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Abstract: The upregulation of phosphoinositol-3-kinase γ (PI3Kγ) is deemed to be positively corre-
lated with tumor-associated-macrophage (TAM)-mediated gastric carcinoma (GC). PI3Kγ suppresses
tumor necrosis factor-alpha (TNF-α) and interleukin-12 (IL-12) through activation of the AKT/mTOR
pathway, which promotes the immunosuppressant phenotype of TAM. Unlike α and β isoforms,
δ and γ isoforms are primarily distributed in leucocytes and macrophages. Dual inhibitors against
PI3Kδ and PI3Kγ have been proven to have merits in targeting solid tumors. Furthermore, it has
been found that PI3Kδ is activated by cytokines, while PI3Kγ is activated by G-protein-coupled
receptors (GPCRs). This facilitates determining the functional difference between these two isoforms.
For this goal, selective inhibitors would be immensely helpful. In the current manuscript, we con-
ducted various molecular modeling studies with a series of isoindolin-1-one derivatives as potent
PI3Kγ inhibitors by combining molecular docking, molecular dynamics (MD), molecular mechanics,
Poisson–Boltzmann/generalized Born surface area (MM-PB/GBSA) binding free energy calculation,
and three-dimensional structure–activity relationship (3D-QSAR) study. To evaluate the selectivity of
γ isoform over δ, the molecular modeling studies of idelalisib analogs reported as PI3Kδ inhibitors
were also investigated. The contour polyhedrons were generated from the comparative molecular
field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) around the
ligand-bound active site for both isoforms, which could emphasize plausible explanations for the
physicochemical factors that affect selective ligand recognition. The binding modalities of the two
isoforms using CoMFA and MD models were compared, which suggested some key differences in
the molecular interactions with the ligands and could be summarized as three subsites (one affinity
subsite near the C-helix and DFG and two hydrophobic subsites). In the context of the structure–
activity relationship (SAR), several new compounds were designed using a fragment-substitution
strategy with the aim of selectively targeting PI3Kγ. The pIC50 values of the designed compounds
were predicted by the 3D-QSAR models, followed by the MM-PB/GBSA binding energy estimation.
The overall findings suggest that the designed compounds have the potential to be used as PI3Kγ
inhibitors with a higher binding affinity and selectivity.

Keywords: gastric carcinoma; PI3Kγ; PI3Kδ; tumor-associated macrophage; MM-PB/GBSA; CoMFA;
CoMSIA; structure–activity relationship

1. Introduction

Recurrent amplification and gene mutations in PIK3CA are closely associated with al-
teration in the expression level of biomarkers, such as those found in the PI3K/AKT/mTOR
pathway [1,2]. Phosphoinositide 3-kinases (PI3Ks) encoded by PIK3CA are integral compo-
nents of the AKT and mTOR cell signaling pathways and regulate divergent fundamental
roles in cell proliferation, metabolism, growth, and apoptosis [3]. Overexpression and
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deregulation of PI3K lead to gastric mucosa in patients with advanced GC, making it the
fifth most prevalent cancer type worldwide [3,4].

Despite being categorized into three different classes (class I, II, and III) based on
the structure, distribution, and mechanism of action, class I PI3Ks are mostly abundant
in malignancies [5]. This class was further subdivided into 1A and 1B, which are mem-
bers of the lipid kinase family and exist as heterodimers of a regulatory/adapter (p85)
subunit and a catalytic subunit (p110). The regulatory subunits P85 (p85α, p85β, and
p55γ) and the catalytic subunits P110 (p110α, p110β, p110γ, and p110δ) differ between the
PI3K isoforms [6].

As shown in Figure 1a, G-protein-coupled receptors (GPCRs) and receptor tyrosine
kinases (RTKs) are auto-phosphorylated on their tyrosine residues after binding to external
growth factors or cytokines, which recruit PI3K to the membrane. The recruited PI3K binds
to the phosphor-tyrosine residue via one of its two Src homology-2 (SH2) domains present
in the regulatory subunit, followed by subsequent allosteric activation of the catalytic
subunits [7]. Class IA PI3Ks (α, β, δ isoforms) are activated by RTKs, whereas class IB
(PI3Kγ) is activated by GPCRs located at the cell membrane under physiological condi-
tions. Activated PI3K phosphorylates the substrate phosphatidylinositol 4,5 bisphosphate
(PIP2) at the 3′-OH position, converting it to the second messenger phosphatidylinositol
3,4,5 triphosphate (PIP3), which binds directly to the pleckstrin homology domain (PHD)
of various signaling proteins, including phosphoinositide-dependent kinase 1 (PDK1) [8].
PDK1 phosphorylates Protein Kinase B (AKT) at residue T308 in the kinase domain, leading
to AKT activation. Following its activation, AKT initiates its own downstream signaling
cascade involving the mammalian target of rapamycin (mTOR) [9]. Furthermore, the
γ isoform of the PI3K-mediated AKT/mTOR pathway can suppress NF-κB activation
while inducing CCAAT enhancer-binding protein (C/EBPβ) activation, which endorses
the remodeling of the differentiation of tumor-associated macrophages (TAM) [10,11].
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Figure 1. Canonical signaling and structural domain organization of PI3Kγ. (a) An overview of PI3Kγ-
mediated AKT/mTOR signaling pathway. The activated mTOR is further involved in GC progression
through the remodeling of TAM differentiation. The therapeutics available for targeting PI3K mediated
pathways have been categorized into three major classes, as illustrated in the inset box. (b) The overall
crystal structure of human PI3Kγ (PDB: 6xrm) consists of four domains: an RBD domain in cyan, a
C2 domain in yellow, a helical domain in green, and a kinase domain colored in slate (N-lobe) and pink
(C-lobe), respectively. The inhibitor V81 bound to the hinge is shown in orange.
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The involvement of PI3Kγ in GC progression is less understood, which remains
a concern. However, some recent studies have suggested that PI3Kγ modulates cell
proliferation and metastasis in gastric cancer by serving as an immunological checkpoint
between two macrophage polarization states, i.e., an immunosuppressive M2-like state and
a more inflammatory M1-like state, via remodeling of TAM differentiation [12,13]. Another
study by Yuan et al. [14] demonstrated that the modified Jian-pi-yang (mJPYZ) decoction
could inhibit TAM-mediated GC and metastasis by specific suppression of PI3Kγ. As a
result, selective inhibition of γ isoforms is an ideal therapeutic choice. PI3K inhibitors
can be classified into three major categories: 1. Dual PI3K/mTOR inhibitors, 2. Pan-PI3K
inhibitors, and 3. Isoform-specific inhibitors. Dual inhibitors of PI3K and mTOR were
developed after considering that their catalytic subunits share a high degree of sequence
homology [14]. BEZ235 (Dactolisib), XL765, P7170, GDC-0980 (Apitolisib), SF1126, and
PF-4691502 (Gedatolisib) are first-generation dual PI3K/mTOR inhibitors entering clinical
trials and showed tolerable efficacy with substantial antitumor activity. Compounds such
as Wortmannin, IPI-145 (Duvelisib), BKM120 (Buparlisib), GDC-0941 (Pictilisib), GDC-
0032 (Taselisib) PX-886, XL147, WX-037, and LY294002 are pan-PI3K inhibitors, which were
able to bind to all class I PI3K. However, pan-PI3K inhibitors have not been fully developed
as anticancer drugs due to toxicity and poor pharmacokinetic concerns. In more recent
studies, isoform-specific selective inhibitors have been developed, which showed greater
efficacy in in vitro studies. Compounds BYL719 (Alpelisib), GDC0032, and INK1117 are
the first-generation, α isoform-selective PI3K inhibitors that have entered phase I clinical
trials [15–18]. IPI-549 is currently undergoing clinical trials for selective PI3Kγ in the
treatment of solid tumors [19]. A potential drawback of these inhibitors is the partial
blockage of AKT activation due to the presence of multiple p110 isoforms.

Figure 1b illustrates the X-ray structure of the human PI3Kγ catalytic subunit (p100γ,
PDB: 6xrm) [20], which is 1044 amino acids long and structurally subdivided into five
domains, i.e., an ABD domain (residue 1–108) that is not present in the crystallographic
form, a RAS binding domain (RBD), a C2 domain, a helical domain, and a kinase domain.
The RBD domain (residues 198–278) is adjacent to the kinase domain and is thought to
be involved in the fuzzy allosteric mechanism of p110γ upon binding to the Ras protein.
The C2 domain (residues 324–474) is postulated to be involved in membrane binding. The
Helical domain (residues 500–675) consists of five A/B pairs of antiparallel helices similar
to HEAT-repeat-containing proteins for protein–protein interactions (PPI). However, the
specific mechanism of this domain remains to be elucidated. Next, the kinase domain
(residues 676–1044) consists of an N-lobe and C-lobe, adjoined by a hinge loop to form the
binding pocket for ATP. The residues around this pocket are homologous across different
isoforms, posing a major hurdle to researchers in terms of developing ATP-competitive,
γ-selective inhibitors [6,21].

Molecular modeling is an emerging technique in structure-based drug discovery that
can reveal unique binding mechanisms of chemical compounds at the molecular level [21].
This study used integrated computational modeling approaches for a series of isoindoline-
1-one-based PI3Kγ inhibitors, as reported in the previously published literature [20,22–25].
The analog compounds exhibited a diverse range of inhibitory activities (pIC50 5.27–9.20)
in the biochemical assay. Parts of the compounds in the dataset also exhibited inhibitory
efficacy against the δ isoform. Thus, understanding molecular insights at the structural
level of isoform-specific ligand selectivity poses an intriguing challenge. Molecular docking
was performed using structurally diversified analog compounds to uncover the binding
pose and protein–ligand interactions. MD and MM-PB/GBSA binding energy calculations
were then employed to assess the protein–ligand stability and binding affinity. Finally,
robust 3D-QSAR models based on CoMFA and CoMSIA were developed to establish the
structure–activity relationship. In addition, similar 3D-QSAR models were generated by
collecting the PI3Kδ inhibitors and their activity values reported in these studies [26–32].
Unlike 2D-QSAR, 3D-QSAR results were visually represented as colored polyhedrons to
demonstrate the field contribution of the chemical descriptors, which might affect the
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compound’s inhibitory efficacy and selectivity of PI3Kγ over PI3Kδ. Based on the SAR
scheme, several new compounds were designed using the fragment substitution strategy,
and their activities were predicted by the 3D-QSAR model. Compounds with predicted
pIC50 more than the highest active compound (pIC50 > 9.2) in the dataset were subjected to
binding energy evaluation using the MM-PB/GBSA method.

2. Materials and Methods
2.1. Protein Structure Preparation and Molecular Docking

The structure preparation of the receptor coordinates is an essential step toward the
initiation of molecular docking. The crystal structure of human PI3Kγ (PDB:6xrm) and
PI3Kδ (PDB:6pyr) were retrieved from the PDB database. Since the specific objective of
our study is to mechanistically understand the interactions between protein and ligand
at the active site, we only remodeled the kinase domain (N term and C term) using the
MODELLER webserver (University of San Francisco, San Francisco, CA, USA) using UCSF
Chimera-1.14 (RBVI, UCSF, San Francisco, CA, USA). The best model was selected using the
lowest DOPE score criterion and validated by analyzing the Ramachandran plot (Figure S1)
on the PROCHECK webserver (PROCHECK v.3.5, DOE-MBI service, UCLA, Los Angeles,
CA, USA). As described in the previous study [33], the initial ‘pdbqt’ files of proteins and
ligands were prepared in the graphical version of AudoDockTools (AutoDock 4.2, Scripps
Research, La Jolla, CA, USA). Polar hydrogen, Kollman charges, and AD4-type atoms were
assigned to the protein during the receptor preparation. On the other hand, the ligands
were assigned polar and nonpolar hydrogen and Gasteiger charges. The AutoGrid was
used to generate the grid parameter file with a grid box of 50 × 40 × 40 in the X, Y, and
Z dimensions. The center of the grid was set to X = −23, Y = 13, and Z = −22, with a
grid spacing of 0.375. Finally, AutoDock 4.2 was executed to perform 100 docking search
runs utilizing the Lamarckian Genetic Algorithm (LGA). The single protein–ligand docked
complex with the lowest binding free energy was selected from the lowest positional RMSD
cluster. Polar and nonpolar interactions were also taken into account for further docking
pose evaluation. The RMSD of the docked pose of the crystal ligand was evaluated using
the LigRMSD v1.0 [34] webserver. All selected docked complexes were taken as the initial
structures for the MD simulation study.

2.2. Molecular Dynamics

GROMACS 2019.5 [35] was used for the MD simulation study according to previously
conducted research [36]. The Amber14SB 4force field was used to prepare the topology and
parameter files for the protein. The ligands were parameterized using ACPYPE [37] (or
AnteChamber Python Parser interface). The protein–ligand complex was placed in a cubic
periodic box and solvated using a TIP3P water model with the minimum thickness of the
water wall set at 10 Å from the protein atoms. Adequate amounts of Na+ and Cl- counter
ions were added to neutralize the system and bring the NaCl concentration to 0.15 mM. The
steepest descent algorithm was used for the energy minimization of the system by setting
the Fmax at 1000.0 kJ mol−1 nm−1, which eliminated torsional strain and steric clashes.
The NVT and NPT ensembles were then performed for 250 ps and 500 ps, respectively, by
applying positional restraining to the protein backbone and heavy atoms of the ligands
with a Berendsen thermostat (V-rescale) and modified Berendsen barostat. NVT and NPT
equilibration gradually heats the system to 300K and attains the pressure of 1 bar. The
production of the MD run was carried out for 100 ns using the leap-frog integrator after
removing the positional restraint. The long-range electrostatic interaction was estimated
using the Particle mesh Ewald (PME) scheme. The cutoff distances for van der Waals and
Coulombic interactions were set at 12.0 Å. The H-bonds were constrained by the LINCS
algorithm, while the minimum time step was set to 2.0 fs. The above protocol was followed
in all complexes. RMSDs were calculated using the built-in ‘gmx rms’ function in gromacs.
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2.3. Binding Free Energy Estimation

The last 5 ns (500 snapshots) of each protein–ligand complex was extracted to compute
the end-state binding free energy using the GMX_MMPBSA [38] package, which utilizes
the MMPBSA.py module [39]. The binding free energy (∆Gbind) from the MM-GBSA
estimation is decomposed by Equation (1)

∆Gbind = ∆Gcomplex − ∆Gprotein − ∆Gligand (1)

∆Gbind = ∆Egas + ∆Gsol − T∆S (2)

∆Egas = (∆EvdW + ∆Eele) (3)

∆Gsol = ∆GGB + ∆GSA (4)

where the total binding free energy of the protein–ligand complex is represented by
∆Gcomplex. ∆Gprotein and ∆Gligand represent the total free energy of the protein and ligand
separately. In Equation (2), ∆Egas, and ∆Gsol express the interaction energy between pro-
tein and ligand in the gas phase and exposed to solvent conditions. Further, ∆Egas and
∆Gsol can be derived from Equations (3) and (4). ∆EvdW and ∆Eele stand for van der Waals
and electrostatic energy, whereas ∆GGB and ∆GSA express the polar and nonpolar solvation
free energy in the generalized Born (GB) implicit solvent. The contribution of the entropy
term in the system is represented by T∆S. The entropy calculation through the nmode or
quasi-harmonic (QH) approximation is computationally expensive and time-dependent.
Instead, the interaction entropy (IE) method proposed by Duan et al. [40] was used to
compute the T∆S term.

2.4. Molecular Alignment and Dataset Building

The last 1 ns average MD structure of C34 was taken from the PI3Kγ-C34 trajectory
as a representative template molecule of the dataset. The remaining 214 compounds were
sketched, minimized with the tripos force field with the convergence force of 0.05 kcal mol−1

using a maximum iteration of 2000 steps, and partial charges were applied in SYBYL-
X2.1 (Tripos, Inc., St. Louis, MO, USA) as reported in earlier works [41,42]. The ‘distill
rigid’ and ‘database alignment’ features were used to align the compounds with the
template molecule. The dataset was developed by taking 215 molecules and their respective
inhibitory activity against PI3Kγ taken together. The inhibitory activity of the compounds
was converted to the negative logarithm of IC50 (pIC50) values. The dataset compounds
were then divided into training sets and test sets for internal and external validation of the
3D-QSAR models. Similarly, the final 1 ns average MD structure of idelalisib was extracted
from the PI3Kδ-idelalisib trajectory and considered as a template molecule. Based on the
template molecule, the 213 compounds were modeled for the PI3Kδ dataset using the same
protocol described above.

2.5. CoMFA and CoMSIA Model Building

CoMFA and CoMSIA are two 3D-QSAR methods frequently used to determine the
correlation between biological activity and physicochemical properties of chemical com-
pounds. In CoMFA, the compounds were placed one after another in a three-dimensional
spatial grid box with a grid spacing of 2.0 Å by applying an energy tolerance of 30 kcal/mol.
The steric descriptors (S) were calculated using Lennard-Jones potential, whereas the elec-
trostatic descriptors (E) were calculated using the Coulombic potential. The sp3 carbon
atoms with a net charge of +1.0 were assigned as probes. The van der Waals radii were set
to 1.52 Å, while the remaining parameters were accepted by default in SYBYL-X2.1.

In addition to the steric (S) and electrostatic (E) fields, the hydrophobic (H), H-bond donor
(D), and H-bond acceptor (A) descriptors fields were employed in CoMSIA. To distinguish
between the probe atoms and the atoms of the molecules, Gaussian-type functions with
attenuation factor (α) 0.3 were assigned to each grid point. The rest of the parameters were
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kept similar to the CoMFA. The descriptor fields (S, E, H, A, and D) were used in different
permutation–combination processes to obtain the best possible CoMSIA model.

2.6. 3D-QSAR Model Validation

The partial least squares (PLS) method was used to establish the correlation statistics
between observed and predicted activity in CoMFA and CoMSIA. Leave-one-out (LOO)
validation was applied to obtain the cross-validation coefficient q2, the optimal number of
components (ONC), and standard error of prediction (SEP). Subsequently, the no-validation
method was performed to obtain the non-cross-validated correlation coefficient (r2), Fis-
cher’s statistics (F value), and the Standard Error of Estimation (SEE). Finally, the activity
values were predicted for each compound from the CoMFA and CoMSIA models.

The internal validation of the QSAR model was validated using χ2, RMSE, and MAE
calculations. The external validation of the QSAR model was conducted using different
statistical matrix parameters, such as k, k’, |r0

2 − r’02|, (r2 − r0
2)/r2, rm

2, r 2
m, ∆rm

2,
r2

pred, Q2
F1, Q2

F2, Q2
F3, and Q2

ccc, as proposed by Roy et al. [43], Gramatica et al. [44], and
Todeschini et al. [45]. The acceptable statistical range was given in the ‘threshold values’
column in the statistical tables, according to our previous study [46]. Additionally, the
progressive scrambling Q2 was determined to assess the sensitivity and robustness of the
selected models.

2.7. Applicability Domain Analysis

Since the QSAR model was developed by taking a limited number of chemical com-
pounds, the model is incapable of covering the entire chemical space. The applicability domain
includes a certain chemical space in which it can predict the activity of unknown compounds
with high accuracy. In the present study, AD was analyzed by the distance-based Williams plot.
In this method, AD was represented by a square area between the ±3 standardized residual
and warning leverage (h*). Compounds having a leverage value (hi) more than warning
leverage are regarded as outliers and influence the model’s fitness. The methodological details
about calculating the standardized residual leverage value (hi) and warning leverage (h*)
were performed according to the previously described studies [46,47].

2.8. Contour Map Analysis and SAR Study

The contour maps were generated from CoMFA and CoMSIA models in differently
colored polyhedrons to illustrate the structure–activity relationship of chemical compounds
according to previous studies [48,49]. The MD average structure of C34 was taken as a
representative compound, and the contour maps were drawn as 3D StDev*Coeff around
the molecule to elucidate the field effect of the descriptors.

2.9. Designing of the New Compounds and Binding Affinity Calculation

Based on the SAR analysis, we designed one hundred new compounds by fragment
replacement, and their inhibitor activity was predicted by the CoMFA model of the PI3Kγ.
Compounds with predicted pIC50 values more than 9.20 were selected, and their syn-
thetic accessibility (SA) score and binding affinity were measured. The SA scores were
assessed using SwissADME [50] server, and the binding affinity was determined by the
MM-PB/GBSA method.

3. Results
3.1. Molecular Docking Analysis

As the primary structure of the MD simulation and further QSAR model development
relies on molecular docking, the docking pose verification is a crucial step to consider. A
total of 18 compounds were selected from 215 compounds after manual inspection of their
structural diversity in their chemical subgroups, as well as their bioactivity values. Among
the selected compounds, C34 was already available in a crystallographic form bound to
human PI3Kγ (PDB: 6xrm). Compounds C01, C124, C129, C135, and C150, on the other
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hand, were available with the mouse PI3Kδ isoform in the PDB database (PDB ID: 6ftn, 7ois,
7oi4, 7oij, and 7oil, respectively), as shown in Figure 2a. The compounds were rationally
designed to interact with the residues in three different subsites: the hinge, the alkyl affinity
pocket, and the selectivity pocket (Figure 2b). The experimental binding orientation was
reconstructed by the self-docking of C34 to PI3Kγ with a docking score of −11.2 kcal/mol.
The remaining selected compounds were cross-docked with PI3Kγ. A summary of the
docking results is shown in Table 1.
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Figure 2. (a) 2D structure of the PI3Kγ inhibitors that are available in their biological form in
the RCSB PDB database and present in our dataset. The compound’s number, their X-ray crys-
tallographic code, and inhibitory activity against PI3Kγ are shown. Compounds C01 (PDB: 6ftn),
C124 (PDB: 7ois), C129 (PDB: 7oij), and C150 (PDB: 7oil) were bound with mouse PI3Kδ, whereas
C34 (PDB: 6xrm) was bound with human PI3Kγ. (b) Structural characteristics of the γ-selective PI3K
inhibitors. The compounds were designed to interact with the hinge region, the alkyl affinity pocket,
and the selectivity pocket. (c) Self-docking of compound C34 with PI3Kγ inside the ATP binding
pocket. The docking process was able to reconstruct the crystal pose of C34 with an RMSD of 1.13 Å
in our study. The H-bonds with residues K833 and V882 are shown by dotted green lines.
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Table 1. Molecular docking analysis of the selected compounds with PI3Kγ.

Docked Compounds with PI3Kγ

C01 C22 C34 C41 C60 C62 C72 C79 C81 C99 C103 C118 C124 C129 C150 C182 C195 C215

Docking Score
(∆G in kcal/mol) −10.7 −11.0 −11.2 −11.4 −10.9 12.7 −13.0 −12.2 −12.2 −12.4 −13.6 −12.4 −14.4 −13.3 −14.2 −12.3 −11.8 −12.9

RMSD (Å) from
crystal ligands
Ref. V81 (6xrm)

2.03 2.55 0.91 2.63 2.64 2.44 2.74 1.90 1.19 2.44 1.90 2.52 2.41 1.99 2.38 1.65 1.89 1.61

Number of H-bonds 2 3 3 3 3 3 3 3 2 2 4 2 5 2 3 2 3 4

H-bond-
interacting residues V882 V882,

A885
V882,
K833

V882,
A885

V882,
A885

V882,
A885

V882,
K890

V882,
K833

V882,
K833 V882

V882,
T887,
K890,
K833

V882

V882,
K833,
N951,
K808

V882 V882,
T887

K833,
V882

K833,
V882

K833,
V882,
K890

π–π interaction Y867 Y867,
W812 Y867 W812 Y867,

W812
Y867,
W812 W812 Y867,

W812 W812 W812 Y867,
W812 Y867 Y867,

F965
Y867,
F965

Y867,
F965 Y867 Y867 Y867

π–Sigma bonding I963,
I879 I963

M804,
M953,
I879

I963 I963,
M953 I881 I963

I879,
M953,
I963

I879,
M953,
I963

M953,
I963

I879,
M953,
I963

I963 I879,
I963

I879,
I963

I879,
M953,
I963

I879 I879 I879,
M953

π–sulfur interaction M953,
W812

M804,
M953 - M804,

M963 M804 M953 M804,
M853 - M804 M804 -

M804,
W812,
M953

M804,
W812,
M953

M804,
W812,
M953

M804,
W812 - - -
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However, the best docking score in cross-docking experiments is not always reliable
for ranking the ligand pose. In addition to the docking score, the best docking pose was
selected depending on the RMSD of the experimental ligand pose, which also complied
with the Essential Chemical Interaction Described for Analog Ligands (ECIDALs) criterion.
According to this research [51], the RMSD between 2.0 and 3.0 Å from the crystal pose is
an acceptable solution when selecting the final ligand structure. Compound C34 interacts
with the hinge loop by bidentate H-bond interactions of its aminopyrazollopyrimidine
moiety with the -C=O and -NH2 groups of C694. The third H-bond interaction was formed
between the -C=O group of C34 and the -NH2 group of catalytic lysine K644. Residues
M804 and M953 formed π–sigma interactions with the pyrazole ring in the selectivity
pocket (Figure 2c). A similar π–sigma interaction was observed between the gatekeeper
residue I879 and the isoindolinone ring of C34. The residue Y867 formed the π–π edge-to-
face interaction with the azaindole ring. The ethylcyclopropane moiety, on the other hand,
formed hydrophobic interactions with L838, M842, L845, C869, and F965, inside the alkyl
affinity pocket. The C34 self-docking effectively reproduced the intermolecular interactions
identical to the original crystallographic form, suggesting overall docking reliability. The
other selected compounds shared isoindolin-1-one as a common substructure with C34 and
showed a similar mode of binding interaction within the ATP pockets in cross-docking
according to the ECIDAL norms. The 2D docking interaction results are shown in Figure S2.
Compounds C01, C118, C124, C129, and C150 had a thiazole ring as an HBM motif instead
of the bicyclic azaindole ring, which created an additional π–sulfur interaction with W812.
The RMSD and molecular interaction analyses strongly supported the validity of the overall
docking process. The single docked conformation selected from each complex was used for
the MD study.

3.2. MD Simulation and Protein–Ligand Stability

Given that ligand binding to its receptor is a highly dynamic process, the single
protein–ligand docking conformation remains uncertain for evaluating the final binding
conformation. Additionally, in the docking experiment, the receptor was treated as a rigid
molecule, and the scoring function uses many approximations. Therefore, the all-atom MD
simulations were used for a more rigorous conformational search and complex stability
supplemented with molecular docking study. We performed 100 ns of MD simulation of
each docked complex in explicit solvent conditions to assess the overall stability of each
system (Figure S3). The protein–ligand complexes converged well within 10 ns of the
initial MD run. The ligand RMSDs were found to be within the range of 1.0–3.0 Å. The
backbone RMSDs of the proteins were found to be within 2.0–4.5 Å, which is comparable
to our previous study [52]. The last 1 ns average MD structure is shown in Figure S4.
The protein–ligand complexes oscillated at an RMSD of less than 5.0 Å, except for the
PI3Kγ-C22 complex. Compound C22 showed a high RMSD compared to other compounds,
resembling the binding instability at the active site. In the docking analysis, pyrrolidine-
2-carboxamide initiated an H-bond interaction with A885. However, in the MD analysis,
the pyrrolidine ring showed the steric hindrance effect with residues T886 and T887 of the
selectivity pocket, which might have caused rather high RMSD values in MD simulation.

3.3. Free Energy Calculation

To understand the binding affinity between the receptor and its diverse set of ligands,
we estimated the MM-PB/GBSA binding free energy by taking the last 500 frames from
the MD trajectory of each complex. During the calculations, the dielectric constant (εin)
was set to 5. The in-depth binding energy terms are shown in Table 2. The entropy term
(T∆S) was calculated by averaging the IE term from the last 126 snapshots, which was
further subtracted from the ∆TOTAL term to obtain the final binding energy (∆Gbind).
In the MD study, C22, which showed a higher RMSD, was estimated to have the lowest
affinity towards PI3Kγ (−21.73 kcal/mol) in MM-PB/GBSA binding energy calculation.
The entropy term contributed a large numerical value of 23.88 kcal/mol to the final binding
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energy. Residues A885, T886, and T887 formed a solvent-unexposed hydrophobic core in-
side the internal cavity. When the extended pyrrolidine-2-carboxamide moiety of the HBM
interacted with the hydrophobically buried residues, it might be entropically detrimental
to the protein–ligand binding. In terms of binding affinity, compound C150 was calculated
to have the highest binding free energy of −57.35 kcal/mol. Compounds C01, C34, C41,
C62, C72, C79, C81, C103, C124, and C195 exhibited binding energies of −48.40 kcal/mol,
−43.21 kcal/mol, −48.42 kcal/mol, −46.03 kcal/mol, −44.69 kcal/mol, −53.31 kcal/mol,
−47.33 kcal/mol, −47.44 kcal/mol, −41.58 kcal/mol, and −41.90 kcal/mol, respectively.
In contrast, compounds C60, C99, C118, C129, C182, and C215 were calculated to have
a slightly lower binding energy of −34.17 kcal/mol, −37.61 kcal/mol, −39.75 kcal/mol,
−35.50 kcal/mol, −37.70 kcal/mol, and −37.68 kcal/mol, respectively.

Table 2. Binding energy calculation of the selected compounds in complex with PI3Kγ.

Complexes

MM-PB/GBSA Binding Energy Terms in kcal/mol

VDW
(±SD)

EEL
(±SD)

EPB/GB
(±SD)

ESURF
(±SD)

∆Ggas
(±SD)

∆Gsolv
(±SD)

∆TOTAL
(±SD)

T∆S
(±SD)

∆Gbind
(±SD)

PI3Kγ-C01 −54.40
±2.82

−35.03
±3.67

39.06
±2.67

−6.63
±0.12

−89.45
±3.54

32.43
±2.65

−57.01
±2.76

8.61
±0.20

−48.40
±2.77

PI3Kγ-C22 −52.53
±3.26

−23.77
±8.87

37.55
±6.11

−6.88
±0.29

−76.29
±8.82

30.67
±6.03

−45.62
±4.72

23.88
±4.90

−21.73
±6.81

PI3Kγ-C34 −60.86
±3.22

−48.55
±6.02

60.26
±5.18

−7.42
±0.21

−109.43
±5.60

52.83
±5.21

−56.59
±3.68

13.38
±0.02

−43.21
±3.68

PI3Kγ-C41 −48.66
±3.13

−20.19
±5.85

26.4
3±4.05

−5.99
±0.26

−68.86
±5.24

20.43
±3.96

−48.42
±3.83

17.93
±0.94

−48.42
±3.83

PI3Kγ-C60 −52.67
±2.85

−39.47
±5.83

45.74
±4.32

−6.64
±0.15

−92.15
±5.40

39.10
±4.35

−53.05
±3.30

18.87
±0.04

−34.17
±3.34

PI3Kγ-C62 −61.42
±3.02

−34.43
±3.54

49.40
±2.66

−7.33
±0.22

−95.87
±3.98

42.07
±2.59

−53.80
±2.92

7.76
±1.46

−46.03
±3.61

PI3Kγ-C72 −69.47
±3.48

−34.14
±6.81

51.64
±4.65

−7.90
±0.24

−103.62
±6.68

43.74
±4.60

−59.88
±3.70

15.19
±3.55

−44.69
±5.61

PI3Kγ-C79 −65.21
±2.96

−38.13
±4.28

48.45
±2.83

−7.70
±0.15

−103.36
±4.23

40.75
±2.81

−62.61
±3.24

9.29
±0.61

−53.31
±3.30

PI3Kγ-C81 −59.05
±3.00

−34.53
±6.75

44.62
±5.08

−7.04
±0.26

−93.61
±6.73

37.58
±4.97

−56.03
±3.71

8.69
±0.04

−47.33
±3.71

PI3Kγ-C99 −58.25
±3.44

−56.56
±7.52

67.51
±6.90

−7.59
±6.90

−114.81
±8.76

59.91
±6.69

−54.89
±3.82

17.28
±0.59

−37.61
±3.86

PI3Kγ-C103 −61.05
±2.90

−46.84
±4.40

56.49
±3.64

−7.70
±0.21

−107.91
±4.53

48.79
±3.62

−59.11
±2.95

11.67
±2.06

−47.44
±3.60

PI3Kγ-C118 −59.50
±2.88

−51.98
±5.11

65.58
±4.12

−7.23
±0.26

−111.49
±4.24

58.34
±4.07

−53.14
±3.13

13.39
±0.04

−39.75
±3.13

PI3Kγ-C124 −60.09
±3.19

−61.38
±10.17

76.25
±8.99

−7.12
±0.23

−121.47
±10.99

69.12
±8.89

−52.34
±3.71

10.34
±1.59

−41.58
±4.67

PI3Kγ-C129 −59.87
±3.12

−36.29
±5.69

61.99
±5.14

−7.99
±0.29

−96.18
±5.95

54.01
±5.11

−42.18
±3.49

6.68
±0.04

−35.50
±3.49

PI3Kγ-C150 −72.71
±3.14

−66.26
±5.44

79.80
±4.40

−8.84
±0.20

−138.97
±5.47

79.80
±4.40

−68.02
±3.56

10.66
±0.78

−57.35
±3.65

PI3Kγ-C182 −59.35
±2.95

−33.72
±6.10

47.78
±5.09

−7.09
±0.32

−93.07
±5.77

40.69
±5.14

−52.38
±3.18

14.68
±0.05

−37.70
±3.18

PI3Kγ-C195 −41.90
±3.22

−42.54
±4.11

61.18
±3.83

−7.94
±0.21

−104.96
±4.54

53.23
±3.84

−51.73
±3.22

9.83
±0.03

−41.90
±3.22

PI3Kγ-C215 −63.11
±3.48

−64.01
±6.16

73.01
±4.90

−7.84
±0.31

−127.13
±6.60

65.16
±4.84

−61.97
±4.01

14.29
±0.04

−37.68
±4.01

VDW: van der Waals contribution from MM; EEL: electrostatic energy as calculated by the MM force field; EPB/GB:
electrostatic contribution to the solvation free energy; ESURF: nonpolar solvation free energy; ∆Ggas: ∆G in the gas
phase; ∆Gsolv: ∆G in solvation state; ∆TOTAL: total binding free energy from MM-PB/GBSA, T∆S: entropy term;
∆Gbind: final binding free energy.
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Next, we calculated the per-residue binding energy decomposition from the residues
that were within the 4 Å distances of the ligand atoms in Table 3. Additionally, residues
that contributed very less or negligible binding energy to the ligand were further excluded.
As expected, residues M804, W812, I831, K833, Y867, I879, I881, V882, M953, and I963 were
the common BE contributing residues inside the ATP pocket. In addition, compounds
C22, C41, and C60 had steric chemical extensions attached to their HBM towards the
selectivity pocket; thereby, residues T886 and A885 decomposed the additional binding free
energy with these compounds. Figure 3 shows our speculated generalized BE-contributing
residues surrounding the active site in addition to the different subdomains.
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We further investigated the MD study of CZ2 (C170) and idelalisib in the complex
with both PI3Ks (Figure S5) to estimate the final BE, as shown in Table 4. C01 and C170
in Tables S1 and S12 are the same compounds, i.e., CZ2, which was developed as a dual
receptor targeting inhibitor. This compound exhibited binding energies of −41.19 kcal/mol
and −48.40 kcal/mol, respectively, to PI3Kδ and PI3Kγ. Idelalisib, on the other hand, was
developed to increase δ selectivity over γ by more than 100 times [53], exhibiting binding
energies of −32.48 kcal/mol and −16.48 kcal/mol, respectively in complex with PI3Kδ
and PI3Kγ. However, a higher entropic energy contribution (T∆S = 12.47 kcal/mol) was
observed in the PI3Kγ-idelalisib complex. The per-residue energy decomposition analysis
of the individual complexes is summarized in Table 5, which shows the distinctive residue
spectrum interacting with the ligand of the two isoforms. To explore the critical structural
insights, the final 1 ns average MD structures of the CZ2 and idelalisib-bound isoforms were
retrieved from the simulation trajectories, as shown in Figure 4. In sequence alignment, the
difference in the major amino acid residues was detected in the P-loop (HR-1) and the hinge
region (HR-2) as key determinant sub-sites shown in Figure 4a. In the P-loop of PI3Kδ,
residues T750 and F751 are substituted with less-hydrophobic and positively charged K802
and V803 in PI3Kγ, which initially formed the entry point of the ligands, whereas, in the
hinge region, S831 and D832 are replaced by more hydrophobic A885 and T886 in the γ
isoform. The binding interaction of C170 with PI3Kδ appeared to be similar to PI3Kγ and
was mainly stabilized by forming two H-bond interactions with V828 in the hinge loop,
as shown in Figure 4b. Figure 4c,d illustrates the idelalisib-bound active sites of the two
isoforms, where the ligand was stabilized by establishing at least one H-bond interaction
with valine. In the specificity pocket, hydrophobic interactions were found between the
bicyclic quinazoline ring of idelalisib and residues tryptophan and methionine.
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Table 3. Per-residue MM-PB/GBSA binding energy decomposition in kcal/mol.

Compounds in Complex with PI3Kγ

Residues C01 C22 C34 C41 C60 C62 C72 C79 C81 C99 C103 C118 C124 C129 C150 C182 C195 C215

M804 - - −1.04 - - −0.72 −3.33 −2.66 −1.56 −2.01 −3.68 - - −1.79 −2.16 −1.21 −1.32 −1.18
A805 - - - - - - −1.20 - - - - - - - - -
W812 −0.72 −0.54 −0.86 −0.71 −0.85 −1.03 −1.59 - −0.89 −0.98 −0.87 - - −0.79 −1.01 −1.01 −0.92 −0.85
I831 −1.70 −1.72 −2.18 −1.61 −1.77 −1.63 −1.82 −1.83 −1.72 −1.92 - −2.12 −1.23 −2.28 −2.15 −1.83 - −2.06
K833 −3.10 −1.86 −1.34 −1.40 −2.62 −1.93 −1.33 −1.72 −1.55 −1.61 - −2.52 −2.35 −2.04 −2.59 −2.14 −1.37 −1.74
Y867 −1.75 - −2.03 −1.29 - −1.56 −1.37 −1.69 −2.10 −1.85 - −1.44 −1.41 - −1.60 −2.09 −2.21 −2.05
I879 −2.98 −2.53 −2.74 −2.75 −2.98 −2.85 −2.07 −3.05 −3.01 −3.03 −2.99 −3.09 −3.03 −3.19 −3.02 −2.74 −3.20 −2.79
I881 −2.29 −0.57 −2.53 −2.21 −2.15 −2.19 −2.07 −3.02 −2.44 −2.32 −2.17 −2.21 −3.48 −1.65 −2.44 −2.56 −2.60 −2.69
V882 −3.80 - −3.17 −2.90 −3.26 −3.22 −3.26 −3.45 −3.57 −3.27 −3.21 −3.90 −3.85 - −3.63 −1.63 −1.55 −3.88
T886 - −3.57 - - - - - - - - - - - - - - - −0.83
A885 - - −0.96 −1.20 −1.41 - - - - - - - - - - - -
M953 −1.06 −1.81 −1.11 −1.04 −1.57 −1.44 −1.55 −1.24 −1.65 −1.15 −1.33 −1.31 −1.69 −1.01 −2.35 −1.39 −1.43 −2.04
I963 −2.42 −2.38 −3.08 −2.18 −2.01 −2.51 −2.93 −2.51 −2.27 −2.19 −2.19 −2.68 −3.73 −3.13 −3.40 −2.77 −2.90 −2.11

(-): Residues that were more than 4Å from the compounds or contributed negligible binding energy to the ligands were kept blank.

Table 4. Binding energy calculation of the selected compounds with PI3K isoforms.

Complexes
MM-PB/GBSA Binding Energy Terms in kcal/mol

VDW (±SD) EEL (±SD) EGB (±SD) ESURF (±SD) ∆Ggas (±SD) ∆Gsolv (±SD) ∆TOTAL (±SD) T∆S (±SD) ∆Gbind (±SD)

PI3Kδ-C190 −49.96
±2.96

−30.85
±3.91

35.11
±3.07

−6.36
±0.17

−80.83
±3.62

28.74
±3.12

−52.08
±3.35

10.89
±0.04

−41.19
±3.35

PI3Kδ-Idelalisib −51.73
±2.26

−18.71
±3.18

36.47
±3.21

−5.81
±0.17

−70.45
±3.84

30.65
±3.20

−39.79
±2.60

7.31
±0.03

−32.48
±2.60

PI3Kγ-Idelalisib −40.74
±3.61

−12.50
±5.78

28.81
±5.53

−4.51
±0.35

−53.25
±7.20

24.29
±5.36

−28.95
±3.79

12.47
±1.86

−16.48
±4.22

VDW: van der Waals contribution from MM; EEL: electrostatic energy as calculated by the MM force field; EPB/GB: electrostatic contribution to the solvation free energy; ESURF: nonpolar
solvation free energy; ∆Ggas: ∆G in the gas phase; ∆Gsolv: ∆G in solvation state; ∆TOTAL: total binding free energy from MM-PB/GBSA, T∆S: entropy term; ∆Gbind: final binding
fre energy.
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Table 5. Per-residue MM-PB/GBSA binding energy decomposition in kcal/mol.

Complexes
Residues

M752 W760 I777 L784 Y813 I825 V827 V828 T833 M900 I910

PI3Kδ-C190 −0.96 - −1.65 0.87 - −3.00 −2.44 −4.23 - −1.05 -
PI3Kδ-Idelalisib −2.54 −2.98 −2.54 - −1.46 - −3.32 −2.42 −1.26 −2.21 −1.63

PI3Kγ-Idelalisib M804 W812 I831 I881 V882 M953
−2.37 −3.38 −2.15 −2.82 −1.23 −1.50

(-): Residues that were more than 4Å from the compounds or contributed negligible binding energy to the ligands
were kept blank.
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Figure 4. Sequence alignment of the active sites and ligand interactions inside the hydrophobic cavity
of δ and γ isoforms of PI3K. (a) Consensus sequence alignment of the active sites of two isoforms. The
conserved amino acid residues are highlighted in warm red. (b) The final 1 ns average MD structure
of C170 (AZ2)-bound PI3Kδ. The final 1 ns average MD structures of the idelalisib-bound active sites
of PI3K and PI3K, respectively, are shown in (c) and (d). The H-bond interactions are shown in dotted
green lines. The white to red surface indicates ascending hydrophobicity.

3.4. Statistical Results from CoMFA and CoMSIA

From the literature, a series of 215 isoindolin-1-one-based compounds reported to be
selective inhibitors of PI3Kγ isoform were collected for developing the 3D-QSAR model.
The inhibitory activity data (IC50) were converted to the negative logarithm of activ-
ity (pIC50), which was further used as the dependent variable in the 3D-QSAR model.
Supplementary Table S1 shows the 2D chemical structure of the compounds and their as-
sociated pIC50 values. The final 1 ns average structure of C34 was chosen as a template
for the molecular modeling of other compounds since it was considered a bioactive 3D
conformer. Compounds C02 and C106 had nonspecific activity, i.e., their activity was not
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determined and therefore omitted from the dataset during the model development. All
213 compounds in the dataset were aligned to the isoindolin-1-one common chemical core
using the ‘database alignment’ functionality available in SYBYL X2.1. Initially, the first
CoMFA and CoMSIA models were built by taking every compound from the dataset. The
comprehensive statistics of both models are shown in Table 6, including the reasonable
acceptance criterion. The CoMFA q2 and r2 value was predicted to be 0.612 and 0.800 at
an ONC of 6, respectively. To derive the best CoMSIA model, multiple descriptor fields,
namely, steric (S), electrostatic (E), hydrophobic (H), H-bond acceptor (A), and H-bond
donor (D), were applied in the permutation combination process by applying Gasteiger–
Marsili partial charges, as shown in Table S2. The best scores for q2 and r2 were predicted
to be 0.630 and 0.784 in the combination of SEAD descriptors at an ONC of 6, respectively.
The values of q2 and r2 were well above the acceptable statistical value. Following that, we
predicted the pIC50 and residuals of each compound using both the CoMFA and CoMSIA
models (Table S3). In Figure 5, the PLS plot is illustrated to correlate the actual pIC50 and
the predicted pIC50. The Williams plot was used to analyze the applicability domain (AD)
of the 3D-QSAR model. The leverage values of C21 were anticipated to be higher than
the warning leverage (h*) in both COMFA and CoMSIA applicability domain analysis,
suggesting that C21’s activity value had a significant influence on the PLS slopes of CoMFA
and CoMSIA. In addition, we also determined several other statistical terms, such as χ2,

RMSE, MAE and k, k′, |r0
2 − r′02|, r2−r′20

r2 , and the r′2m matric, which also satisfies the
proposed parameters from several studies given under the ‘threshold values’ column.

However, any QSAR model is insufficient without being validated externally by the
test set compounds that were not used during model development. The dataset was
divided into training and test sets for model building and external validation. Initially,
the compounds were classified into three different (high, medium, and low), mutually
exclusive, and nonoverlapping strata based on their pIC50 values. Each stratum was
shuffled to distribute the compounds by random number generation and split into four sets.
Following that, one set from each stratum was selected one at a time as a test from three
different strata to make the final training vs. test set ratio ~3:1. This process was repeated
four times so that each compound had an equal chance to participate in the test set. In this
way, we obtained four different training sets and test set combinations to generate four
CoMFA and CoMSIA models (Figure S6). We used different combinations of descriptor
fields (S, E, H, A, and D) fields to obtain the best possible CoMSIA model for each set, as
shown in Tables S4–S7. The observed pIC50 and the predicted pIC50 of each model are
tabulated in Supplementary Tables S8–S11.

The statistical analysis of the CoMFA models is summarized in Table 7. For validation,
we strictly followed the acceptable statistical ranges as given in the ‘threshold values’
column. The Gasteiger–Marsilli partial charges were applied and kept uniform for each
model during model generation. SET-A produces q2, r2, and BS-r2 of 0.655, 0.854, and
0.894, respectively, at the ONC of 6, which are statistically significant. The χ2 and RMSE
values were found to be 0.227 and 0.289, respectively. Other statistical parameters, such
as k and k′, were found to be 0.999 and 0.998, and the value of r0

2 and r′02 is close to the
actual r2. The overall results indicated good internal statistical validation. The r2

mTest or
r′2mTest was found to be >0.5 and r2

pred was found to be 0.635 in external test set validation,

both of which fell within the set parameters. In SET-B, the external predictivity r2
pred was

found to be less than 0.6, despite having a good internally validated training set model.
In SET-C, both the internal and external validation parameters were not satisfied by the
acceptance criterion. Although SET-D had good external predictive power (r2

pred = 0.694),
it showed poor internal model quality. This led us to select SET-A as a final representative
of the CoMFA model.
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Table 6. Statistics of the CoMFA and CoMSIA models by including all compounds from the dataset of PI3Kγ.

3D-QSAR
(All Compounds)

Statistical Parameters

q2 ONC SEP r2 SEE F-Value BS-r2 BS-SD χ2 RMSE MAE k k′ |r0
2-r′02| r2−r

′2
0

r2
r′2m

CoMFA 0.612 6 0.460 0.800 0.330 137.507 0.854 0.025 0.391 0.324 <0.001 1.000 0.998 0.050 0.062 0.621

CoMSIA (SEAD) 0.630 6 0.448 0.784 0.344 123.686 0.833 0.024 0.446 0.338 <0.001 1.000 0.998 0.060 0.079 0.588

Threshold values >0.5 >0.6 <<1 >100 <0.5 <0.3 ≈0 0.85 ≤ k ≤ 1.15 0.85 ≤ k′ ≤ 1.15 <0.3 <0.1 >0.5

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: standard error of prediction; r2: squared correlation coefficient; SEE: standard error of
estimation; F-value: F-test value; BS-r2: bootstrapping squared correlation coefficient; χ2: Chi-square value; RMSE: root mean square error; MAE: mean absolute error; k: slope of the
predicted vs. observed activity at zero intercepts; k′: slope of the observed vs. predicted activity at zero intercepts; r0

2: squared correlation coefficient between predicted and observed
activity; r′02: squared correlation coefficient between predicted and observed activity; r′2m: r′2m matrix.

Table 7. Statistics of the CoMFA models of training set compounds of PI3Kγ.

CoMFA (Training Set Compounds)

Statistical Parameters SET-A SET-B SET-C SET-D Threshold Values Statistical Parameters SET-A SET-B SET-C SET-D Threshold Values

q2 0.655 0.608 0.598 0.540 >0.5 k Test 1.008 0.997 1.002 1.006
0.85 ≤ k ≤ 1.15ONC 6 6 6 5 k′ Test 0.995 0.999 0.994 0.990

SEP 0.456 0.462 0.498 0.488 r2
Test 0.684 0.566 0.586 0.710

r2 0.854 0.842 0.831 0.762 >0.6 r0
2

Test 0.640 0.566 0.522 0.699
≈r2

SEE 0.296 0.294 0.323 0.351 <<1 r’02
Test 0.664 0.223 0.540 0.666

F-value 148.372 134.954 124.355 97.725 >100 |r0
2 − r’02| Test 0.024 0.343 0.018 0.033 <0.3

BS-r2 0.894 0.889 0.881 0.818 r2−r2
0

r2 Test
0.064 NA 0.109 0.015

<0.1
BS-SD 0.021 0.021 0.021 0.033 r2−r′20

r2 Test
0.030 0.60 0.078 0.061

χ2 0.227 0.221 0.269 0.256 <1.0 r2
mTest 0.540 NA 0.437 0.635

>0.5RMSE 0.289 0.287 0.315 0.307 <0.5 r′2mTest 0.587 0.234 0.460 0.561
MAE <0.001 <0.001 <0.001 <0.001 ≈0 r2

mTest 0.563 0.117 0.448 0.598 >0.5
RSS 13.335 13.120 15.83 15.02 ∆rm

2
Test 0.024 0.234 0.012 0.037 <0.2

k Train 0.999 1.000 1.000 1.000
0.85 ≤ k ≤ 1.15 r2

pred 0.635 0.565 0.522 0.694

>0.5k’Train 0.998 0.998 0.998 0.998 Q2
F1 0.635 0.565 0.522 0.694

r0
2

Train 0.854 0.841 0.830 0.810
≈r2 Q2

F2 0.628 0.565 0.520 0.693
r’02

Train 0.829 0.812 0.796 0.766 Q2
F3 0.635 0.565 0.520 0.694

|r0
2-r’02|Train 0.025 0.029 0.034 0.044 <0.3 Q2

ccc 0.820 0.740 0.730 0.838
r2−r′20

r2 Train
0.029 0.035 0.042 0.052 <0.1 S (%) 44.8 43.7 43.7 44.9

r′2mTrain 0.718 0.696 0.676 0.609 >0.5 E (%) 55.2 56.3 56.3 55.1

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: standard error of prediction; r2: squared correlation coefficient; SEE: standard error of
estimation; F-value: F-test value; BS-r2: bootstrapping squared correlation coefficient; χ2: Chi-square value; RMSE: root mean square error; MAE: mean absolute error; k: slope of the
predicted vs. observed activity at zero intercepts; k’: slope of the observed vs. predicted activity at zero intercepts; r0

2: squared correlation coefficient between predicted and observed
activity; r’02: squared correlation coefficient between predicted and observed activity; r′2m: r′2m matrix; r2

pred: predictive correlation coefficient; S: steric; E: electrostatic.
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Figure 5. Molecular alignment and CoMFA-CoMSIA statistical plots. (a) The dataset compounds are
aligned to the common skeleton isoindolin-1-one. (b) and (c) show the partial least squares (PLS)
correlation plot and applicability domain (AD) analysis (Williams plot) of the CoMFA model by
taking every compound in the dataset. (d,e) show the PLS plot and AD analysis of the CoMSIA
model. The warning leverage (h*) for CoMFA (h* = 0.042) and CoMSIA (h* = 0.070) is shown in
dotted red lines in the Williams plot.

The statistical result of the CoMSIA scheme is summarized in Table 8. With the highest
q2 and r2, the three best models were chosen from each set for additional internal and
external validation. The SED, SEAD, and SEHAD combinations yielded the highest q2 and
r2 values and good internal validation in SET-A. The SD, SED, and SEAD combinations
were found to produce the best q2 and r2 CoMSIA schemes in SET-B and SET-C. In SET-D,
SD, SEAD, and SHAD yielded the models with the top three best q2 and r2 values. However,
the final model was adopted based on good internal and external validation parameters.
Although having a good external predictive power (r2

pred), the models from SET-D were

not selected due to the lower q2 and r2 values during the internal validation.
Overall, in SET-A, the three subsets yielded satisfactory q2 and r2 internally with

statistically significant models during the external validation. SEAD had the highest
internal q2 and r2 values of 0.655 and 0.804 at the ONC of 5. However, SEHAD had a better
r2

pred over SEAD combination; thus, the SEHAD from the SET-A was selected as the final
model for describing the SAR analysis in the CoMSIA scheme.

Continuing that, we implemented progressive scrambling in the CoMFA and CoMSIA
models to test their sensitivity and robustness, as shown in Table 9. This also helps to verify
the optimal number of components for each model. For component 6, the SET-A in CoMFA
produced the highest scrambling Q2 and the lowest cSDEP scores of 0.433 and 0.581. In
contrast, in component number 5, SET-A produced the highest scrambling Q2 and cSDEP
scores of 0.471 and 0.702, respectively, in CoMSIA. In both cases, the dq2/dr2

yy’ score was
lower than the limit of 1.2. Overall, the evaluations suggested that the selected models
were significant and statistically reliable.



Biomedicines 2022, 10, 813 17 of 30

Table 8. Statistics of the CoMSIA models of training set compounds of PI3Kγ.

CoMSIA (Training Set Compounds)

Statistical Parameters
SET-A SET-B SET-C SET-D

Threshold Values
SED SEAD SEHAD SD SED SEAD SD SED SEAD SD SEAD SHAD

q2 0.653 0.655 0.652 0.604 0.608 0.597 0.607 0.610 0.603 0.568 0.566 0.581 >0.5
ONC 6 5 6 6 5 6 6 5 6 6 6 6
SEP 0.457 0.454 0.457 0.465 0.461 0.469 0.492 0.489 0.494 0.475 0.476 0.468
r2 0.817 0.804 0.824 0.763 0.788 0.789 0.775 0.788 0.814 0.754 0.790 0.796 >0.6

SEE 0.332 0.342 0.324 0.360 0.339 0.339 0.372 0.360 0.338 0.359 0.331 0.326 <<1
F-value 113.148 125.375 120.235 81.648 113.465 94.986 87.143 113.508 111.033 77.440 95.264 98.962 >100
BS- r2 0.867 0.842 0.878 0.813 0.825 0.842 0.824 0.824 0.868 0.801 0.848 0.852
BS-SD 0.024 0.027 0.021 0.028 0.027 0.025 0.027 0.027 0.020 0.031 0.025 0.024
χ2 0.303 0.325 0.289 0.359 0.331 0.326 0.390 0.370 0.317 0.363 0.297 0.292 <1.0

RMSE 0.324 0.335 0.316 0.351 0.332 0.331 0.364 0.353 0.330 0.350 0.322 0.318 <0.5
MAE <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ≈0
RSS 16.725 17.935 15.915 19.65 17.628 17.478 21.078 19.865 17.338 19.56 16.680 16.178

k Train 0.999 1.000 0.999 0.999 0.999 0.999 0.999 0.999 1.000 0.999 0.999 0.999
0.85 ≤ k ≤ 1.15k’Train 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998

r0
2

Train 0.816 0.803 0.825 0.781 0.807 0.791 0.795 0.821 0.843 0.764 0.811 0.805
≈r2

r’02
Train 0.776 0.756 0.789 0.677 0.721 0.708 0.707 0.740 0.786 0.645 0.730 0.735

|r0
2−r’02|Train 0.04 0.020 0.036 0.104 0.085 0.083 0.087 0.080 0.057 0.119 0.081 0.069 <0.3
r2−r′20

r2 Train 0.050 0.063 0.042 0.112 0.084 0.100 0.087 0.060 0.034 0.143 0.075 0.075 <0.1

r′2mTrain 0.651 0.627 0.669 0.539 0.585 0.565 0.573 0.616 0.677 0.505 0.597 0.600 >0.5
kTest 1.000 1.001 1.000 1.003 1.004 1.000 0.991 1.004 1.001 1.003 0.999 1.000

0.85 ≤ k ≤ 1.15k’Test 0.997 0.996 0.996 0.992 0.992 0.995 1.006 0.993 0.996 0.993 0.998 0.996
r2

Test 0.613 0.631 0.634 0.539 0.541 0.559 0.572 0.582 0.610 0.716 0.729 0.695
r0

2
Test 0.592 0.609 0.609 0.533 0.537 0.556 0.524 0.555 0.580 0.717 0.729 0.695

≈r2
r’02

Test 0.529 0.562 0.572 0.332 0.330 0.341 0.512 0.494 0.540 0.642 0.648 0.604
|r0

2−r’02|Test 0.063 0.047 0.037 0.201 0.207 0.215 0.012 0.060 0.031 0.075 0.081 0.090 <0.3
r2−r2

0
r2 Test 0.034 0.034 0.039 0.011 0.007 0.004 0.083 0.045 0.049 - - -

<0.1
r2−r′20

r2 Test 0.137 0.109 0.097 0.384 0.389 0.389 0.103 0.149 0.101 0.102 0.110 0.129
r2

mTest 0.524 0.537 0.533 0.498 0.510 0.530 0.447 0.487 0.504 - - -
>0.5

r′2mTest 0.435 0.465 0.476 0.293 0.292 0.298 0.432 0.410 0.458 0.522 0.522 0.486

r2
mTest 0.479 0.501 0.504 0.395 0.401 0.414 0.440 0.448 0.481 - - -

∆rm
2

Test 0.089 0.072 0.057 0.204 0.217 0.231 0.014 0.077 0.046 - - - <0.2
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Table 8. Cont.

CoMSIA (Training Set Compounds)

Statistical Parameters
SET-A SET-B SET-C SET-D

Threshold Values
SED SEAD SEHAD SD SED SEAD SD SED SEAD SD SEAD SHAD

r2
pred 0.599 0.615 0.616 0.526 0.529 0.554 0.517 0.546 0.577 0.713 0.729 0.693

>0.5Q2
F1 0.599 0.615 0.616 0.526 0.529 0.554 0.517 0.546 0.577 0.713 0.729 0.693

Q2
F2 0.592 0.608 0.609 0.526 0.529 0.554 0.517 0.546 0.576 0.713 0.729 0.693

Q2
F3 0.599 0.615 0.616 0.526 0.529 0.554 0.517 0.546 0.577 0.713 0.729 0.693

Q2
ccc 0.781 0.793 0.795 0.722 0.723 0.733 0.747 0.761 0.781 0.840 0.845 0.693

S (%) 20.6 15.9 13.5 33.6 23.1 23.3 32.1 21.4 15.3 30.5 15.3 15.7
E (%) 35.8 26.4 23.6 - 37.4 - - 34.7 25.7 - 23.5 -
H (%) - - 14.7 - - 39.2 - - - - 20.9
A (%) - 26.7 21.6 - - - - - 24.4 - 25.7 28.4
D (%) 43.6 31.0 26.6 66.4 39.4 47.2 67.9 43.9 34.6 69.5 35.4 35.1

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: standard error of prediction; r2: squared correlation coefficient; SEE: standard error of
estimation; F-value: F-test value; BS-r2: bootstrapping squared correlation coefficient; χ2: Chi-square value; RMSE: root mean square error; MAE: mean absolute error; k: slope of the
predicted vs. observed activity at zero intercepts; k’: slope of the observed vs. predicted activity at zero intercepts; r0

2: squared correlation coefficient between predicted and observed
activity; r’02: squared correlation coefficient between predicted and observed activity; r′2m: r′2m matrix; r2

pred: predictive correlation coefficient; S: steric; E: electrostatic; H: hydrophobic;
A: H-bond acceptor; D: H-bond donor.
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Table 9. Progressive scrambling results from the CoMFA and CoMSIA of PI3Kγ.

Components

CoMFA CoMSIA (SEHAD)

SET-A SET-A

Q2 cSDEP dq2/dr2
yy′ Q2 cSDEP dq2/dr2

yy′

1 0.083 0.730 0.095 0.245 0.662 0.179
2 0.347 0.618 0.407 0.329 0.626 0.306
3 0.380 0.608 0.376 0.451 0.568 0.533
4 0.405 0.593 0.565 0.480 0.555 0.568
5 0.400 0.599 0.502 0.507 0.542 0.735
6 0.433 0.581 0.590 0.508 0.541 0.757
7 0.333 0.634 0.681 0.489 0.555 0.787
8 0.315 0.644 0.543 0.462 0.571 0.874

Similar to the PI3Kγ 3D-QSAR model, we also initiated the development of the PI3Kδ
3D-QSAR model by using 213 compounds and their pIC50 values, as shown in Table S12.
The compounds were divided into the training set and test set by stratified random number
sampling (Figure S7) as previously described, obtaining the final training vs. test ratio
to ~3:1. SET-A, B, and C produced unsatisfactory results during CoMFA and CoMSIA
model development and henceforth were not investigated further. The training set from
SET-D produced the statistically significant CoMFA model, in which the internal q2 and
r2 were predicted to be 0.547 and 0.699 at an ONC of 6 (Table 10). This model showed
an external predictive correlation coefficient, r2

pred of 0.615. The combination of steric and

H-bond acceptors produced the best PI3Kδ CoMSIA model, in which q2 and r2 were found
to be 0.537 and 0.680 at an ONC of 5. In this model, the external predictivity r2

pred was

measured to be 0.562. We also determined other statistical criteria, such as the r2
m matric

and Q2
Fn (n = 1, 2, 3), to determine whether the models had sufficient predictive power. The

parameter’s values fell within the acceptable threshold value, thus indicating the overall
reliability of the developed models. Subsequently, the progressive scrambling stability
test was performed with the CoMFA and CoMSIA models (Table 11); at components
6 and 5, the highest progressive scrambling Q2 values were obtained, 0.475 and 0.471 for
CoMFA and CoMSIA, respectively, with the lowest cSDEP scores. The observations above
suggested that the models were stable and not based on chance correlation.

3.5. PLS Plots and Applicability Domain Analysis

The correlation plots (PLS) between the actual pIC50 and the predicted pIC50 of the
CoMFA and CoMSIA models and the corresponding AD plots are shown in Figure 6. The
PLS plots of the CoMFA models are illustrated in Figure 6a–d. The AD was analyzed
using the Williams plot (Figure 6e–h) within the σ = ±3 standardized residual level and
a constraint of warning leverage (h*) by a dotted red line. The leverage greater than h*
signifies that the compounds strongly influence the regression slope. As observed earlier in
Figure 5, the leverage value of C42 is higher than the warning leverage in each AD plot
of CoMFA, where h* was 0.056. However, the value of h* was increased in the CoMSIA
scheme when more descriptor fields were considered. The h* was estimated to be 0.113 in
SET-A and 0.093 in SET-B, C, and D, respectively, in which all compounds fell below the
permissible levels of h*. In Figure 7, the CoMFA and CoMSIA PLS plots and the Williams
plots of PI3Kδ are depicted. The leverages of all compounds were within the warning
h* (CoMFA h* = 0.057 and CoMSIA h* = 0.057). Overall, AD analysis suggested that the
CoMFA and CoMSIA models can accurately predict the activity of an unknown compound
that has a similar scaffold in a 3D chemical space.
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Table 10. Statistics of the CoMFA and CoMSIA models of PI3Kδ.

Statistical
Parameters

CoMFA CoMSIA (SA) Threshold
Values

Statistical
Parameters

CoMFA CoMSIA Threshold
ValuesSET-D SET-D SET-D SET-D

q2 0.547 0.537 >0.5 r2
Test 0.627 0.577

>0.5ONC 6 5 r0
2

Test 0.616 0.566
SEP 0.653 0.658 r’02

Test 0.501 0.349
r2 0.699 0.680 >0.6 |r0

2 − r’02|Test 0.114 0.217 <0.3
SEE 0.532 0.556 <<1 r2−r2

0
r2 Test

0.017 0.018
<0.1

F-value 58.178 52.427 r2−r′20
r2 Test

0.199 0.394

BS- r2 0.756 0.713 r2
mTest 0.561 0.517

BS-SD 0.039 0.042 r′2mTest 0.405 0.301
χ2 0.631 0.683 <1.0 r2

mTest 0.156 0.215
RMSE 0.482 0.495 <0.5 ∆rm

2
Test 0.483 0.409

MAE <0.001 <0.001 ≈0 r2
pred 0.615 0.562

>0.5RSS 36.61 38.59 Q2
F1 0.615 0.562

k Train 1.001 1.001
0.85 ≤ k ≤ 1.15 Q2

F2 0.615 0.562
k’Train 0.994 0.995 Q2

F3 0.615 0.562
r0

2
Train 0.742 0.728

≈r2 Q2
ccc 0.785 0.744

r’02
Train 0.633 0.615 S (%) 76.2 47.9

|r0
2 − r’02|Train 0.109 0.112 <0.3 E (%) 23.8 -
r2−r′20

r2 Train
0.093 0.094 <0.1 A (%) - 52.1

r′2mTrain 0.520 0.507 >0.5
kTest 0.989 0.985

0.85 ≤ k ≤ 1.15k’Test 1.005 1.008

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: standard er-
ror of prediction; r2: squared correlation coefficient; SEE: standard error of estimation; F-value: F-test value;
BS-r2: bootstrapping squared correlation coefficient; χ2: Chi-square value; RMSE: root mean square error; MAE:
mean absolute error; k: slope of the predicted vs. observed activity at zero intercepts; k’: slope of the observed vs.
predicted activity at zero intercepts; r0

2: squared correlation coefficient between predicted and observed activity;
r’02: squared correlation coefficient between predicted and observed activity; r′2m: r′2m matrix; r2

pred: predictive
correlation coefficient; S: steric; E: electrostatic; A: H-bond acceptor.

Table 11. Progressive scrambling results from the CoMFA and CoMSIA of PI3Kδ.

Components

CoMFA CoMSIA (SA)

SET-A SET-A

Q2 cSDEP dq2/dr2
yy’ Q2 cSDEP dq2/dr2

yy’

1 0.380 0.750 0.229 0.388 0.746 0.160
2 0.410 0.735 0.191 0.432 0.726 0.247
3 0.434 0.722 0.257 0.457 0.707 0.271
4 0.468 0.709 0.234 0.463 0.706 0.299
5 0.467 0.702 0.239 0.471 0.702 0.380
6 0.475 0.702 0.377 0.448 0.719 0.386
7 0.458 0.716 0.372 0.441 0.727 0.426
8 0.422 0.742 0.402 0.436 0.733 0.760

3.6. Contour Maps Analysis

In Figure 8, the StDev*coeff of the contour maps is graphically illustrated to interpret
the effects of steric and electrostatic fields of the CoMFA descriptors. The chemically
meaningful different contour color scheme was used to describe the key structural features
that are required for the inhibitory potency against γ and δ isoforms. The MD pose of the
C34-bound active site was taken as a reference, and contour maps were generated around it
for the PI3Kγ CoMFA model. In contrast, the average MD position of the idelalisib-bound
active site surrounded by colored contour maps was used for the CoMFA model analysis of
PI3Kδ. In the steric descriptor field, the green contours favored bulky and steric chemical
entities, whereas the yellow contours did not favor that substitution. Similarly, in the
electrostatic descriptor fields, blue and red contours signified the favorable position for the
electropositive and electronegative groups, respectively.

In the PI3Kγ contour map (Figure 8a), a large green polyhedron appeared in the R2
position of the 1-methylpyrazole ring in the selectivity pocket. This suggested that a bulkier
steric group at this position could increase the inhibitory activity of the compounds by
interacting with residues A885 and T886. In the dataset, compounds C48–C51, C53, C55,
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C57–C58, C62–C74, C76–C80, C86–C104, C133–C164, C168–C195, and C200–C215 carrying
bulky heterocycles in their R2 position showed pIC50 values greater than 8. Another
small green contour was observed at the R4 position at the ethylcyclopropane moiety. A
smaller steric substitution at that position could result in a stronger molecular interaction
with residues D841, M842, L845, and F965, which could increase the additional inhibitory
efficacy. Compounds C79, C199, C201, and C202 had a modest steric substitution and
showed better inhibitory action than compounds C81 and C85. A yellow contour was
seen around the HBM near the V882 residue, indicating that a steric group would be
unfavorable at that location, considerably reducing the inhibitory activity of the compound.
As shown in Figure 8b, a large blue contour surrounds the HBM and R2 position, signifying
a favorable substitution of positively charged atoms or groups such as nitrogen or amine
that might increase the inhibitory potency. The backbone oxygen and hydroxyl of alanine
or threonine have a higher potency of H-bonding with the electropositive groups. A red
contour near V882 indicated an unfavorable location for electronegative substitution and
possibly hindered the formation of an H-bond in the hinge loop.
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Figure 6. PLS correlation plot and Williams plot analysis of CoMFA and CoMSIA models. (a–d)
are the PLS plots, and (e–h) are the corresponding Williams plots of the different test set groups
(SET-A, SET-B, SET-C, and SET-D), respectively, in the CoMFA scheme. Similarly, (i–l) are PLS plots,
and (m–p) are the corresponding Williams plots for the AD analysis of different test set groups in
the CoMSIA scheme. The warning leverage (h*) is shown by dotted red lines inside the AD plots.
The actual vs. predicted pIC50 values corresponding to the training set and test set compounds are
depicted in gray and cyan in the CoMFA scheme. In the CoMSIA scheme, the values of the training
and test set compounds are colored in light brown and cyan, respectively.
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Distinctive characteristics were found in CoMFA contour maps of PI3Kδwhen com-
pared to the contours of PI3Kγ, as shown in Figure 8c,d. A large green contour appeared
around the quinazoline ring near M752, Y813, and I910, and another small green contour
appeared at the purine ring near the residue W760. Combining this observation indicated
that a bulky steric substitution in such areas could increase the π–π stacking or π–σ in-
teractions with the surrounding hydrophobic residues. The presence of a narrow yellow
contour also indicated an undesirable site for additional steric substitution and might result
in steric clashes. In Figure 8d, two small blue contours near V828 and I910 signify the
favorable position for electropositive substitution, which could provide better molecular
interaction and inhibitory potency to PI3Kδ. A red contour near residue W760 indicates a
favorable position for an electronegative substitution, such as carboxyl (-COOH) or keto
(-C=O) groups, which could provide additional interactions with surrounding residues.

Additional CoMSIA contour maps of PI3Kγ and PI3Kδ are shown in Figures 9 and S8.
The steric and electrostatic fields were already described in the CoMFA; hence, they are
not discussed further. The contour maps signifying favorable and unfavorable locations
for the hydrophobic H-bond donor and H-bond acceptor are shown in multiple color
schemes. The yellow contour represents the beneficial substitution for the hydrophobic
chemical entities. Compounds with hydrophobic alkyl or aromatic groups in that region
displayed hydrophobic interactions with the residues in the binding pocket. Additionally, in
Figure 9b, the cyan and purple contours represent favorable and unfavorable substitutions
for the H-bond donor atoms or chemical groups such as nitrogen, amine, and amide.
Next, in Figure 9c, the magenta and orange contours represent a favorable or unfavorable
substitution for H-bond donors, such as the carboxyl, keto, and sulphone groups, which
could increase the inhibitory activity of the compounds. The contour polyhedrons of
the H-bond acceptor of PI3Kδ (Figure S8) signify the favorable position of the H-bond
acceptor moieties.
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template molecule idelalisib as reference.
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4. Discussion

Our study investigated the structural and mechanistic insights of ligand interactions
and differences in the selectivity of the two isoforms of PI3Ks. The underlying molecular
mechanism of direct involvement of PI3Kγ in GC is less studied; therefore, selective
targeting could inhibit the γ-isoform-mediated remodeling of TAM differentiation. The
isoindolin-1-one core-based analogs were designed to carry two independent features., i.e.,
interaction with the residues in the selectivity pocket and access inside the alkyl affinity
pocket, while bicyclic HBM mimicked the adenine ring of ATP. The nitrogen-containing
isoindolin-1-one is also a key building component of many natural products and has shown
a wide range of biological activities against microorganisms, tumors, HIV, psychotic, and
diabetes. Peytam et al. conducted a study [54] using isoindolin-1-one derivatives effectively
against urease in the treatment of Helicobactor pylori-mediated gastric cancer and peptic
ulcer. They synthesized sixteen compounds, two of which had inhibitory potencies 2- and
10-fold greater, respectively, than thiourea and hydroxyurea as standard inhibitors. The
success of the inhibitor binding to the hinge is highly dependent on the HBM structure,
which allows the improvement of the isoform selectivity by the de novo design of some
hinge binding moiety. Compounds that are analogous to AZ2 have a single HBM ring
system, such as the thiazole ring, which was at least able to form a single H-bond interaction
with the hinge of its nitrogen atom. In compounds C134–C164 in Table S1, the substitutions
of R1 were truncated to T886 and T887 to access the selectivity pocket. From the binding
energy estimation, it could be seen that compounds with truncated subgroups (compound
C150) tend to provide a higher electrostatic contribution in ∆TOTAL terms. In contrast,
larger R3 substitutions, such as those found in C118, C124, and C129, tend to form stable
H-bonding as well as hydrophobic interactions with residues K802, M804, and P810.

The structural alignment showed that both isoforms carry two non-conserved activity
subsites, i.e., one is in the P-loop/HR-1, and the other is in the hinge motif or HR-2, which
may lead to differences in their conformational plasticity in P-loops between the isoforms.
The propeller-like-shaped idelalisib analogs were developed specifically for δ selectivity
and featured additional interactions with the tryptophan shelf subsite. Analysis of the
interactions between idelalisib and PI3Kδ revealed that the δ selectivity was mainly retained
by interacting with the residues in P-loop, whereas the hinge binding was attributed
through H-bonding with residue V828. However, the purine ring of idelalisib occupied
the adenine subsite and was packed between the base and roof of the binding pocket but
was not fully inserted into the polyphosphate subsite and did not interact with the residues
with DFG residues. Instead, the selectivity comes from interacting with the hydrophobic
tryptophan shelf via its quinazoline ring. Additional fluorine atoms in this moiety formed
halogen bond interactions with F751 and T750. The F751 replaced with V803 in PI3Kγ
significantly decreased the idelalisib affinity PI3Kγ interactions, according to the MD study.

One of the major universal drug design strategies for kinase inhibitors is targeting the
residues in the DFG. In PI3Kγ, the alkyl affinity pocket was dominated by hydrophobic
residues, such as I963, C869, L845, and F965, and residue I879 controlled the ligand insertion
into the polyphosphate subsite cavity as gatekeepers. The ethylcyclopropane moiety of
the C34 tail induced the interaction with the aspartate and phenylalanine residues and
occupied the adjacent ribose subsite. Furthermore, this observation can be supported by
the steric contour map from the CoMFA analysis. At the hinge location, although the
H-bonding residue valine is common to both isoforms, the adjacent residue such as lysine
to threonine (K883-T886) in HR-2 is not conserved, however, which could introduce the
additional opportunity of targeting this residue for greater γ selectivity.

We summarize the optimum SAR scheme around C34 in Figure 10 to further optimize
the efficacy of the selective PI3K inhibition from the CoMFA and CoMSIA contours. At
the alkyl affinity pocket in position R4, substituting the steric and hydrophobic groups
could increase the probability of better molecular interaction with surrounding residues,
such as L845, L848, and F965 ‘alkyl-push’, as previously described in [55]. However, if
the substitution is large, it could bring a steric clash. In the R3 position, hydrophobic and
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H-bond donors could be beneficial. Notably, this R3 position of compounds C118, C124,
C129, C150, and C195 had sulphone groups that interacted with the residues in this region
by forming additional sulfur–x interactions.

Additionally, from the contour analysis around the pyrazole ring in the R2 position, a
bulky heterocyclic ring substitution that parallels or truncates parallelly to the hydrophobic
core could be beneficial for better molecular interactions with A885 and T886. However, the
SAR scheme around the R1 position of the pyrazolopyrimidine ring and R2 position was
already investigated in earlier studies [56,57], and the interaction was found to be similar
across the other isoforms. Therefore, the R3 and R4 positions may offer greater opportunities
to improve selective potency and inhibitory effectiveness against the γ isoforms. The per-
residue binding energy estimation combined with the CoMSIA hydrophobic contours
corroborated that space-filling by attaching additional chemical groups in affinity pockets,
and HR-2 could improve the binding affinity as well as selectivity of the compounds.
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Based on the SAR study, we designed 100 new compounds, as shown in Supple-
mentary Table S15, by substituting chemical fragments at positions R2, R3, X1, and X2 in
C34. The inhibitory potencies of these compounds were assessed by the PI3Kγ CoMFA
model. The pIC50 values of compounds D21–25, D81–85, and D87 were predicted to be
higher (pIC50 > 9.2) than the most active compounds C113, C116, and C121 (Table S1).
In contrast, the designed compounds were predicted to have low inhibitory potencies
against PI3Kδ (predicted pIC50 < 8.0). The SA scores of the designed compounds were
analyzed on the SwissADME server. The server assigns a scale of 1 to 10 scores to the
compounds: an SA score of 1 indicates the ease of the synthetic route, while an SA score
of 10 indicates a difficult synthetic route. The designed compounds had an SA score be-
tween 5.21 and 6.49, indicating moderate synthesis difficulty. We used the MD simulation
study of the selected compounds and calculated the MM-PB/GBSA binding free energy to
evaluate protein–ligand binding affinity, as shown in Figure S9 and Table 12. The BE of com-
pounds D21–25 and D81–85, D87 were estimated to be −63.37 kcal/mol, −56.93 kcal/mol,
−54.76 kcal/mol, −55.57 kcal/mol, −53.01 kcal/mol, −53.08 kcal/mol, −58.92 kcal/mol,
−66.08 kcal/mol, −52.02 kcal/mol, −58.36 kcal/mol, and −50.71 kcal/mol, respectively.
The ∆Gbind values of the designed compounds resulted in a favorable binding affinity
(∆Gbind > −50 kcal/mol) in the PI3Kγ-ligand interaction. When the BE of D25 in complex
with PI3Kδ was calculated, a large numerical value of 16.20 kcal/mol was estimated in
the T∆S term, and the final ∆Gbind was estimated to be −31.97 kcal/mol, indicating an
unfavorable binding affinity to the δ isoform compared to the γ isoform.
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Table 12. SA score prediction and binding energy calculation of the newly designed compounds.

Complexes
Compound’s SA

Score (1–10 Scale)

MM-PB/GBSA Binding Energy Terms in kcal/mol
VDW

(±SD)
EEL

(±SD)
EGB

(±SD)
ESURF

(±SD)
∆Ggas
(±SD)

∆Gsolv
(±SD)

∆TOTAL
(±SD)

T∆S
(±SD)

∆Gbind
(±SD)

PI3Kγ-D21 5.21 −74.71
±3.49

−63.37
±7.34

79.14
±5.06

−9.34
±0.28

−138.07
±7.70

69.80
±5.07

−68.27
±4.51

4.89
±0.05

−63.37
±4.51

PI3Kγ-D22 5.24 −70.91
±3.32

−32.79
±4.35

43.05
±4.38

−8.46
±0.29

−103.68
±5.15

34.58
±4.31

−69.10
±3.49

12.16
±0.04

−56.93
±3.49

PI3Kγ-D23 6.49 −80.03
±3.06

−32.53
±5.05

57.58
±3.75

−9.84
±0.31

−112.55
±5.62

47.74
±3.75

−64.81
±4.00

10.04
±0.04

−54.76
±4.00

PI3Kγ-D24 6.49 −76.56
±2.74

−30.97
±4.42

51.69
±3.94

−7.99
±0.32

−107.53
±5.00

43.70
±3.88

−63.83
±2.73

8.26
±0.07

−55.57
±2.74

PI3Kγ-D25 6.29 −74.62
±3.43

−41.99
±5.22

62.27
±5.12

−9.07
±0.23

−116.60
±5.81

53.19
±5.04

−63.40
±3.79

10.38
±0.05

−53.01
±3.79

PI3Kγ-D81 5.90 −75.02
±3.51

−57.42
±4.84

74.08
±3.66

−9.02
±0.27

−132.43
±4.94

65.06
±3.69

−67.37
±4.07

14.29
±1.08

−53.08
±4.21

PI3Kγ-D82 5.90 −76.94
±3.66

−60.04
±5.31

75.03
±3.68

−8.49
±0.33

−126.98
±5.36

66.54
±3.70

−70.43
±3.96

11.51
±0.04

−58.92
±3.96

PI3Kγ-D83 6.25 −79.62
±3.20

−49.95
±5.07

63.36
±4.33

−9.47
±0.22

−129.56
±5.40

53.89
±4.31

−75.66
±3.82

9.58
±0.05

−66.08
±3.82

PI3Kγ-D84 6.24 −71.58
±3.28

−55.07
±4.53

72.55
±3.45

−9.38
±0.30

−126.65
±4.67

63.17
±3.48

−63.47
±3.48

11.45
±1.33

−52.02
±3.72

PI3Kγ-D85 6.16 −74.15
±2.92

−55.01
±4.98

73.14
±4.18

−9.04
±0.22

−129.15
±4.81

64.10
±4.19

−65.05
±3.44

6.69
±0.03

−58.36
±3.44

PI3Kγ-D87 5.82 −71.01
±3.59

−49.86
±4.95

67.38
±3.96

−8.83
±0.24

−120.88
±5.87

58.54
±3.87

−62.33
±3.54

11.61
±1.81

−50.71
±3.98

PI3Kδ-D25 6.29 −59.63
±2.58

−37.07
±7.05

57.23
±5.88

−8.70
±0.23

−96.70
±6.53

48.52
±5.93

−48.17
±2.79

16.20
±0.05

−31.97
±2.79

SA: synthetic accessibility; VDW: van der Waals contribution from MM; EEL: electrostatic energy as calculated
by the MM force field; EPB/GB: electrostatic contribution to the solvation free energy; ESURF: nonpolar solvation
free energy; ∆Ggas: ∆G in the gas phase; ∆Gsolv: ∆G in solvation state; ∆TOTAL: total binding free energy from
MM-PB/GBSA, T∆S: entropy term; ∆Gbind: final binding free energy.

5. Conclusions

In summary, our work aims to demonstrate key structural and mechanistic insights
into the selectivity of isoform-specific inhibitors for PI3Kγ that could be a feasible ther-
apeutic target for M2-like, macrophage-mediated GC. The molecular docking provides
the binding orientation and molecular interaction in the ATP binding pocket, which were
further assessed by MD simulation and BE estimation. The structure–activity relationships
of δ- and γ-isoform-specific inhibitors were investigated by establishing the CoMFA and
CoMSIA based 3D-QSAR models. Both models were statistically significant and had ade-
quate prediction ability. To elucidate the selectivity and binding affinity at the structural
level, the activity subsites from CoMFA and MD models of both isoforms were compared.
We identified that the bulkier group substitution in the alkyl affinity pocket could increase
the ligand selectivity of PI3Kγ. Following that, 100 new compounds were designed by a
fragment-substitution strategy to increase the probability of molecular interaction in the
binding pocket. Their inhibitory potency was predicted using PI3Kγ and PI3Kδ CoMFA
models, in which the designed compounds D21–25, D81–85, and D87 showed higher pIC50
in the PI3Kγ CoMFA model compared to PI3Kδ. These compounds also exhibited a higher
γ isoform binding affinity. The high-volume chemical moieties in X1 and X2 might favor
the γ isoform binding over the other by forming additional steric interactions. The perspec-
tives presented here may provide theoretical clues for improving the binding affinity and
selectivity of PI3Kγ-targeting inhibitors through rational drug design.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10040813/s1. Figure S1: Ramachandran Plot analysis
of loop modeled PI3K isoforms. The residues of the PI3Kγ and PI3Kδ were within the well-accepted
regions; Figure S2: Molecular Docking analysis of the compounds C01, C22, C34, C41, C60, C62,
C72, C79, C81, C99, C103, C118, C124, C129, C150, C182, C195, and C215, respectively. The H-bond,
hydrophobic, π-Sulphur, π-sigma, and π-π interactions were highlighted by different color schemes

https://www.mdpi.com/article/10.3390/biomedicines10040813/s1
https://www.mdpi.com/article/10.3390/biomedicines10040813/s1
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by the 2D diagrams; Figure S3: RMSD plots from Molecular Dynamics simulation study of the
receptor-ligand complexes. The RMSDs of the ligand and α-carbon of the receptors were shown
in slate and grey; Figure S4: The final 1 ns average MD pose of compounds C01, C22, C34, C41,
C60, C62, C72, C79, C81, C99, C103, C118, C124, C129, C150, C182, C195, and C215, respectively,
in complex with PI3Kγ. The receptor, interacting residues, and ligands were shown in light-grey,
salmon, and slate respectively. The residues are selected from the per-residue MM-PB/GBSA binding
energy decomposition analysis (Table 3, in the main text); Figure S5: RMSD plots from the Molecular
Dynamics simulation study of (a)PI3Kδ-CZ2, (b)PI3Kδ-Idelalisib, and (c) PI3Kγ-Idelalisib complexes;
Figure S6: Random sampling table to select the Test set compounds from the dataset; Figure S7:
Random sampling table to select the Test set compounds from the dataset of PI3Kδ; Figure S8: The
standard deviation of coefficient contour maps was obtained from the CoMSIA model of PI3Kδ.
The contour maps indicate the favorable and unfavorable substitution for hydrophobic, H-bond
acceptor, and H-bond donor groups over the compound idelalisib; Figure S9: RMSD plots from
molecular dynamics simulation study of the receptor and designed compounds. The RMSDs of the
ligand and α-carbon of the receptors were shown in slate and grey; Table S1: Structure and activity
values of isoindolin-1-one based PI3Kγ inhibitors; Table S2: Brief statistical analysis to generate the
best CoMSIA model using various combinations of the descriptor fields; Table S3: Actual pIC50
vs. Predicted pIC50 of the compounds from the CoMFA and CoMSIA by taking every compound
from the dataset; Table S4: Statistical analysis to generate the best CoMSIA model using various
combinations of the descriptors field for SET-A compounds; Table S5: Statistical analysis to generate
the best CoMSIA model using various combinations of the descriptors field for SET-B compounds;
Table S6: Statistical analysis to generate the best CoMSIA model using various combinations of the
descriptors field for SET-C compounds; Table S7: Statistical analysis to generate the best CoMSIA
model using various combinations of the descriptors field for SET-D compounds; Table S8: Actual
pIC50 vs Predicted pIC50 of the compounds from the CoMFA and CoMSIA training set compounds
of SET-A; Table S9: Actual pIC50 vs Predicted pIC50 of the compounds from the CoMFA and CoMSIA
training set compounds of SET-B; Table S10: Actual pIC50 vs. Predicted pIC50 of the compounds from
the CoMFA and CoMSIA training set compounds of SET-C; Table S11: Actual pIC50 vs. Predicted
pIC50 of the compounds from the CoMFA and CoMSIA training set compounds of SET-D; Table S12.
Structure and activity values of PI3Kδ inhibitors; Table S13: Statistical analysis to generate the best
CoMSIA model using various combinations of the descriptors field for SET-D compounds; Table S14:
Actual pIC50 vs. Predicted pIC50 of the compounds from the CoMFA and CoMSIA training set
compounds of SET-D; Table S15: Newly designed compounds and their predicted pIC50 values
against PI3Kγ and PI3Kδ.
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Abbreviations

PI3K Phosphoinositol-3-kinase.
GC Gastric Carcinoma.
TAM Tumor-associated macrophage.
MM-PB/GBSA Molecular Mechanics-Poison–Boltzmann/generalized Born Surface Area.
LIE Linear Interaction Energy.
BE Binding Energy.
CoMFA Comparative Molecular Field Analysis.
CoMSIA Comparative Molecular Similarity Indices Analysis.
3D-QSAR 3-Dimensional Structure–Activity Relationship.
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