of lipopolysaccharide
(LPS)-stimulated microglia via direct cell contact, and ultimately
inhibit its IL-1b and nitric oxide production (Roy and Pahan,
2013). Additionally, MBP-primed Th2 cells can even induce the
neurotrophic molecules (including BDNF and NT-3) expression
inmicroglia and astroglia via direct cell contact (Roy et al., 2007).

Th17 Cells
Th17 cells are CD4+ Th cells expressing the RORγτ

transcriptional factors and secreting characteristic cytokines
including IL-17 and IL-22 (Annunziato et al., 2013). They
are involved in the progression of neurodegenerative
diseases, mainly by secreting IL-17 to recruit inflammatory
neutrophils and IL-22 to stimulate epithelial cells generating
antimicrobial peptides (Saresella et al., 2011). Saresella et al.
(2011) analyzed the function of various T lymphocytes in AD
patients and compared the data with those of mild cognitive
impairment participants or aged-matched healthy people.
They found that the Th17 lymphocytes are significantly
increased in AD. In MS or experimental autoimmune
encephalomyelitis (EAE), Th17 cells secrete cytokines to
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act on IL-17 and IL-22 receptors on the BBB endothelium,
causing BBB damage and subsequent neural inflammation
(Kebir et al., 2007).

Interestingly, Th17 is tightly associated with bone destruction.
In postmenopausal osteoporosis patients, serum IL-17A is
significantly higher, while the IFN-γ and IL-4 are significantly
lower, suggesting osteoporosis may be more associated with the
Th17 cells rather than the Th1 or Th2 cells (Zhang et al., 2015).
The further study demonstrates IL-17A is pro-osteoclastogenic
at the cellular level (Le Goff et al., 2019). In vivo study
shows that although IL-17A is not required for normal bone
homeostasis, it plays a vital role in bone loss of ovariectomized
osteoporosis mouse models. Furthermore, preliminary data from
clinical trials show that anti-IL-17A antibodies stabilize bone
density in inflammatory arthritis (Le Goff et al., 2019). These
results suggest an inter-relationship between osteoporosis and
neurodegenerative diseases.

Treg Cells
Regulatory T cells (Tregs) are T cells expressing the
CD4+CD25+Foxp3+ surface markers. They inhibit immune
response and thus to maintain homeostasis and self-tolerance.
Treg cells play a substantial role in slowing down the progression
of ALS by lowering pro-inflammatory cytokine expressions
and reducing microglial activation in mouse models (Beers
et al., 2011). The mechanisms behind are associated with Tregs’
secretion of immuno-modulative cytokines (TGF-β, IL-10, and
IL-4) which inhibits the microglia and pro-inflammatory
T cells activation (Beers et al., 2011; Xie et al., 2015).
However, functional Tregs are usually deficient in patients
with neurodegenerative diseases for several reasons. Under
normal physiological conditions, 30% of CD4+ T cells are
functional Treg cells in BM (Zou et al., 2004), and over 15% of
CD4+ T cells in rat cerebrum are Treg cells (Xie et al., 2015).
However, the absolute lymphocyte numbers and the percentage
of Treg subsets were both decreased in the BM and peripheral
blood of the aged participants, indicating the Treg production
in BM is reduced (Freitas et al., 2019). Moreover, a decrease
of functional Treg seems to be closely related to MS, since
the relapsed MS patients have fewer Tregs and significantly
reduced Treg/Th17 ratio in the peripheral blood compared
with healthy individuals (Jamshidian et al., 2013). Furthermore,
Tregs are extremely rare or even undetectable in MS brain
lesions, which might be due to Treg’s impaired migration
across the BBB (Fritzsching et al., 2011). In vitro studies
show healthy Tregs can cross the human brain endothelium
easily, whereas the migration ability of Tregs in MS patients is
severely impaired (Schneider-Hohendorf et al., 2010). Moreover,
their neural protective functionality might also be hindered
in neurodegenerative disease because of the Th17 subset’s
inhibitory effect on Tregs. Treg cells rely on TGF-β, which
is competitively bound by the abundant Th17 cells in a
neurodegenerative context, for differentiation and maintenance
(Afzali et al., 2010). However, Tregs can be transformed into
pro-inflammatory Th17 cells themselves in some circumstances
(Afzali et al., 2010). These multiple factors result in low Treg
levels in neurodegenerative patients.

BONE SECRETORY PROTEINS

Previous evidence showed that several bone cell-secreted
hormones or ‘‘osteokines’’ have endocrine functions, such as
OCN, OPN, FGF23, Lipocalin 2(LCN2), osteoprotegerin (OPG),
sclerostin (SOST), and Dickkopf-1 (DKK1; Vervloet et al., 2014;
Han Y. et al., 2018). Most of these proteins are produced
by osteoblasts and osteocytes and have roles in regulating
phosphate and systemic energy metabolism (Han Y. et al.,
2018). Osteoblasts-secreted OCN regulates energy metabolism,
reproduction, and cognition (Zoch et al., 2016; Mizokami et al.,
2017; Obri et al., 2018). OPN in the osseous tissue is released
from osteoblasts and osteoclasts and is associated with bone
destruction and suppression of ectopic calcification (Lund et al.,
2009; Uede, 2011). It mainly regulates phosphate homeostasis
(Huang et al., 2013). LCN2 secreted by osteoblasts can act on
the brain to suppress appetite (Mosialou et al., 2017). OPG is
synthesized by osteoblasts and its main function is to antagonize
the effects of receptor activator of nuclear factor-kappa-B ligand
(RANKL; Bonnet, 2017; Rochette et al., 2019). Both SOST and
DKK1 (Ke et al., 2012) are mainly secreted by osteocytes and
function through antagonizing the canonical Wnt pathway.
These bone secretory proteins are reported to play diverse roles
in neurodegenerative diseases (Table 1).

OCN
OCN is uniquely secreted by osteoblasts (Hauschka et al.,
1975; Price et al., 1976) and is thus a specific biomarker
for bone formation (Ducy et al., 1996; Ducy, 2011). OCN is
also an important regulator of energy metabolism, as it can
enhance insulin secretion, decrease insulin resistance, improve
glucose tolerance and blood lipid profile, and regulate brown
adipose tissue differentiation (Karsenty and Ferron, 2012;
Wei et al., 2014).

OCN, uncarboxylated in most circumstances, can pass
through the BBB and bind specifically with neurons in
the brainstem, thalamus, and hypothalamus (Oury et al.,
2013; Shan et al., 2019). Upon binding, OCN can influence
the signals that regulate neurotransmitter syntheses, such as
decreasing the synthesis of glutamate decarboxylase 1 (Gad1),
an enzyme involved in GABA biosynthesis, and increasing
the tyrosine hydroxylase (Th) and tryptophan hydroxylase 2
(Tph2) synthesis, which are the key enzymes involved in
the serotonin, dopamine, and norepinephrine generation in
the brainstem and midbrain explants (Oury et al., 2013).
In the hippocampus, OCN mainly combines with neurons’
Gpr158/Gaq receptors, and functions in part by activating
IP3 and promoting the secretion of BDNF (Khrimian et al.,
2017), a molecule well known to promote hippocampal-
dependent memory (Hall et al., 2000; Dean et al., 2009). Adult
mice lacking OCN displayed a substantial increase in anxiety-like
behavior and had a major deficit in memory and learning
(Nakazawa et al., 2002; Oury et al., 2013). Anatomically, the
brains of OCN–/– mice are consistently smaller, mainly in
the hippocampal region, and often lost the corpus callosum
compared with wild-type littermates (Nakazawa et al., 2002;
Oury et al., 2013). OCN–/– mice injected with OCN showed
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TABLE 1 | Bone secretory proteins and their different effects in the brain.

Origin Neuroprotective effects on the brain Neurotoxic effects on the brain

OCN Osteoblast ↑MN (5-HT, DA, NE) and ↓ GABA production;
↑BDNF;
↓Inflammation;
Beneficial for AD and PD.

OPN Osteoblasts, osteoclasts,
myelomonocytic cells

↑Monocyte-macrophage’ recruitment and M2 polarization
in AD;
↑Aβ clearance in AD;
↓Apoptosis in AD;
Either neuroprotective or neurotoxic in PD;
Protects dopaminergic cells in PD via RGD-binding domain.

↑Pro-inflammatory mediators in MS;
↑Autoreactive immune cells in MS;
Associate with nigral cell death and glial response in PD.

FGF23 Osteoblasts, osteocytes ↓Vitamin D, exacerbate AD and PD;
↓Serum phosphate, cause ion dysregulation;
FGF23 deficiency causes ectopic calcification, neuronal
loss, and cognition damages.

LCN2 Osteoblast Inhibit remyelination in MS;
Synergistic neurotoxic effects with Aβ, TNF-α or LPS;
↑Apoptosis and neuronal death in MS, PD, AD;
↓TNFR2’s neuroprotective effects.

OPG Osteoblast Inhibit RNAKL and TRAIL;
↓Aβ toxicity and prevent AD;
↓Vascular calcification and prevent vascular dementia.

DKK1 Osteocytes, osteoblasts,
BM-MSCs

↓Wnt’s neuroprotective effects;
↑Aβ toxicity;
↓Neural synapses;
Risk factor for AD.

Abbreviations: OCN, osteocalcin; OPN, osteopontin; OPG, osteoprotegerin; FGF23, fibroblast growth factor 23; LCN2, Lipocalin 2; DKK1, Dickkopf-1; MN, Monoamides; 5-HT,
serotonin; DA, dopamine; NE, norepinephrine; GABA, γ -aminobutyric acid; RGD, arginine-glycine-aspartic acid; RANKL, receptor activator of the nuclear factor-kappa-B ligand;
TRAIL, TNF-related apoptosis-inducing ligand; BDNF, brain-derived neurotrophic factor; AD, Alzheimer’s disease; MS, multiple sclerosis PD, Parkinson’s disease; TNFR2, tumor
necrosis factor receptor 2; LPS, lipopolysaccharide; TNF-α, tumor necrosis factor-α.

ameliorated anxiety and depression, and improved memory
and learning abilities (Mera et al., 2016). OCN also has
neuroprotective effects in the context of PD. As mentioned
above, OCN could enhance dopamine synthesis in neurons,
thereby reducing the Th loss and relieving the PD symptoms
in PD rat models (Guo et al., 2018; Obri et al., 2018).
Also, OCN could modulate neuroinflammation in the SN of
PD rats by inhibiting astrocyte and microglia proliferation,
together with partially decreased levels of TNF-α and IL-1β
(Guo et al., 2018).

OPN
OPN was first discovered as a protein to anchor osteoclast to
the mineral surface of bones, thereby to facilitate the osteolytic
process (Reinholt et al., 1990). Serum OPN levels have negative
correlations with bone mineral density in postmenopausal
women (Cho et al., 2013). OPN is mainly secreted by osteoblasts,
osteoclasts, and BM-derived myelomonocytic cells (Lund et al.,
2009; Uede, 2011). In the brain, OPN is a constituent of the
normal extracellular matrix and is expressed mainly in the
basal ganglia, especially in the substantia nigra (SN; Iczkiewicz
et al., 2004). In neurodegenerative diseases, OPN is considered
to play dual roles in neuroinflammation and neuroprotection
(Carecchio and Comi, 2011; Yu et al., 2017).

Previous studies showed OPN’s detrimental role in MS.
Abundant OPN transcript was found in plaques dissected
from MS patients’ brains, while it was absent in the control
group (Chabas et al., 2001). Further study demonstrated that

OPN-deficient mice had a milder disease course than wild
type animals, and displayed only a single relapse without
subsequent exacerbations or progression (Chabas et al., 2001;
Jansson et al., 2002). Administrating OPN-deficient EAE
mice with recombinant OPN exacerbates the disease (Hur
et al., 2007). Two mechanisms may be involved in OPN’s
detrimental effects: by stimulating the pro-inflammatory
mediators in MS lesions, and by inhibiting the apoptosis of
autoreactive immune cells (Carecchio and Comi, 2011). In
contrast, the OPN is mainly studied for its anti-inflammatory
and anti-apoptotic properties in PD (Khan et al., 2002;
Lund et al., 2009; Rittling and Singh, 2015). Iczkiewicz
et al. (2010) showed that the arginine-glycine-aspartic acid
(RGD)-binding domain of OPN protects dopaminergic
cells against toxic insult induced by MPP+ and LPS. Also,
the OPN’s effect decline with age, a major predisposing
factor for PD, further reinforced the hypothesis (Hwang
et al., 1994). However, Maetzler et al. (2007) showed that
OPN knock-out PD mice displayed less nigral cell death
and a lower glial response compared to wild-type PD mice.
He also reported that PD patients’ serum and CSF OPN
levels were higher, with CSF levels positively correlated with
concomitant dementia and serum levels with more severe
motor symptoms, suggesting OPN may promote the PD
progression (Maetzler et al., 2007). In the context of AD,
studies show OPN can promote the monocyte-macrophage’
recruitment into AD mouse brains, and their polarization
towards an anti-inflammatory, highly phagocytic phenotype
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to facilitate Aβ clearance (Rentsendorj et al., 2018). The
FDA-approved anti-AD drug glatiramer acetate increases
the plasma levels of OPN, and therefore promotes a
macrophage phenotype that is highly phagocytic of Aβ and
anti-inflammatory (Rentsendorj et al., 2018). Also, OPN
can bind to the CD44 receptor and exert its anti-apoptotic
function (Lin and Yang-Yen, 2001). This may be another
potential mechanism for OPN to protect neurons from
injury in AD.

Therefore, we can conclude that the levels of OPN
increase with age. OPN accelerates the progression of bone
demineralization, while exerts different influence on various
kinds of neurodegenerative disorders.

FGF-23
FGF-23 is mainly secreted by osteoblasts and osteocytes.
It suppresses the phosphate resorption and 1,
25(OH)2D3 production in the kidney by binding to FGFR1 and
its co-receptor Klotho (Urakawa et al., 2006). FGF-23 changes
significantly in the aging process (Cardoso et al., 2018). Still,
FGF-23 is an independent predictor for dementia and AD, after
adjusting for age, sex, cardiovascular disease, diabetes mellitus,
etc. (McGrath et al., 2019). In another study, researchers
used high-resolution MRI to find out that increased FGF-23
was associated with axonal loss and white matter disruption
in the frontal lobe only in patients with cardiovascular risk
factors (Marebwa et al., 2018). FGF-23-deficient mice show
ectopic calcifications in the brain, fewer immature neurons
in the sub-granular zone (SGZ), and significant cognitive
impairment compared with wild type controls (Kunert et al.,
2017; Laszczyk et al., 2019). Mice overexpressing FGF-23 also
showed impaired spatial learning and memory (Liu et al., 2011).
However, these peripheral symptoms could be largely alleviated
by dietary correction of phosphate levels (Morishita et al.,
2001; Liu et al., 2011), suggesting that FGF-23 may indirectly
affect brain health and cognition, but probably by affecting
phosphate homeostasis which acts synergistically with renal or
cardiovascular risk factors.

Another explanation is that too much FGF-23 may exacerbate
neurodegenerative diseases by decreasing the level of vitamin
D3. FGF-23 suppresses the vitamin D3 production by blocking
the 1α-hydroxylase in the renal proximal and distal tubules
(Karsenty and Olson, 2016). The detrimental effects of vitamin
D deficiency on the brain and its roles in neurodegenerative
diseases have already been elaborated on in other studies
(Koduah et al., 2017; Lv et al., 2020).

In conclusion, an abnormal amount (too much or too little)
of FGF-23 is sufficient to affect brain function and cognition,
most likely through an indirect way by affecting ion (phosphate)
and/or vitamin D homeostasis.

LCN2
LCN2 is an endocrine hormone secreted by osteoblasts and
can suppress appetite by crossing the BBB to bind to the
melanocortin-4 receptor (MC4R) in the brainstem (Mosialou
et al., 2017). Besides, LCN2 can promote insulin resistance
and cause hyperglycemia, diabetes, cardiovascular disease,

and metabolic syndrome (Yan et al., 2007). LCN2 can
also be secreted by neutrophils and glial cells, and play
essential roles in inflammation, infection, and injury to cells
(Pinyopornpanish et al., 2019).

LCN2 acts through its two receptors, 24p3R and megalin
(Chakraborty et al., 2012), both of which can be found in the
brain in basal and pathological conditions (Ip et al., 2011).
LCN2 production is increased in progressive MS patients, and
this effect could be relieved by the MS-treating drug natalizumab
(Al Nimer et al., 2016). Further in vitro study shows that
LCN2 plays detrimental roles by inhibiting remyelination in a
dose-dependent manner (Al Nimer et al., 2016). LCN2 is also
upregulated in the SN of PD patients and neurotoxin-induced
PD animal models (Kim et al., 2016). The higher LCN2 levels
could disrupt the SN dopaminergic projection and contribute
to abnormal locomotor behaviors through neurotoxic iron
accumulation and neuroinflammation, which were alleviated in
LCN2-deficient mice (Kim et al., 2016). LCN2 is significantly
decreased in CSF of AD patients and increased in brain
regions related to AD pathology (Naudé et al., 2012). in vitro
study demonstrates that LCN2 makes nerve cells susceptible
to Aβ toxicity, and suppresses the neural protective tumor
necrosis factor receptor 2 (TNFR2) signaling pathway in neurons
(Naudé et al., 2012).

In animal experiments, ICV injection of recombinant mouse
LCN2 protein can cause neuronal death in the hippocampal
CA1 area and cognitive dysfunction (Kim et al., 2017). Moreover,
LCN2 usually acts synergistically and exacerbates the neurotoxic
effects of Aβ, TNF-α, or LPS (Mesquita et al., 2014; Yang et al.,
2017). The expression of 24p3R increases after the administration
of Aβ (Mesquita et al., 2014). An increase in cell death is reported
when astrocytes or neurons are co-cultured with LCN2 and
Aβ (Marebwa et al., 2018), and the depletion of LCN2 helps
to protect astrocytes from Aβ toxicity (Mesquita et al., 2014).
Also, LCN2 could undermine the neuroprotective effect of the
TNFR2 signaling pathway induced by TNF-α (Hemmings and
Restuccia, 2012; Naudé et al., 2012). Further in vitro studies
demonstrate that LCN2 can directly induce neuronal apoptosis
through the BCL2 mediated cell death signaling pathway in
a time and dose-dependent manner (Lee S. et al., 2012;
Bi et al., 2013).

In short, LCN2 could exert pro-apoptotic effects on brain
cells and increase the susceptibility of neurons to toxic stimuli.
LCN2 could also increase glial activity, increase inflammation,
and inhibit remyelination.

OPG
OPG is a soluble glycoprotein that belongs to the TNF receptor
superfamily. It is a decoy receptor for RANKL and TNF-related
apoptosis-inducing ligand (TRAIL), and thus inhibits the
association of RANKL and TRAIL with their receptors. It is
secreted by osteoblast and prevents the RANKL from binding
to its receptor on osteoclasts, thereby inhibiting the osteolysis
(Bonnet, 2017; Rochette et al., 2019). Increased blood levels of
OPG are associated with osteoporosis in postmenopausal women
(Yano et al., 1999).
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High OPG levels are also detected in the CSF, and as the
OPG level in the CSF increases with age, it may play a role in
inflammatory and degenerative disorders of the CNS (Hofbauer
et al., 2004). A study demonstrates that after adjusting for age,
sex, and APOE ε4 allele, OPG is an independent predictor
of AD and vascular dementia (Emanuele et al., 2004). OPG
might influence cognition by affecting the immune environment
and the perfusion of the brain. For the former, studies have
demonstrated that the RANKL/RANK signaling suppresses
inflammation through a Toll-like receptor pathway in microglia.
Increased OPG could inhibit the RANKL/RANK signaling and
aggravate the post-ischemic inflammation (Shimamura et al.,
2014). Whereas for the latter, the RANK/RANKL/OPG triad
might play a critical role in vascular calcification (Rochette et al.,
2019). Therefore, OPG can prevent vascular calcification as a
RANKL inhibitor (Wu et al., 2013). Emanuele et al. (2004)
measured plasma OPG levels in vascular dementia patients and
compared them with OPG in AD and age-matched healthy
individuals. They found that compared with the non-demented
control group, OPG concentrations were significantly higher
in both vascular dementia and AD patients, wherein the OPG
level in vascular dementia was the highest. These results were
interpreted to be that OPG could mirror atherosclerotic disease,
most so in vascular dementia and that vascular factors may also
play a role in the pathogenesis of AD (Emanuele et al., 2004).
Increases of OPG in vascular dementia can be regarded as a
compensatory defense mechanism to relieve the atherosclerotic
burden (Schoppet et al., 2002).

DKK1
Both DKK1 and SOST are soluble Wnt inhibitors (Ke et al.,
2012). Although these two molecules share some homologies
in action, they have distinct biological effects and different
expression patterns (Gifre et al., 2013). The DKK1 and
SOST use a different receptor to inhibit the low-density
lipoprotein receptor-related protein (LRP)5-LRP6 receptor
complex formation (Monroe et al., 2012). The SOST protein
seems to be a specific Wnt inhibitor because it is almost
exclusively bone-derived, and is predominantly secreted by
osteocytes and osteoclast precursors (Poole et al., 2005; Vervloet
et al., 2014). Although DKK1 is also mainly expressed by
osteocytes, osteoblasts, and BM-MSCs, it is not as highly selective
as SOST (Han Y. et al., 2018). We mainly focus on the
DKK1 in this review, since it is more deeply involved in brain
pathologies, while the SOST is found unrelated to cognition
change (Ross et al., 2018).

Wnt signaling has been proven to have strong neuroprotective
effects, and can even regulate neo-neuronal generation in
the adult brain (Inestrosa and Varela-Nallar, 2014). Wnt
signaling activation facilitates synaptic remodeling and memory
consolidation (Inestrosa and Varela-Nallar, 2014). Therefore, it
is easy to understand that Dkk1, a Wnt signaling inhibitor,
is associated with the severity of neurodegenerative diseases
(Ross et al., 2018). The expression of DKK1 in the brain
tissue, CSF, and plasma of AD patients and animal models
increases significantly compared to healthy controls (Caricasole
et al., 2004; Rosi et al., 2010). It has also been reported

that at high concentrations, DKK1 can pass through the
BBB, and thus accelerate the AD progression (Ren et al.,
2019). Some studies show that the occurrence of familial/early-
onset AD, sporadic/late-onset AD, and patient’s cognitive
decline are related to DKK1 and Wnt/β-catenin signaling
disruptions (Scott and Brann, 2013). The increased expression
of DKK1 inhibits the Wnt signaling pathway, which further
increases the tau phosphorylation, while the DKK1 knock-out
inhibits the formation of neurofibrillary tangles, and reduces
the neurotoxicity of Aβ (Caricasole et al., 2004). Further study
shows that injecting different concentrations of DKK1 into the
dorsal hippocampus can lead to object recognition memory
loss, which is regulated by the canonical Wnt-dependent
signaling pathway (Fortress and Frick, 2016). DKK1 could
also aggravate the Aβ-induced neuronal apoptosis and synaptic
loss by blocking the Wnt signaling pathway (Purro et al.,
2012). Other related studies show that short-term exposure
to Aβ in mouse brain slices increases the DKK1 expression
and reduces the synaptic formation (Matrisciano et al., 2011),
while injecting DKK1-specific antibodies could alleviate the Aβ-
induced damage to neuronal synapses (Huang et al., 2018).
Some scholars suggest that the endogenous Wnt ligands, which
are inhibited by DKK1, are vital to maintaining the neuronal
synapses (Purro et al., 2014). Also, the potential therapeutic
effects of the DKK1 inhibitor may be associated with synaptic
preservation and hippocampal circuit reconstruction (Marzo
et al., 2016; Ortiz-Matamoros and Arias, 2018). Animal tests
show that inhibiting DKK1 improves subjects’ spatial memory
tasks (Marzo et al., 2016; Ortiz-Matamoros and Arias, 2018) and
their electrophysiological findings (Marzo et al., 2016).

POTENTIAL THERAPEUTIC IMPLICATIONS

BM-Derived Cells
After the transplantation of BM-MSCs, learning ability and
spatial memory performance were significantly improved in AD
animal models (Ohsawa et al., 2008; Kanamaru et al., 2015; Safar
et al., 2016). It was revealed that the gene expression patterns are
altered in AD brains, and the alterations are correlated with the
severity of neuropathology (Qin et al., 2020). Transplantation of
BM-MSCs could also alter some gene levels in the AD brains,
such as genes related to pro-inflammatory cytokines, enzymes,
receptors, and intermediate filaments. These differentially
expressed representative genes are mostly responsible for
neuropathological phenotypes in AD (Qin et al., 2020).

In terms of feasibility, the intravenous delivery of stem
cells is convenient and sufficient to lower the levels of
cerebral amyloidosis (Salem et al., 2014; Harach et al., 2017).
The intravenous transplanted stem cells could be easily
detected in the brain parenchyma, i.e., could be found in the
hippocampus 1 h after administration (Harach et al., 2017),
and expressed neuronal phenotypes in the brain for 1-6 months
(Brazelton et al., 2000). The expression of male BM-MSCs’ sry
gene in female AD model’s brain tissue proves that exogenous
stem cells with intravenous delivery could successfully migrate
to the brain injury site (Salem et al., 2014). As for the cell
dose for intravenous administration, our previous data showed
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5 × 105 BM-MSCs is an appropriate dose for treating ischemic
stroke in rats (He et al., 2016). The optimal cell dose for AD
and other neurodegenerative disease therapies are remained to
be explored.

Bone-Derived Exosomes
Previous studies report positive correlations betweenMVs in CSF
and neurodegenerative diseases and show that many exosomes
are enriched with undigested lysosomal substrates, such as Aβ

and APP (Malm et al., 2016). However, these MVs are mainly
derived from inflammatory cells, microglia, or tumor (Rajendran
et al., 2006; Saman et al., 2012, 2014; Joshi et al., 2014; Levy,
2017), and there is no evidence suggested that BM-derived
exosomes can cause or exacerbate neurodegenerative diseases.
Some studies indicate that using stem cell-secreted exosomes as
an alternative therapeutic would be much safer compared with
stem cell transplantation (Smith et al., 2020). Administrating
exosomes rather than viable replicating cells can mitigate many
complications and therefore be much safer (Smith et al., 2020).
The transplanted stem cells may persist or be amplified even after
treatment is terminated. The transplanted stem cells’ potential
of differentiating into other cell types has also raised long-term
safety concerns (Breitbach et al., 2007).

Apart from its innate therapeutic effect discussed above,
exosomes from the BM can be modified into appropriate
nanocarriers to transport siRNA. To strengthen exosomes’
targeting ability, researchers reshaped them by attaching
neuron-specific Rabies Viral Glycoprotein (RVG) peptides onto
their surface (Alvarez-Erviti et al., 2011). The remodeled
RVG exosomes successfully transported the GAPDH siRNA
into targeted neurons, oligodendrocytes, and microglia, and
subsequently downregulated the BACE1 gene expression, which
is crucial in the AD progression.

Bone Secretory Proteins
Several bone-secreted proteins were summarized above as
regulators of CNS homeostasis and neurodegenerative diseases.
Although the direct use of these bone-secreted proteins as
drugs to treat neurodegenerative diseases are rare, a few studies
indicated that these proteins might be indirectly involved in
other therapeutics. For example, metformin could ameliorate
spatial memory loss (Ahmed et al., 2017), reduce stress-
induced behaviors (Mourya et al., 2018), and relieve the
related symptoms in the PD mouse model (Katila et al.,
2017). Metformin can affect OCN and related bone diseases.
In an osteoporosis mouse model, metformin could ameliorate
the bone loss with the increased OCN expression level (Liu
et al., 2019). The drug could also improve the osteogenic
functions of adipose-derived stromal cells by increasing the
OCN expression and AMPK signaling (Smieszek et al., 2018).
It should be noted that AMPK is also a regulator for brain
energy metabolism (Garza-Lombó et al., 2018), which are
related to cognition and motor coordination (Kobilo et al.,
2014), and can inhibit NF-κB signaling and inflammation
(Salminen et al., 2011). Moreover, metformin can behavior
by increasing the BDNF secretion (Katila et al., 2017;
Fatemi et al., 2019), which coordinates with OCN’s effect

in age-related memory loss (Khrimian et al., 2017). These
findings suggested that metformin therapy could influence
brain functions, wherein the OCN may act as a mediator in
promoting neurotrophic signal, energymetabolism, and immune
modulation. A role for OCN may also be implicated in exercise-
induced cognitive improvement through the IL-6/gp130/OCN
axis (Shan et al., 2019). Moreover, the MS-treating drug
natalizumab and the anti-AD drug glatiramer acetate mentioned
above are another two examples to treat neurodegenerative
diseases via the mechanisms related to bone secretory proteins.
The two drugs reduce the LCN2 or increase the OPN
expression, respectively.

Before clinical application, further studies on specific bone
regulative processes and their effects on the brain are required.
For example, even though BM-derived cells can enter the CNS
and become neural progenitors or microglia-like cells, more
details about how this process is controlled in vivo should be
elucidated (Ajami et al., 2007; Mildner et al., 2007). Moreover,
most studies examining the bone-derived cells or molecules’
roles in neurodegenerative diseases were performed in mouse
models rather than in patients. These results should further
be confirmed in human samples. Furthermore, except for
OCN and DKK1, there is still a lack of direct evidence to
show that these bone-secreted osteokines can cross the BBB
and influence the neurodegenerative diseases’ course. Although
these cytokines are mainly secreted from the bone, and show
altered expression in the context of neurodegenerative diseases,
most osteokines above are not bone-specific and some of
them can be secreted within the brain. It remains to be
determined how these osteokines are evolved in the process
of bone-brain crosstalk and contribute to the progression
of neurodegenerative diseases by using bone-defect models.
Last but not least, although bone is a primary lymphoid
organ, it does not sufficiently control the entire immune
system, other factors are also needed for triggering the onset
of neurodegenerative diseases. Although there are still many
difficulties, the potential application of bone-based therapy in
neurodegenerative diseases is worthy of further experimental and
clinical studies.

CONCLUSIONS

Elderly people are prone to osteoporosis and neurodegenerative
diseases including cognitive decline, PD, and MS. All these
disorders have common soil, mainly the metabolic-related
disorders and immune dysregulation, suggesting the bone and
brain may be closely interacted. When anyone of the two sides
breaks, the whole interconnected balanced system collapses.
Finding out the interactive mechanisms and looking for early
detection and intervention may be a promising way to prevent
the disease progress. This review summarizes the roles of
the bone-brain axis in the progression of neurodegenerative
diseases. We focus on the effects of BM-derived cells,
mainly the microglia-like cells and MSCs, the BM-controlled
immune system, and the bone secreted proteins on the
brain. Evidence from experimental studies is encouraging,
wherein bone-derived cells and factors can influence brain
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development, neurotransmitter synthesis, ion homeostasis,
neuroinflammation, and neurotoxicant clearance. Therefore,
targeting and modulating bone physiological processes can
be promising for developing novel therapeutic approaches for
neurodegenerative diseases.
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