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Abstract
Steel corrosion can cause serious damage to reinforced concrete structures. This
study employed multiple techniques, including SEM/BSE, EDX and Raman
spectroscopy, to analyse the distribution and mineral composition of corrosion
products (rusts) in corroded reinforced cementitious materials under two
conditions, namely, chloride-induced corrosion and accelerated corrosion in
carbonatedmortar. Results showed that corrosion products tend to precipitate in
large pore spaces close to the steel bar, such as the bleed water zones and voids.
Corrosion products initially grew on the walls of these large pores and then the
interior was filled with needle-like products gradually. In carbonated mortar,
the length of some corrosion layers matches well the size of the coarse aggregate
close to the steel. The main phases that were identified based on Roman spectra
are magnetite and maghemite (after samples were exposed to atmosphere).
Siderite was observed in carbonated mortars, which is not commonly found
under natural conditions.
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1 INTRODUCTION

Corrosion induced damage is one of the main deteriora-
tion mechanisms of reinforced concrete structures. After
the initiation of corrosion, the formed corrosion prod-
ucts (rusts) may lead to expansive stresses and eventu-
ally crack the concrete cover. Traditionally, the expan-
sive stresses models assume that corrosion products only
grow at the steel surface.1 However, this assumption is
not appropriate because the process of corrosion involves
soluble species that can dissolve in the concrete pore
solution and migrate or diffuse through the concrete
away from the corroding steel.2,3 In agreement with this,
images from scanning electronmicroscopy (SEM) revealed
that precipitated corrosion products were found at dis-
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tances of up to the mm range from steel and even far-
ther away in cracked concrete.4,5 Therefore, it is impor-
tant to observe the distribution of corrosion products,
to analyse the affecting factors, and to identify species
of corrosion products. The previous studies generally
used SEM equipped with a backscatter detector (BSE)
and energy dispersive X-ray analysis (EDX) to study the
distribution of corrosion products.4,5 To further iden-
tify the chemical composition, this study tried multiple
techniques, including SEM/BSE, EDX and Raman spec-
troscopy, to analyse corrosion products formed at the
steel–concrete interface in corroded reinforced cementi-
tious materials under two conditions, namely, chloride-
induced corrosion and accelerated corrosion in carbonated
mortar.
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F IGURE 1 Experimental setup of accelerated corrosion for
carbonated mortar. The dashed red horizontal lines indicate the
cutting locations. The ends of the steel were protected by epoxy
resin to avoid the direct contact with liquid

2 EXPERIMENTS

Two types of specimens were studied. Concrete specimens
with carbon steel bars were retrieved by core drilling from
a concrete bridge deck in the Swiss Alps, with age of more
than 40 years.6 The concrete was made of CEM I cement
and water-to-cement ratio (w/c) of 0.5. The cylindrical
specimens were immersed in the NaCl solution (3.5 wt.%)
until the initiation of corrosion.6
Mortar specimens were prepared in the laboratory with

CEM I cement, w/c = 0.5, and sand-to-cement ratio of 2.
After casting, specimens were stored in a climate room
with the relative humidity of 95% for 1 year. The cylindri-
cal specimens, ∼ 1 cm in diameter with an embedded 0.3
cm carbon steel bar (sample preparation followed the pro-
cedure in the previous study7), were then carbonated in a
chamberwith 4%CO2 and 58% relative humidity. After car-
bonation, cylinderswere immersed in a buffer solution (0.1
MNa(HCO3)2 + 0.01 MNaCO3) with pH ∼ 9.0 in a cup for
accelerated corrosion experiment with an impressed cur-
rent density of 100 μA/cm2 for 12 days (see Figure 1 for
the setup). After accelerated corrosion, cylinderswere then
immediately cut with 0.5 cm interval from top (indicated
in Figure 1 with red lines) and quickly prepared for the fol-
lowing tests.

Because of different hardness and wear rates between
steel and concrete, the sample preparation for SEM/BSE,
EDX and Raman spectroscopy measurements followed a
well-designed procedure for polishing and grinding, which
can be found in the previous study.7 A FEI Quanta 600
environmental SEMwith a BSE detector was used to image
the polished surface. After SEM imaging, the selected spots
were scanned by Raman spectroscopy (Horiba: LabRAM
HR Evolution UV-VIS-NIR) with an acquisition time of 60
s and wave number from 150 to 1200 cm–1. The measured
Raman spectrum was compared with available spectra in
the literature8 so that the mineral composition could be
identified.

3 RESULTS

3.1 Chloride-induced corrosion

With the help of EDX pointing and mapping tech-
niques, we were able to identify the corrosion products
in SEM/BSE images. In the EDX results, corrosion prod-
ucts occupied regions that displayed high content of Fe
and O. These areas show an intermediate brightness in the
SEM/BSE images (see an example in Figure 2A and B).
For the concrete specimens, the corrosion products non-
uniformly distribute around the rebar. Significant amounts
of corrosion products were observed in a few locations. A
spot is near the ribs of the steel as shown in Figure 2C.
The gaps around the steel rebar, such as the bleed water
zones, are either partly or completely filled with corrosion
products (see Figure 2D). If a void is located near the steel
surface or even touching the steel surface, a noticeable
amount of corrosion products could be found in it. These
zones and voids were initially likely filled with pore solu-
tion during the accelerated corrosion tests. Without suffi-
cient protection by solids, steel at these region is more eas-
ily corroded than the low porosity regions.9 Furthermore,
cracks through the cement paste also have an impact on the
distribution of corrosion products (see Figure 2A). Cracks
starting from the steel surface sometimes affect corrosion
products distribution. Through these channels, the corro-
sion products canmove long distances away from the steel.
Morphology of the corrosion products in the large gaps

and voids displays an visible outer dense ring (much
brighter regions in Figure 2C and D), while in-between
there are somemore porousmaterials (less bright regions),
with the needle-like corrosion products inside (see the
region labelled with 1 in Figure 2D). The needles seem to
grow from the dense ring towards the interior of the void.
With ongoing corrosion, the growth of the needle-like
products tend to close the gap between the steel and
the outer dense ring and eventually these areas are filled
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F IGURE 2 SEM/BSE and EDX results of chloride-induced corrosion: (A) the effect of aggregates and cracks on corrosion products
distribution (S = steel, C = corrosion layer, A = aggregate, and M =mortar); (B) EDX results of elements mapping in A; (C) corrosion
products distribution at a rib and (D) corrosion products in a void and the bleed water zone

(see the region labelled with 2 in Figure 2D and the blue
point in Figure 3A). The thickness of the corrosion layer
was here about 100 μm, but it should be noted that this
depends on the available space for the growth of corrosion
products, that is, the size of the bleed water zone and the
air void. The more the steel is corroded, the more space
becomes available. The growth of corrosion products
in the voids follows the same procedure. Within the
SEM/BSE images, it is clearly visible that before filling the
whole space, the products tend to grow along the walls of
the macroscopic voids.
These gaps between steel andmortar eventually fill with

the corrosion layerwhichmainly contains Fe andO as con-
firmed by EDX elements mapping in Figure 2B. Some cor-
rosion products can penetrate into the mortar matrix, in
which, iron, oxygen and calcium were detected by EDX
mapping as shown in Figure 2B. Even though these spec-

imens were in the very early stage of corrosion initiation,
the transport of corrosion products through mortar is vis-
ible. With the increase of corrosion time, more corrosion
products can transport to farther away from the steel sur-
face.
The main goal of Raman spectroscopy was to iden-

tify the mineralogical phases within the corrosion prod-
ucts. The distribution of corrosion products in SEM/BSE
images in Figure 2 clearly shows two different regions,
outer dense ring (much brighter) and inner porous region
(less bright). Therefore, spot analyses of handpicked loca-
tions were done on the outer (blue dot) and inner (red dot)
regions, as indicated in Figure 3A. Their Raman spectra
in Figure 3B show that both have a main peak at 665–670
cm–1, while the inner products show an extra main peak at
730 cm–1 and small peaks at 225 and 385 cm–1. Comparing
to the reference spectra,8 the main characteristic peaks are
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F IGURE 3 Raman and EDX results for chloride-induced corrosion: (A) corrosion layer on steel surface with two locations for Raman
spectroscopy measurements, (B) measured Raman spectra (Ht = hematite, Gt = goethite, Mnt =magnetite, and Mht =maghemite) and (C)
EDX results of element atomic percentage for inner and outer regions

identified as magnetite (Fe3O4, at 670 cm–1) and/or
maghemite (γ-Fe2O3, at 665 and 730 cm–1) and the small
peaks are from hematite (Fe2O3), goethite (α-FeO(OH)),
and maghemite, respectively. EDX results of element
atomic percentage in Figure 3C show that the Fe/O ratio of
the outer region is very close to that inmagnetite, while the
inner region has much higher content of oxygen. There-
fore, it is concluded that the outer ring mainly consists of
magnetite, while the inner product is a mixture of mag-
netite and/or maghemite, maybe with a small amounts of
hematite and goethite. The phase differences in the distri-
bution of corrosion products may be related to the growth
stage of corrosion products as mentioned above. However,
only based on results in this study, a definitive interpreta-
tion is difficult to be provided.

3.2 Impressed current corrosion in
carbonated mortar

Similar to Figure 2, the corrosion layer around the steel
bar is very non-uniform, as seen in Figure 4. The effect of
coarse aggregates on the distribution of corrosion products
is clearly shown in Figure 4A and B. The length of the cor-
rosion layer exactly follows the shape of the coarse aggre-
gate. The end of the corrosion layermatches very well with

the end of the aggregate. If there is a void present near the
steel surface, corrosion products are formed in the void (see
Figure 4C).
The thickness of the corrosion layer around the steel bar

can be measured at different angles. With a spacing of 10◦,
the corrosion layer was measured with an accuracy of 2
μm for each cutting surface. As starting point, the location
where the steel bar has the thickest mortar cover was cho-
sen as 0◦, meaning that the opposite side has the thinnest
cover (180◦). Therefore, it is possible to compare the thick-
ness of corrosion layer for all slices at different depths from
the top of the specimen. As shown in Figure 4D, the thick-
ness of corrosion layer varies a lot with depth and angle.
The general trend is that the overall thickness decreases
with the depth of slice. For instance, the slices at depth of
0.5 and 1.0 cm have much thicker corrosion layers than
the two following ones. Figure 4B also shows that more
corrosion products were in the region with the thinnest
concrete cover (around 180◦). This behaviour is obvious
in slices 1, 2 and 3, where no corrosion occurs on the side
with the largest concrete cover. These results show a cor-
relation between the cover thickness and the presence of
corrosion products, which may be explained by the fact
that the region with the thickest cover has a comparatively
high electrical resistance. Therefore, in the accelerated cor-
rosion test, more polarisation current can pass through the
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F IGURE 4 Results of impressed current corrosion in carbonated mortars: (A), (B) The effects of aggregates on corrosion products
distribution (red lines indicate the length of corrosion layer); (C) corrosion products distribution in a void and at steel surface (indicating
locations for Raman spectroscopy measurements); (D) thickness of corrosion layer at different depth from the top and (E) measured Raman
spectra (Sd = Siderite)

regions with thinner cover and lead to more pronounced
corrosion in these zones.
Corrosion products in a void and at the steel surface as

indicated by blue and red dots in Figure 4C were analysed
by Raman spectroscopy. Products in the void have four
obvious peaks as shown in Figure 4E. Peaks at 287 and
1090 cm–1 correspond to siderite (FeCO3), while 481 and
574 cm–1 are not the characteristic peaks of any corrosion
products. Therefore, the main phase precipitated in the
void is siderite, formed in a carbonate ion-rich solution.10
The products close to the steel surface show a clear peak
at 670 cm–1 and a less obvious peak at 385 cm–1, which are
the characteristic peaks of magnetite and goethite,8 so this
corrosion layer may be a mixture of these two minerals. It
should be noticed that most peaks in Raman spectra are

very broad (except siderite), indicating that these phases
have a low crystallinity.11

4 DISCUSSIONS

4.1 Effects of aggregates on corrosion
products distribution

An interesting finding is that more corrosion products can
be found on steel surface where a coarse aggregate is close,
in particular for the impressed current corrosion in carbon-
ated mortars. Effects of coarse aggregates on the chloride-
induced steel corrosion have been studied by Razmjoo and
Poursaee,12 which reported that decreasing the distance
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between aggregates and steel had adverse impact on the
corrosion initiation on the steel. They claimed that the
presence of steel bars acted as a barrier to chlorides trans-
port and chlorides are trapped at the steel surface, lead-
ing to a more rapid increase in chlorides concentration
between the coarse aggregate and the steel bar. However,
the EDX mapping results of Cl in Figure 2B, showing less
Cl between the coarse aggregate and steel than the bulk
mortar, does not support this explanation. For the carbon-
ated mortars, there were no chlorides but they still shows
the effect of coarse aggregates. After Fe2+ ions are forced
to leave the steel, they diffuse into the mortar matrix or
precipitate as ferrous hydroxides (Fe(OH)2) if the concen-
tration of ferrous ions (Fe2+) exceeds a certain level.3,13
The aggregate hinders Fe2+ diffusion and thus corrosion
products can only precipitate between the aggregate and
steel. It may be also caused by the oxidation of Fe2+ that
still consumes a certain amount of oxygen even though
the cathodic reaction (oxygen reduction) is not needed in
the impressed current experiments. With the decrease of
oxygen concentration, more Fe2+ ions can diffuse into the
mortar matrix. This further reduces the concentration of
Fe2+ near the steel surface, which may favour the release
of Fe2+ from the steel if there is a coarse aggregate nearby.
Therefore, we believe the local corrosion rate may vary
with ions concentration or steel properties.

4.2 Mineral composition of corrosion
products

The observed corrosion products may be different from
these in the natural corrosion as oxygen is always play-
ing an important role during sample preparation. Corro-
sion is an electrochemistry process, always starting with
the release of Fe2+ from the steel due to the loss of the pas-
sive layer. Then, Fe2+ can directly precipitate as Fe(OH)2
in concrete. If oxygen is not enough, the Schikorr reaction
may happen, in which Fe(OH)2 is oxidised to form mag-
netite by protons of water.14 If oxygen is available, Fe2+
is oxidised to form ferric oxyhydroxide phases, such as
goethite (α-FeO(OH)), which is further either topotacti-
cally transformed into hematite and maghemite through
dehydration15 or reduced to magnetite if enough Fe2+ is
still present in the solution.16 Meanwhile, the partial oxi-
dation of Fe(OH)2 suspension leads to the precipitation of
magnetite as well.17 Therefore, depending on the reaction
stage and the availability of oxygen, we may see different
corrosion products.
For the accelerated corrosion in the carbonated mor-

tar, siderite was observed, which can only form under
anoxic conditions due to the need for reduced, dissolved
Fe2+ reacting with the dissolved inorganic carbon (e.g.

CO3
2−).10 In addition to a source of dissolved iron, the

favourable pH to form siderite is slightly above 7.2,18 which
is in the pH range of the buffer solution and the pore
solution in the carbonated mortar. Generally, the observed
siderite is not a pure phase and often contains a mixture
of carbonate mineral phases, such as calcium carbonate.18
From this point, corrosion products in the void (see the
blue dot in Figure 4C) could be mixed with calcium
carbonate as the Ca-rich siderite has been reported in
loosely precipitated corrosion layer.19 In reinforced con-
crete, siderite is an intermediate corrosion product, which
is eventually oxidised to magnetite and/or goethite.20

5 CONCLUSION

In this study, the distribution and mineral composition of
corrosion products in two experimental regimes, namely,
chloride-induced corrosion and accelerated corrosion in
carbonated mortar, were analysed by SEM/BSE, EDX and
Raman spectroscopy. We conclude:

1. A clear corrosion layer can be seen in some regions at
the steel surface. The distribution of corrosion prod-
ucts is very non-uniform, which may depend on vari-
ous factors, such as ion concentration, local steel prop-
erties, the microstructure of mortar close to the rebar,
the availability of oxygen, etc.

2. Corrosion products tend to precipitate in empty spaces
at the steel surface, such as bleedwater zones and voids.
Corrosion products initially grew on the walls of these
regions and then the interior is filled with needle-like
products gradually.

3. If a coarse aggregate is close to the steel, more corro-
sion products can be found in the zone between the
aggregate and the steel, in particular for the impressed
current corrosion in carbonated mortar. This may be
related to ion and oxygen diffusion.

4. Themain phases in both experimental regimes aremag-
netite and maghemite. Siderite was also identified in
carbonated mortars.
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