
TSI-GNN: Extending Graph Neural
Networks to Handle Missing Data in
Temporal Settings
David Gordon1,2*, Panayiotis Petousis3, Henry Zheng2, Davina Zamanzadeh2 and
Alex A.T. Bui1,2

1Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, United States, 2Medical and Imaging
Informatics (MII) Group, Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA,
United States, 3UCLA Clinical and Translational Science Institute, Los Angeles, CA, United States

We present a novel approach for imputing missing data that incorporates temporal
information into bipartite graphs through an extension of graph representation learning.
Missing data is abundant in several domains, particularly when observations aremade over
time. Most imputation methods make strong assumptions about the distribution of the
data. While novel methods may relax some assumptions, they may not consider
temporality. Moreover, when such methods are extended to handle time, they may not
generalize without retraining. We propose using a joint bipartite graph approach to
incorporate temporal sequence information. Specifically, the observation nodes and
edges with temporal information are used in message passing to learn node and edge
embeddings and to inform the imputation task. Our proposed method, temporal setting
imputation using graph neural networks (TSI-GNN), captures sequence information that
can then be used within an aggregation function of a graph neural network. To the best of
our knowledge, this is the first effort to use a joint bipartite graph approach that captures
sequence information to handle missing data. We use several benchmark datasets to test
the performance of our method against a variety of conditions, comparing to both classic
and contemporary methods. We further provide insight to manage the size of the
generated TSI-GNN model. Through our analysis we show that incorporating temporal
information into a bipartite graph improves the representation at the 30% and 60%missing
rate, specifically when using a nonlinear model for downstream prediction tasks in regularly
sampled datasets and is competitive with existing temporal methods under different
scenarios.

Keywords: missing data, imputation, temporal data, irregular sampling, deep learning, graph neural networks

INTRODUCTION

Graph representation learning (GRL) aims to accurately encode structural information about graph-
based data into lower-dimensional vector representations (Hamilton, 2020). The basic idea is to
encode nodes into a latent embedding space using geometric relationships that can then be used to
accurately reconstruct the original representation (Hoff et al., 2002). There are two node embedding
approaches: shallow embedding methods and more complex encoder-based models (i.e., graph
neural networks, GNNs) (Hamilton, 2020). Shallow embedding methods, such as inner product and
random walks, are inherently transductive meaning they can only generate embeddings for nodes

Edited by:
Zhengping Che,

Didi Chuxing, China

Reviewed by:
Jason Poulos,

Duke University, United States
Chuizheng Meng,

University of Southern California,
United States

*Correspondence:
David Gordon

d.gordon@ucla.edu

Specialty section:
This article was submitted to

Data Mining and Management,
a section of the journal

Frontiers in Big Data

Received: 12 April 2021
Accepted: 23 August 2021

Published: 15 September 2021

Citation:
Gordon D, Petousis P, Zheng H,

Zamanzadeh D and Bui AAT (2021)
TSI-GNN: Extending Graph Neural

Networks to Handle Missing Data in
Temporal Settings.

Front. Big Data 4:693869.
doi: 10.3389/fdata.2021.693869

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6938691

METHODS
published: 15 September 2021

doi: 10.3389/fdata.2021.693869

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.693869&domain=pdf&date_stamp=2021-09-15
https://www.frontiersin.org/articles/10.3389/fdata.2021.693869/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.693869/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.693869/full
http://creativecommons.org/licenses/by/4.0/
mailto:d.gordon@ucla.edu
https://doi.org/10.3389/fdata.2021.693869
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.693869

present during training, which can restrict generalizability without
retraining (Ahmed et al., 2013; Perozzi et al., 2014; Grover and
Leskovec, 2016; Hamilton, 2020). In contrast, GNNs use more
complex encoders that dependmore on the structure and attributes
of the graph, allowing them to be used on inductive applications
(i.e., evolving graphs) (Hamilton et al., 2017a; Hamilton et al.,
2017b). A key feature of GNNs is that they can use k-rounds of
message passing (inspired by belief propagation), where messages
are aggregated from neighborhoods and then combined with the
representation from the previous layer/iteration to provide an
updated representation (Hamilton, 2020).

Recently, GRAPE (You et al., 2020), a framework for handling
missing data using graph representation, proposed formulating
the problem using a bipartite graph, where the observations and
features in a data matrix comprise two types of nodes, observation
and feature nodes, and the observed feature values are the
attributed edges between the two types of nodes. GRAPE used
a modified GraphSAGE (Hamilton et al., 2017b) architecture and
introduced edge embeddings during message passing to learn
edge attributes and was shown to outperform a deep generative
model (Yoon et al., 2018a), as well as traditional methods on
edge-level prediction and node-level prediction tasks (You et al.,
2020). Yet one of the shortcomings of GRAPE is it assumes
observations are independent, which is generally not the case in
temporal settings with repeated measurements. Therefore,
representations learned using GRAPE may not be suitable for
temporal data with repeated measurements.

There are numerous contemporary imputation methods.
Recurrent neural networks (RNNs) capture sequence
information well when handling missing data (Lipton et al.,
2016; Che et al., 2018), particularly bidirectional RNNs that use
information from the past, present, and future (via forward and
backward connections) (Yoon et al., 2018b; Cao et al., 2018), but
RNNs learn a chain structure, whereas GNNs learn across
geometric spaces via message passing in a graph-structured
manner. Non-autoregressive models have been proposed to
capture long-range sequence information in parallel, which rely
on bidirectional RNNs to process input data, but the
implementation does not handle irregular sampling (Liu et al.,
2019). GNNs have been combined with matrix completion to
extract spatial features, but these approaches do not explicitly
capture temporal information and the implementations only use
discrete datatypes (e.g., ratings) (Berg et al., 2017; Monti et al., 2017;
Zhang and Chen, 2019). Further, separable recurrent multi-graph
convolutional neural networks (sRMGCNN), which feed the
extracted spatial features from a MGCNN into an RNN to
exploit the temporal information, are transductive (Monti et al.,
2017). Autoencoders (AEs) can efficiently learn undercomplete
(i.e., lower-dimensional) or overcomplete (i.e., higher-dimensional)
representations (Beaulieu-Jones et al., 2017; Gondara and Wang,
2018; McCoy et al., 2018), but the recovered values are not based
on an aggregation from a non-fixed number of neighbors, as in
GNNs. Further, AEs cannot explicitly train over incomplete data
(i.e., AEs initialize with arbitrary/default values) (Gondara and
Wang, 2018) or explicitly exploit temporal information (i.e., AEs
combine with a temporal dynamic model, such as a Gaussian
process (Fortuin et al., 2020) or RNN (Park et al., 2020)).

Similarly, there are a myriad of classic imputation methods.
Matrix completion can exploit correlations within and across
feature dimensions, but it is generally only used in a static setting
(i.e., single measurement that does not change over time) (Candès
and Recht, 2009). Interpolation methods have been proposed to
exploit correlations within feature dimensions in temporal
settings; however, they ignore correlations across feature
dimensions (Kreindler and Lumsden, 2012). K-nearest
neighbors (KNN) learns an aggregation, but from a fixed
number of neighbors with weights based on Euclidean
distance and is usually only applied to static data
(Troyanskaya et al., 2001). MissForest is a non-parametric
method that uses a random forest trained on the observed
values of a dataset to predict the missing values, but is
generally a static method (Stekhoven and Bühlmann, 2012).

In contrast to single imputation, multiple imputation methods
aim to model the inherent variability into recovered values to
account for the uncertainty in estimating missing values (Yoon,
2020). While multiple imputation by chained equations (MICE)
(White et al., 2011) is the gold standard, it is generally a static
method and may not perform well at higher rates of missingness
(Yoon, 2020). Some contemporary methods also produce
multiple imputations, such as RNN-based and GNN-based
methods that utilize a dropout hyperparameter (Srivastava
et al., 2014; Yoon et al., 2018b; Rong et al., 2019; You et al.,
2020) as well as AE-based methods that initialize with different
sets of random weights at each run (Gondara and Wang, 2018).

In this work, we introduce temporal setting imputation using
graph neural networks (TSI-GNN), which extends graph
representation learning to handle missing data in temporal
settings. We build on previous GRL methods by capturing
sequence information within the same type of nodes
(i.e., observation nodes) in a bipartite graph and by exploring
how we can recover an accurate temporal representation that
preserves the original representations’ feature-label relationships.
TSI-GNN incorporates temporal information into a bipartite
graph without creating actual edges between the same type of
nodes, enhancing the learned representation without violating
bipartite graph properties. While we evaluate TSI-GNN using the
modified GraphSAGE architecture from GRAPE (You et al.,
2020), our approach is general to GNN-based approaches that
use a bipartite graph representation.

METHODS

Representation and Observation Node and
Edge Definition
An ideal imputationmethod learns to recover the original relationships
in a dataset (Yoon, 2020). Extending a graph representation to
the temporal setting should therefore preserve temporal dynamics
such that the recovered representation keeps the original relationships
between the feature and label across time (Meng, 1994). In temporal
settings with repeatedmeasurements, observations are often correlated,
particularly frequent measurements (e.g., stocks, energy, healthcare)
(Yoon, 2020). Therefore, an imputation method for temporal settings
with repeatedmeasurements should capture temporal information, not

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6938692

Gordon et al. Handling Missing Data Using TSI-GNN

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

ignore it. Similarly, features in temporal settings can be correlated.
Thus, a GNN-based temporal imputation method should learn to
recover important information within and between sets of the two
types of nodes (i.e., observation nodes and feature nodes).We illustrate
this with the following scenario in the healthcare setting:

Patient 1 labs (e.g., estimated glomerular filtration rate and
potassium) and vitals (e.g., respiratory rate and systolic blood
pressure) are monitored every 4 h for a sequence length of 3
checks (i.e., 12 h total). In this scenario, Patient 1 had three
observations (repeated measurements).

According to You et al., the key innovation of GRAPE is to
formulate the problem using a bipartite graph representation
(You et al., 2020). In a bipartite graph, the absence of an edge
between the same type of nodes [e.g., observation node 1 (O1) and
observation node 2 (O2)] implies thatO1 andO2 are independent,
denoted byO1vO2. While this may hold in a static setting, in the
case of temporal settings with repeated measurements (as
illustrated in the healthcare scenario above), this does not
necessarily hold and to assume it does could ignore important
temporal information. To adhere to bipartite graph properties, we
do not create edges between the observation nodes to exploit
temporal information. Instead, we incorporate sequence length,
which represents a sequence among sequences of datapoints, into
the observation nodes and edges, thereby capturing temporal
information in observation nodes and edges that may provide a
more accurate chronological representation of the data. We call
this type of approach a joint bipartite graph, as it incorporates
sequence length, which addresses the independence assumption
between observation nodes implied in a bipartite graph.

Intuition Behind Joint Bipartite Graph in
TSI-GNN
Our key innovation is to formulate the problem using a joint bipartite
graph (Figure 1). Let G (V, E) be the joint bipartite graph of nodes V
and undirected edges E. V is comprised of two types of nodes,

Vobservations ∪ Vfeatures, such that Vobservations � {u1, . . . ,um}, where the
size of m is the number of observations minus the sequence length
times the sequence length, andVfeatures� {v1, . . . ,vn}, where the size of
n is the number of features. E contains the undirected edges between
Vobservations and Vfeatures, where E � {k1, . . . ,kp} and the size of p is the
number of observations minus the sequence length times the
sequence length times the number of features.

To incorporate sequence length into observation nodes and
edges, we use an operation similar to the idea of reshaping a 3D
array with a sequence length dimension to a 2D array (The NumPy
community, 2021), which keeps the sequence length information
and can then be used as input for a GNN to exploit. Prior to
reshaping, we cut the data by the sequence length (i.e., apply a
sliding window technique), which is an operation also implemented
in existing temporal imputationmethods (Yoon et al., 2018b; Yoon
et al., 2019). For example, using the stock dataset (see Datasets),
after cutting the data by the sequence length, let observations,
sequence length, and features, respectively denote the parameters in
the 3D array, (4120-21 � 4099, 21, 6). After reshaping the 3D array,
let observations and features denote the parameters in the 2D array,
(4099*21 � 86079, 6), which keeps the sequence length information
(i.e., sequence length of 21), but in a different shape. Since we know
the sequence length, we can verify that it is kept by the 2D
representation by demonstrating that we can recover the 3D
array with dimensions (4099, 21, 6) by reshaping the 2D array
with dimensions (86079, 6). In a similar vein, RNN-based and
GAN-based methods have empirically shown that the operation of
reshaping 3D arrays with a sequence length dimension into 2D
arrays is a suitablemethod for keeping sequence length information
(Yoon et al., 2018b; van der Schaar Lab: T-I, 2020). Specifically,
M-RNN uses this reshaping operation in the training and
predicting fully connected network functions (Yoon et al.,
2018b) and T-GAIN uses this reshaping operation in the fit and
transform functions (van der Schaar Lab: T-I, 2020). While our
application of the reshaping operation is for graph representation,
the logic remains the same.

FIGURE 1 | Joint bipartite graph. Captures temporal information [e.g., observation nodes for patient 1 (Pt. 1)] without creating actual edges as well as captures
information between the observation and feature nodes (i.e., edge attributes). Abbreviations: estimated glomerular filtration rate (eGFR), potassium (K), respiratory rate
(RR), systolic blood pressure (SBP), patient 2 (Pt. 2).

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6938693

Gordon et al. Handling Missing Data Using TSI-GNN

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Thus, this joint bipartite graph captures temporal information
across the same type of nodes (i.e., observation nodes) without
creating actual edges (which we informally refer to as using
“ghost” edges) as well as captures information between the
observation and feature nodes (i.e., the edge attributes) for
GNN-based approaches to leverage.

Optimizing the Number of Trainable Edges
in TSI-GNN
Incorporating sequence length can significantly increase the
number of trainable edges in a GNN. As such, it is helpful to
be aware of the size of the potential TSI-GNN before its training.
Let observations, sequence length, features, respectively denote
the main parameters affecting the size of the TSI-GNN,

Size ≈ (Observations − Sequence Length)

x Sequence Length x Features≤Threshold
(1)

where a nonnegative threshold is a hyperparameter used to
balance the selection of parameters affecting size and size
≤ threshold is practical to implement for the machine capable

of running the model. For example, on a MacBook M1 with 8-
core CPU and 16 GB RAM, generating a TSI-GNN with a size ≤
four million is practical for implementation. Furthermore, at
lower rates of missingness there are a larger number of trainable
edges (i.e., it produces a larger TSI-GNN) relative to higher rates
of missingness where there are a lower number of trainable edges
(i.e., resulting in a smaller TSI-GNN).

As GNNs are inductive, it is feasible to train on smaller subsets
of the larger dataset, learn a temporal representation, then
generalize to unseen data; thereby, reducing the computational
complexity of the model the data is trained on.

Baseline Imputation Methods
In this work, we explore the performance of baseline imputation
methods (Figure 2) that include well-established and contemporary
approaches commonly used in static and temporal settings:

1) Static methods. Generative adversarial imputation networks
(GAIN), introduces a hint mechanism to ensure that the
generator generates samples according to the true
underlying data distribution (Yoon et al., 2018a); GRAPE,
formulates the problem using a bipartite graph, modifies the

FIGURE 2 | Missing data imputation methods.

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6938694

Gordon et al. Handling Missing Data Using TSI-GNN

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

GraphSAGE architecture, and introduces edge embeddings
(You et al., 2020); MICE, consists of three steps: impute m
times from a distribution, analyze each of the m datasets
resulting in m analyses, and pool m results into one result;
KNN finds similar samples and performs imputation using a
weighted average of the neighbors; missForest; mean; spectral;
and singular value decomposition (SVD).

2) Temporal methods. T-GAIN, GAIN extension for the
temporal setting with implementation from Clairvoyance
(Yoon et al., 2018a; van der Schaar Lab: T-I, 2020; Jarrett
et al., 2020); M-RNN, uses bi-directional RNN and performs
interpolation simultaneously with feature imputation (Yoon
et al., 2018b); spline interpolation; and cubic interpolation.

Datasets
We utilized publicly available datasets from three domains:
finance, energy, and healthcare. Table 1 outlines the dataset
profiles:

1) Stocks. The daily historical Google stock data from August
2004 through December 2020. This dataset consists of six
features (opening, high, low, closing, adjusted closing prices,
and volume).

2) Energy. We used a subset of 3,001 observations from the
original 19,735 observations in the UCI Appliances energy
prediction dataset. This dataset consists of 28 features
(temperature, humidity, weather, and usage related attributes).

3) Healthcare: ICU Setting. We used a completely observed
subset of patients from the Medical Information Mart for
Intensive Care-III (MIMIC-III) database (Johnson et al.,
2016), of individuals who received antibiotics at any point,
based on the daily decision on antibiotic treatment. This
dataset was extracted based on the preprocessing guidelines
from the Clairvoyance implementation but filtered to produce
a complete dataset (Jarrett et al., 2020).We selected 16 features
(common labs and vital signs) from the original 27 features.
Further, we randomly sampled 550 patients from the subset
with a minimum sequence length of 9. While using a lower
number of patients may degrade performance of leading
benchmark temporal methods, such as M-RNN (Yoon
et al., 2018b), it enables testing our method at higher
sequence lengths, which we believe is suitable for this work.

Determining Sequence Length
Sequence length is a vital parameter for temporal imputation
methods and should be thoughtfully determined. In this work, the
regularly sampled datasets (i.e., stocks, energy) contain the same
number of repeated measurements as the number of
observations; therefore, selecting a sequence length for these
datasets is somewhat flexible. For example, previous methods
using a similar stock dataset set the sequence length ranging from
7 to 24 days (Yoon et al., 2018b; Yoon et al., 2019). In this work,
we set the sequence length at 21 days.

In this work, the irregularly sampled dataset (i.e., healthcare)
contains multiple observations per patient, and the number of
observations vary between patients. Therefore, determining an
appropriate sequence length requires careful consideration.
Previous research has suggested calculating an average
sequence length for electronic health record (EHR) datasets
and found that an average sequence length above 10 has been
shown to lead to improved performance in contrast to lower
average sequence lengths (Yoon et al., 2018b). Further, RNN-
based and GAN-based methods have employed a maximum on
the sequence length in EHR datasets to handle irregular sampling
(Jarrett et al., 2020). After applying the inclusion criteria, the
healthcare dataset in this work has an average sequence length of
15. To handle the irregular sampling, we set the maximum
sequence length to be the same as the average sequence length, 15.

Model Training and Evaluation
The datasets are fully observed; therefore, we mask 30% and 60%
of the data completely at random, recreating the missingness
scenario where data are missing completely at random. Since the
majority of the variables in the datasets we explore are
continuous, we evaluate imputation performance using the
root mean square error (RMSE).

To test the effect of imputation on the downstream prediction
task, we follow a holdout procedure via a 70:30 training and test
set split. In this study, data was normalized before input to the
models, and we did not renormalize or round the output of the
models. Therefore, we evaluate prediction performance using R2,
which is a measure to assess the goodness of fit. We compare the
R2 of the imputed values to the original values to assess the
congeniality of the models – that is how well the imputed values
preserve the feature-label relationships of the original dataset

TABLE 1 | Dataset profiles.

Stocks Energy ICU

of observations 4,120 (2004-2020) 3,001 8,250 (550 patients)
of features (cont, cat) 6 (6,0) 28 (28,0) 16 (15,1)
Label Volume Light Usage Ventilator
Missing rate (MR) 30% 30% 30%

60% 60% 60%
Measurement frequency 24 h Every 10 min 4 h
Sequence length 21 24 15a

of trainable edges
30% MR 602K 2.7M 2.6M
60% MR 345K 1.5M 1.5M

aAverage sampling frequency.

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6938695

Gordon et al. Handling Missing Data Using TSI-GNN

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

(Meng, 1994). We use a nonlinear model, gradient boosting
regression trees (GBR), as well as a linear model, linear
regression (LR), to determine which model may be more
appropriate for the dataset as well as more congenial to the
original representation.

Configurations
1) TSI-GNN uses the same modified GraphSAGE architecture

as GRAPE (You et al., 2020) to fairly evaluate the
performance of a joint bipartite graph representation
(TSI-GNN) to a bipartite graph representation (GRAPE).
Further, for TSI-GNN and GRAPE, we set the number of
epochs to 2,000 and use the Adam optimizer with a learning
rate at 0.001. We use a 3-layer GNN with 64 hidden units
(You et al., 2020). We use the mean aggregation function and
ReLU activation function. For TSI-GNN, we set the
sequence length at 21, 24, and 15 for the stocks, energy,
and ICU datasets, respectively.

2) For M-RNN, we use four hidden state dimensions and a batch
size of 64. We train the model for 2,000 iterations with a
learning rate at 0.001. We set the sequence length at 21, 24,
and 15 for the stocks, energy, and ICU datasets, respectively.

3) For GAIN and T-GAIN, we train the model for 2,000
iterations with a learning rate at 0.001. We use a batch size
of 64, a hint rate of 0.9, and an alpha of 100. For T-GAIN, we

set the sequence length at 21, 24, and 15 for the stocks, energy,
and ICU datasets, respectively.

Implementation
To perform the analysis, we use Python v3.7.9. We also use python
packages Pandas (team (2021). Tpd. Pandas., 2021), NumPy (Harris
et al., 2020), Scikit-learn (Pedregosa et al., 2011), TensorFlow (Abadi
et al., 2016), PyTorch (Paszke et al., 2019), PyTorch Geometric (Fey
and Lenssen, 2019), missingPy (Bhattarai, 2018), and FancyImpute
(Rubinsteyn and Feldman, 2016).

RESULTS

TSI-GNN Improvement Over GRAPE in
Downstream Prediction
TSI-GNNoutperformsGRAPE at the 30% and 60%missing rate with
respect to the original dataset in the downstream prediction task,
specifically when using GBR in the regularly sampled datasets
(Table 2). In the stock dataset, TSI-GNN R2 for GBR is 0.141 and
0.123 higher than GRAPE R2 at 30% and 60% missing rate,
respectively (Table 2). In the energy dataset, TSI-GNN R2 for
GBR is 0.097 and 0.146 higher than GRAPE R2 at 30% and 60%
missing rate, respectively (Table 2). In the ICU dataset, TSI-GNN
GBR is 0.030 and 0.033 higher than GRAPE R2 at 30% and 60%
missing rate, respectively (Table 2).

TABLE 2 | Imputation Methods Prediction Task (GBR/LR). Where a similar R2 for the imputed values to the original values suggests a potentially more accurate
representation.

Setting Method Missing rate Stocks GBR/LR Energy GBR/LR ICU GBR/LR

n/a Original n/a 0.588/0.33 0.623/0.31 0.657/0.66

Temporal T-GAIN 30% 0.606/0.36 0.554/0.36 0.732/0.70
60% 0.662/0.30 0.500/0.38 0.840/0.78

M-RNN 30% 0.677/0.30 0.504/0.28 0.602/0.57
60% 0.636/0.23 0.605/0.45 0.472/0.43

Spline 30% 0.654/0.34 0.352/0.24 0.458/0.43
Interpolation 60% 0.754/0.39 0.105/0.09 0.223/0.21
Cubic 30% 0.609/0.32 0.652/0.37 0.579/0.55
Interpolation 60% 0.511/0.26 0.660/0.26 0.362/0.29
aTSI-GNN 30% 0.606/0.28 0.563/0.27 0.666/0.64

60% 0.537/0.26 0.379/0.18 0.640/0.63

Static GAIN 30% 0.578/0.36 0.372/0.24 0.732/0.73
60% 0.629/0.47 0.415/0.36 0.968/0.85

MICE 30% 0.526/0.30 0.489/0.31 0.635/0.64
60% 0.372/0.26 0.230/0.14 0.613/0.61

KNN 30% 0.538/0.32 0.612/0.34 0.638/0.65
60% 0.430/0.25 0.221/0.15 0.610/0.63

MissForest 30% 0.614/0.37 0.716/0.43 0.732/0.71
60% 0.777/0.35 0.824/0.58 0.853/0.76

Mean 30% 0.478/0.26 0.463/0.25 0.634/0.61
60% 0.334/0.23 0.220/0.12 0.603/0.54

Spectral 30% 0.531/0.29 0.491/0.29 0.639/0.62
60% 0.391/0.23 0.209/0.12 0.622/0.49

SVD 30% 0.531/0.31 0.459/0.27 0.636/0.64
60% 0.414/0.24 0.221/0.15 0.616/0.60

GRAPE 30% 0.465/0.26 0.466/0.27 0.636/0.65
60% 0.414/0.26 0.233/0.15 0.607/0.63

aOur method.
Bold values are the best method(s), closest to the original values, per setting, dataset, missing rate, and model (nonlinear vs linear).

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6938696

Gordon et al. Handling Missing Data Using TSI-GNN

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Downstream Prediction Across Static and
Temporal Methods
In the stock dataset, at the 30% missing rate, with respect to
the original dataset, TSI-GNN, T-GAIN, and GAIN perform
similarly and achieve the best for GBR, followed closely by cubic
interpolation, while spline interpolation, cubic interpolation, and
KNN perform the best for LR (Table 2). At the 60% missing rate,
with respect to the original dataset, GAINperforms the best forGBR,
followed closely by M-RNN and TSI-GNN, while missForest
performs the best for LR (Table 2). In the energy dataset, at the
30%missing rate, with respect to the original dataset, KNNperforms
the best for GBR, while MICE performs the best for LR (Table 2).
Notably, at the 60%missing rate, with respect to the original dataset,
M-RNN performs the best for GBR, while cubic interpolation and
GAIN perform the best for LR (Table 2). In the ICU dataset, at the
30% missing rate, with respect to the original dataset, TSI-GNN
performs the best for GBR, while KNNandGRAPE perform the best
for LR (Table 2). At the 60%missing rate, with respect to the original
dataset, TSI-GNN performs the best for GBR, while KNN, GRAPE,
and TSI-GNN perform the best for LR (Table 2).

Imputation Performance Across Static and
Temporal Methods
In the stock dataset, at the 30% missing rate, MICE performs the
best, followed closely by TSI-GNN (Table 3). But at the 60%
missing rate, MICE is outperformed by all temporal methods
except for T-GAIN (Table 3). In the energy dataset, at the 30%
and 60% missing rate, missForest performs the best (Table 3). In
the ICU dataset, at the 30% missing rate, MICE performs the best,
followed by TSI-GNN and GRAPE (Table 3). Yet at the 60%
missing rate, TSI-GNN and GRAPE outperformsMICE (Table 3).

DISCUSSION

In this work, we show that formulating the problem using a joint
bipartite graph, which incorporates sequence length information

into bipartite graphs, can improve the representation at the 30%
and 60% missing rate, specifically when using GBR for
downstream prediction tasks in regularly sampled datasets.
Moreover, we demonstrate that TSI-GNN is able to capture
the temporal information between observation nodes without
creating actual edges between them. In contrast, GRAPE
formulates the problem using a bipartite graph, which does
not incorporate sequence length or capture the temporal
relationships between observation nodes. Our proposed
method has the potential to capture meaningful temporal
dynamics that can be useful in various domains and
applications. While determining the sequence length of a
dataset can be straightforward in regularly sampled datasets it
requires more consideration in irregularly sampled datasets. In
this work, we highlight learning the average sequence length in
EHR data and incorporating it into bipartite graphs; however, this
can be generalized to various irregularly sampled data.

A limitation to our proposed method is that it increases the
number of trainable edges in a GNN. But as demonstrated, it can
improve the representational capacity. Therefore, using the
guidelines we provided regarding managing the size of the
generated TSI-GNN, one can practically implement and
potentially scale this method. Interestingly, for datasets with
higher rates of missingness, this limitation is potentially
nullified as the number of trainable edges is lower. Another
limitation is the preprocessed ICU dataset we used for testing
our method. It is possible that some of the preprocessing steps
used (e.g., using a completely observed subset or a fixed sequence
length) removed important temporal information that degraded
the performance of the temporal methods in the healthcare
domain. Further, in the ICU dataset at the 30% missing rate,
while the TSI-GNN R2 for GBR was most similar to the original
R2, it was slightly higher (0.009). Similarly, in the stocks dataset at
the 30% missing rate, TSI-GNN R2 for GBR was slightly higher
than the original R2 (0.018).

In this work, we empirically show that joint bipartite
graph representation captures temporal information;

TABLE 3 | Imputation Methods RMSE. A smaller RMSE is better.

Setting Method Stocks Energy ICU

30% 60% 30% 60% 30% 60%

Temporal T-GAIN 0.073 0.107 0.1305 0.2349 0.1045 0.118
M-RNN 0.036 0.041 0.1003 0.1279 0.1666 0.189
Spline Interpolation 0.043 0.044 0.1684 0.1672 0.2339 0.2346
Cubic Interpolation 0.031 0.039 0.1337 0.1493 0.1777 0.244
aTSI-GNN 0.029 0.083 0.1364 0.1443 0.0748 0.0762

Static GAIN 0.071 0.106 0.132 0.2328 0.1009 0.1162
MICE 0.0281 0.097 0.1075 0.1418 0.0713 0.0901
KNN 0.0386 0.131 0.0966 0.1939 0.0826 0.0862
MissForest 0.0329 0.081 0.0620 0.1009 0.0942 0.1078
Mean 0.2299 0.231 0.2076 0.2070 0.2141 0.2139
Spectral 0.0394 0.180 0.1307 0.2331 0.1395 0.3079
SVD 0.0387 0.131 0.1541 0.1779 0.0827 0.1150
GRAPE 0.0337 0.085 0.1463 0.146 0.0768 0.0748

aOur method.
Bold values are the best method per setting, dataset, and missing rate.

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6938697

Gordon et al. Handling Missing Data Using TSI-GNN

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

however, future work is needed to provide theoretical
foundations that can elucidate how GNNs exploit
temporal information. Furthermore, using RMSE may be a
more biased performance metric when handling missing data
for categorical variables (Wang et al., 2021). Although the
vast majority of the variables in the datasets we explored are
continuous, there still exists some ambiguity regarding
choosing a single appropriate metric to use when
evaluating imputation performance on a dataset with a
mixture of categorical and continuous variables.

While the main contribution of this work was to introduce
TSI-GNN, we also demonstrate the performance of a non-
exhaustive collection of benchmark temporal and static
imputation methods. Not surprisingly, we did not find a single
temporal method that worked the best across all domains. Rather,
our findings suggest that each data domain has unique
characteristics that can make optimizing various classic and
contemporary methods across multiple domains difficult.
Recently, a Bayesian optimization/ensemble approach was
applied on-top of various imputation methods, which seems to
help reduce challenges associated with selecting and tuning the
appropriate imputation method for a given domain (Jarrett et al.,
2020). Still, this suggests that the choice of an imputation
technique must be carefully considered in light of the
underlying data distribution as well as downstream application
in data analysis – no singular method will be superior without
sufficient context regarding its usage.

In future work, we plan to explore temporal imputation
boosting with interpolation layers (TIBIL) for healthcare
datasets with less frequent measurements (e.g., annual
intervals) and shorter sequence lengths (e.g., 4). More
specifically, TIBIL uses: 1) an upsample interpolation layer
to produce more frequent and longer sequence lengths; 2)
temporal imputation, such as TSI-GNN, to handle missing
data; and 3) a downsample interpolation layer to rescale the
interpolated and imputed data back into the original less
frequent and shorter sequence length. We also plan to
explore TSI-GNN and TIBIL using appropriate missingness
mechanisms as well as using other aggregation functions
(e.g., LSTM, which does not necessarily assume order

invariance). Further, we plan to explore combining
reinforcement learning with TSI-GNN and TIBIL.

CONCLUSION

Incorporating temporal information into GNN-based methods for
handlingmissing data improved the representation, specifically when
using GBR for downstream prediction tasks in regularly sampled
data. We tested our method using several benchmark datasets and
compared to classic and contemporarymethods.We provided insight
into practically implementing our proposedmethod bymanaging the
size of the generated TSI-GNN. TSI-GNN outperformed GRAPE,
specifically when using GBR in downstream prediction tasks in
regularly sampled datasets. Our proposed method is competitive
with existing temporal imputation methods.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: https://finance.yahoo.com/quote/
GOOGL/history?p=GOOGL https://archive.ics.uci.edu/ml/
datasets/Appliances+energy+prediction https://mimic.physionet.
org/gettingstarted/overview/.

AUTHOR CONTRIBUTIONS

Most intellectual work was done by DG with guidance from AB.
DG was responsible for planning and implementing the paper
methodologies. DG was responsible for running the experiments
and evaluating themodels. AB, PP, HZ, and DZ reviewed drafts of
the paper and provided feedback.

FUNDING

This work was supported in part by the NIH T32 EB016640 and
NSF NRT-HDR 1829071.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2016).
Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. arXiv preprint arXiv:160304467.

Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., and Smola, A. J.
(2013). “Distributed Large-Scale Natural Graph Factorization,” in Proceedings
of the 22nd international conference on World Wide Web 2013, 37–48.

Beaulieu-Jones, B. K., Moore, J. H., and Consortium, P. R. O-A. A. C. T. (2017).
Missing Data Imputation in the Electronic Health Record Using Deeply
Learned Autoencoders. Pac. Symp. biocomputing 2017: World Scientific,
207–218. doi:10.1142/9789813207813_0021

Berg, Rvd., Kipf, T. N., and Welling, M. (2017). Graph Convolutional Matrix
Completion. arXiv preprint arXiv:170602263.

Bhattarai, A. (2018). Missingpy: Missing Data Imputation for python.

Candès, E. J., and Recht, B. (2009). Exact Matrix Completion via Convex
Optimization. Found. Comput. Math. 9 (6), 717–772. doi:10.1007/s10208-
009-9045-5

Cao, W., Wang, D., Li, J., Zhou, H., Li, L., and Li, Y. (2018). Brits: Bidirectional
Recurrent Imputation for Time Series. arXiv preprint arXiv:180510572.

Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y. (2018). Recurrent Neural
Networks for Multivariate Time Series with Missing Values. Sci. Rep. 8 (1),
1–12. doi:10.1038/s41598-018-24271-9

Fey, M., and Lenssen, J. E. (2019). Fast Graph Representation Learning with
PyTorch Geometric. arXiv preprint arXiv:190302428.

Fortuin, V., Baranchuk, D., Rätsch, G., and Mandt, S. (2020). “Gp-vae: Deep
Probabilistic Time Series Imputation,” in International conference on artificial
intelligence and statistics (PMLR), 1651–1661.

Gondara, L., and Wang, K. (2018). Mida: Multiple Imputation Using Denoising
Autoencoders. Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer, 260–272. doi:10.1007/978-3-319-93040-4_21

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6938698

Gordon et al. Handling Missing Data Using TSI-GNN

https://finance.yahoo.com/quote/GOOGL/history?p=GOOGL
https://finance.yahoo.com/quote/GOOGL/history?p=GOOGL
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://mimic.physionet.org/gettingstarted/overview/
https://mimic.physionet.org/gettingstarted/overview/
https://doi.org/10.1142/9789813207813_0021
https://doi.org/10.1007/s10208-009-9045-5
https://doi.org/10.1007/s10208-009-9045-5
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1007/978-3-319-93040-4_21
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Grover, A., and Leskovec, J. (2016). “node2vec: Scalable Feature Learning for
Networks,” in Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining 2016, 855–864.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Inductive Representation
Learning on Large Graphs. arXiv preprint arXiv:170602216.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Representation Learning on
Graphs: Methods and Applications. arXiv preprint arXiv:170905584.

Hamilton, W. L. (2020). Graph Representation Learning. Synth. Lectures Artif.
Intelligence Machine Learn. 14 (3), 1–159. doi:10.2200/
s01045ed1v01y202009aim046

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array Programming with NumPy. Nature 585
(7825), 357–362. doi:10.1038/s41586-020-2649-2

Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent Space Approaches to
Social Network Analysis. J. Am. Stat. Assoc. 97 (460), 1090–1098. doi:10.1198/
016214502388618906

Jarrett, D., Yoon, J., Bica, I., Qian, Z., Ercole, A., and van der Schaar, M. (2020).
“Clairvoyance: A Pipeline Toolkit for Medical Time Series,” in International
Conference on Learning Representations.

Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L.-w. H., Feng, M., Ghassemi,
M., et al. (2016). MIMIC-III, a Freely Accessible Critical Care Database. Sci.
Data 3, 160035. doi:10.1038/sdata.2016.35

Kreindler, D. M., and Lumsden, C. J. (2012). The Effects of the Irregular Sample
and Missing Data in Time Series Analysis. Nonlinear Dynamical Syst. Anal.
Behav. Sci. Using Real Data 135 (2). 149-172. doi:10.1201/9781439820025-9

Lipton, Z. C., Kale, D. C., andWetzel, R. (2016). Modeling Missing Data in Clinical
Time Series with Rnns. Machine Learn. Healthc. 56.

Liu, Y., Yu, R., Zheng, S., Zhan, E., and Yue, Y. (2019). Naomi: Non-autoregressive
Multiresolution Sequence Imputation. arXiv preprint arXiv:190110946.

McCoy, J. T., Kroon, S., and Auret, L. (2018). Variational Autoencoders forMissing
Data Imputation with Application to a Simulated Milling Circuit. IFAC-
PapersOnLine. 51 (21), 141–146.

Meng, X-L. (1994). Multiple-imputation Inferences with Uncongenial Sources of
Input. Stat. Sci. 9, 538–558. doi:10.1214/ss/1177010269

Monti, F., Bronstein, M. M., and Bresson, X. (2017). Geometric Matrix
Completion with Recurrent Multi-Graph Neural Networks. arXiv
preprint arXiv:170406803.

The NumPy community (2021). NumPy Reshape Method. Available at:
https://numpy.org/doc/stable/reference/generated/numpy.reshape.html
(2008-2020).

Park, K., Jeong, J., Kim, D., and Kim, H. (2020). Missing-Insensitive Short-Term
Load Forecasting Leveraging Autoencoder and LSTM. IEEE Access 8,
206039–206048. doi:10.1109/access.2020.3036885

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
Pytorch: An Imperative Style, High-Performance Deep Learning Library. arXiv
preprint arXiv:191201703.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine Learning in Python. J. machine Learn. Res. 12,
2825–2830. doi:10.5555/1953048.2078195

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). “Deepwalk: Online Learning of Social
Representations,” in Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining 2014, 701–710.

Rong, Y., Huang, W., Xu, T., and Huang, J. (2019). Dropedge: Towards Deep Graph
Convolutional Networks on Node Classification. arXiv preprint arXiv:190710903.

Rubinsteyn, A., and Feldman, S. (2016). Fancyimpute. An Imputation Library for
Python. https://github.com/iskandr/fancyimpute.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a Simple Way to Prevent Neural Networks from Overfitting.
J. machine Learn. Res. 15 (1), 1929–1958. doi:10.5555/2627435.2670313

Stekhoven, D. J., and Bühlmann, P. (2012). MissForest--non-parametric Missing
Value Imputation for Mixed-type Data. Bioinformatics 28 (1), 112–118.
doi:10.1093/bioinformatics/btr597

team (2021). Tpd. Pandas. Zenodo. doi:10.5281/zenodo.3509134
Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,

et al. (2001). Missing Value Estimation Methods for DNA Microarrays.
Bioinformatics 17 (6), 520–525. doi:10.1093/bioinformatics/17.6.520

van der Schaar Lab: T-GAIN. Available at: https://github.com/vanderschaarlab/
clairvoyance/blob/main/imputation/temporal/tgain_imputation.py (2020).
Accessed 2021.

Wang, Z., Akande, O., Poulos, J., and Li, F. (2021). Are Deep Learning Models
superior for Missing Data Imputation in Large Surveys? Evidence from an
Empirical Comparison. arXiv preprint arXiv:210309316.

White, I. R., Royston, P., and Wood, A. M. (2011). Multiple Imputation Using
Chained Equations: Issues and Guidance for Practice. Statist. Med. 30 (4),
377–399. doi:10.1002/sim.4067

Yoon, J., Jarrett, D., and Van der Schaar, M. (2019). Time-series Generative
Adversarial Networks. NeurIPS2019, 5509–5519.

Yoon, J., Jordon, J., and Schaar, M. (2018). “Gain: Missing Data Imputation Using
Generative Adversarial Nets,” in International Conference on Machine
Learning: PMLR, 5689–5698.

Yoon, J., Zame, W. R., and van der Schaar, M. (2018). Estimating Missing Data in
Temporal Data Streams Using Multi-Directional Recurrent Neural Networks.
IEEE Trans. Biomed. Eng. 66 (5), 1477–1490. doi:10.1109/TBME.2018.2874712

Yoon, J. (2020). End-to-End Machine Learning Frameworks for Medicine: Data
Imputation, Model Interpretation and Synthetic Data Generation.

You, J., Ma, X., Ding, D. Y., Kochenderfer, M., and Leskovec, J. (2020). Handling
Missing Data with Graph Representation Learning. Vancouver, Canada:
NeurIPS Conference.

Zhang, M., and Chen, Y. (2019). Inductive Matrix Completion Based on Graph
Neural Networks. arXiv preprint arXiv:190412058.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Gordon, Petousis, Zheng, Zamanzadeh and Bui. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6938699

Gordon et al. Handling Missing Data Using TSI-GNN

https://doi.org/10.2200/s01045ed1v01y202009aim046
https://doi.org/10.2200/s01045ed1v01y202009aim046
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1198/016214502388618906
https://doi.org/10.1198/016214502388618906
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1201/9781439820025-9
https://doi.org/10.1214/ss/1177010269
https://numpy.org/doc/stable/reference/generated/numpy.reshape.html%20(2008-2020)
https://numpy.org/doc/stable/reference/generated/numpy.reshape.html%20(2008-2020)
https://doi.org/10.1109/access.2020.3036885
https://doi.org/10.5555/1953048.2078195
https://github.com/iskandr/fancyimpute
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1093/bioinformatics/17.6.520
https://github.com/vanderschaarlab/clairvoyance/blob/main/imputation/temporal/tgain_imputation.py
https://github.com/vanderschaarlab/clairvoyance/blob/main/imputation/temporal/tgain_imputation.py
https://doi.org/10.1002/sim.4067
https://doi.org/10.1109/TBME.2018.2874712
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	TSI-GNN: Extending Graph Neural Networks to Handle Missing Data in Temporal Settings
	Introduction
	Methods
	Representation and Observation Node and Edge Definition
	Intuition Behind Joint Bipartite Graph in TSI-GNN
	Optimizing the Number of Trainable Edges in TSI-GNN
	Baseline Imputation Methods
	Datasets
	Determining Sequence Length
	Model Training and Evaluation
	Configurations
	Implementation

	Results
	TSI-GNN Improvement Over GRAPE in Downstream Prediction
	Downstream Prediction Across Static and Temporal Methods
	Imputation Performance Across Static and Temporal Methods

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

