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Background: As the era of big data analytics unfolds, machine learning (ML)

might be a promising tool for predicting clinical outcomes. This study aimed

to evaluate the predictive ability of ML models for estimating mortality after

coronary artery bypass grafting (CABG).

Materials and methods: Various baseline and follow-up features were

obtained from the CABG data registry, established in 2005 at Tehran Heart

Center. After selecting key variables using the random forest method,

prediction models were developed using: Logistic Regression (LR), Support

Vector Machine (SVM), Naïve Bayes (NB), K-Nearest Neighbors (KNN), Extreme

Gradient Boosting (XGBoost), and Random Forest (RF) algorithms. Area Under

the Curve (AUC) and other indices were used to assess the performance.

Results: A total of 16,850 patients with isolated CABG (mean age:

67.34 ± 9.67 years) were included. Among them, 16,620 had one-year

follow-up, from which 468 died. Eleven features were chosen to train

the models. Total ventilation hours and left ventricular ejection fraction

were by far the most predictive factors of mortality. All the models had

AUC > 0.7 (acceptable performance) for 1-year mortality. Nonetheless, LR

(AUC = 0.811) and XGBoost (AUC = 0.792) outperformed NB (AUC = 0.783),

RF (AUC = 0.783), SVM (AUC = 0.738), and KNN (AUC = 0.715). The trend

was similar for two-to-five-year mortality, with LR demonstrating the highest

predictive ability.
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Conclusion: Various ML models showed acceptable performance for

estimating CABG mortality, with LR illustrating the highest prediction

performance. These models can help clinicians make decisions according to

the risk of mortality in patients undergoing CABG.
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Introduction

Cardiovascular diseases -particularly coronary artery
disease (CAD)-are the leading worldwide cause of death (1).
Coronary artery bypass graft (CABG) surgery and angioplasty
are the two primary revascularization methods used to
treat CAD patients.

Several scores have been proposed for the assessment
of cardiac operative risk, such as the European system for
cardiac operative risk calculation (Euro-SCORE I and II)
and the Society of Thoracic Surgeons (STS) (2–4). However,
these scoring systems mainly evaluate in-hospital, and
operative mortality and therefore are not generalizable to
longer mortality. Many contributors, including previous
medical comorbidities and procedural factors, are associated
with higher mortality in patients undergoing CABG
(5).

Machine learning (ML) models have been designed to
predict outcomes in the cardiovascular medicine (6). These
models have shown promising results compared to traditional
risk scores with some advantages (7). In these artificial
intelligence-based methods, the strongest predictors can be
selected to train the system to predict outcomes using supervised
learning. Afterward, the learning method is tested on unseen
data for evaluation (8).

In light of this information, we aimed to use and
compare different ML methods to predict one-to-five-year
mortality after CABG.

Materials and methods

Study design and data collection

In this registry-based retrospective cohort study, baseline
data from all adult patients (≥18 years old) in the Tehran Heart
Center CABG databank enrolled from 2005 through 2015 were
reviewed. The study was approved by the ethics committee of
Tehran Heart Center (IR.TUMS.VCR.REC.1400.11.23). Due to
the retrospective design of the study and data anonymization,
the informed consent requirement was waived.

Variables and outcomes

Various predictors were used for this study. Demographic
variables included age, gender, and body mass index (BMI).
Preoperative variables consisted of serum hemoglobin (Hb),
high-density lipoprotein (HDL-C), low-density lipoprotein
(LDL-C), total cholesterol, triglycerides (TG), creatinine
(Cr), left ventricular ejection fraction (EF), diabetes,
hypertension, opium consumption, smoking status, prior
myocardial infarction (MI), preoperative heart failure
(HF), and chronic obstructive pulmonary disease (COPD).
The definitions were consistent with prior studies on
this population (9). Perioperative variables, including
cardiopulmonary pump utilization and ventilation hours,
were assessed.

The primary outcome was mortality in one-year post-
CABG. Secondary outcomes were two-, three-, four-, and five-
year mortality.

Data cleaning

At first, we omitted subjects if they had (1) any missing
variable values (1,217 out of total 18,118), and or (2) implausible
values such as: Hb < 5 or > 25, LDL-C > 400, TG < 20 or
> 1200, HDL-C < 5 or > 100, and Cr < 0.2 or > 15. Excluding
missing values was due to a sufficient sample number. For
each endpoint during follow-ups, survivors with less follow-up
duration than the cut point were excluded.

Test/train split and feature selection

The study population was randomly assigned to the training
cohort (70% of the patients) and the test cohort (30% of the
sample) to validate the predictive models.

We ran a feature selection algorithm on the training
data to select the most appropriate features. Top features
were obtained from random forest model prediction
in the train data using k-fold cross-validation (k = 5).
In case of a strong correlation between two variables
(confirmed by Pearson correlation r) that were also
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clinically related, the stronger predictor was used to
set up the models.

Oversampling and scaling

As one of the challenges in ML is imbalanced data, we
used the synthetic minority oversampling technique (SMOTE)
to balance our data in the training sample, which was performed
after the test/train split as the data in the test sample should
be unseen and remain unchanged. SMOTE technique creates
synthetic data for the minority group, which was non-survivors
in our study, to have an equal number of outcomes. The
oversampling strategy, demonstrating the rate of the minority
group to the majority, was tuned manually to have the best
prediction model. Finally, a standard scaler was used to scale
the data of each feature for developing prediction models. This
standardizes features by removing the mean and scaling to unit
variance. Oversampling and scaling were conducted for each
follow-up data separately.

Model development

To develop predictive models, six ML methods were
utilized: (1) Logistic Regression (LR); (2) K-Nearest
Neighbors (KNN); (3) Random Forest (RF); (4) Extreme
Gradient Boosting (XGBoost); (5) Naïve Bias (NB) and
(6) Support Vector Machine (SVM). All the models
were designed using k-fold (k = 5) cross-validation.
The parameters used for each model were tuned using
the grid search method to increase the accuracy of
the prediction. Each model was trained and tested for
one-to-five-year mortality.

Model performance evaluation

We evaluated the performance of ML methods using
following indices. (1) Sensitivity; (2) specificity; (3) accuracy
of prediction; and (4) area under the receiver operating
characteristics curve score (ROC-AUC) by plotting true
positive against false positive rate. As AUC is a measure of
discrimination independent of threshold, we chose it as the
major index to compare the performance of models. AUC was
interpreted as follows. AUC ≥ 0.9, outstanding discrimination;
0.8 ≤ AUC < 0.9, excellent discrimination; 0.7 ≤ AUC < 0.8,
acceptable/fair discrimination; 0.6 ≤ AUC < 0.7, poor
discrimination; and AUC < 0.6, no discrimination (10). The
threshold determines the cut-off to turn a projected probability
into a class label which is normally set at 0.5 (50%). Finally, due
to the highly imbalanced outcome and low mortality rate after
CABG, the prediction threshold, which is usually set as 0.5, was

tuned using k-fold (k = 5) cross-validation to adjust sensitivity
and specificity.

Statistical analysis

Baseline characteristics are represented as mean and
standard deviation (SD) or percentage. Data were compared
using the Pearson chi-squared test and Fisher’s exact test
for categorical variables, and the independent sample t-test
for continuous variables. Two-sided p-value < 0.05 was
considered statistically significant. All statistical analyses and
model development were performed using Python (3.10). LR,
NB, RF, SVM, and KNN models were implemented using the
scikit-learn (1.0.2) library (11), and XGBoost was developed
using the XGBoost (1.6.0) Python library.

Results

Baseline and hospitalization
characteristics

The total cohort included 16,850 patients with isolated
CABG (age: 67.34 ± 9.67, 73.51% male). Table 1 illustrates
the baseline characteristics of the whole cohort. Among 16,620
patients with complete one-year follow-up, 2.81% (n = 468)
died, followed by 4.06%, 6.01%, 8.56%, and 12.77% respective
cumulative mortality rates at two, three, four, and five years
of follow-up. Figure 1 indicates the number of survivors and
non-survivors for each follow-up duration. Figure 2 compares
the baseline characteristics between survivors and the deceased
patients with a one-year follow-up. Non-survivors were more
likely to be older and be afflicted with conventional CAD risk
factors. Moreover, EF was significantly lower (40.67 ± 10.64 vs.
46.27 ± 9.01, p-value < 0.001), and ventilation hours higher
(77.49 ± 152.58 vs. 11.53 ± 14.40) in non-survivors compared
to the survivors.

Feature selection

We used the RF prediction model in the test data using
k-fold cross-validation (k = 5) to rank all the features based
on their importance. All correlations between the features were
assessed by Pearson correlation r. Figure 3 demonstrates the
features and their order for developing the models. Eleven
features were chosen for predicting one-year mortality based on
the RF model (Figure 3). Total ventilation hours and EF were
the most predictive variables. Feature selection for secondary
endpoints (longer follow-up mortalities) revealed the same
predictor features with minor changes in their order.
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TABLE 1 Baseline and hospitalization characteristics of
the study cohort.

Variable Total cohort (n = 16,850)

Age (years) 67.34 ± 9.67

Male 12,387 (73.51)

Hypertension 9,056 (53.75)

Diabetes 6,757 (40.10)

Dyslipidemia 8,970 (53.23)

Family history of cardiovascular disease 6,224 (36.94)

Smoking 2,989 (17.74)

Prior MI 5,681 (33.72)

Prior HF 475 (2.82)

COPD 610 (3.62)

Prior CABG 86 (0.51)

Prior PCI 1,277 (7.58)

PVD 319 (1.89)

CVA 1,155 (6.86)

Opium 2,755 (16.35)

Off pump surgery 1,592 (9.45)

BMI (kg/m2) 27.23 ± 4.17

FBS (mg/dl) 110.41 ± 39.23

EF (%) 46.11 ± 9.11

LDL-C (mg/dl) 96.20 ± 36.35

HDL-C (mg/dl) 36.86 ± 9.68

Cholesterol (mg/dl) 155.35 ± 43.55

TG (mg/dl) 149.68 ± 78.22

Creatinine (mg/dl) 0.98 ± 0.56

Hb (g/dl) 13.83 ± 1.70

Total ventilation hours 13.36 ± 31.02

Data are presented as mean ± S.D. or number (%); MI, myocardial infarction; HF,
heart failure; COPD, chronic obstructive pulmonary disease; PCI, primary cutaneous
intervention; PVD, peripheral vascular disease; CVA, cerebrovascular accident; FBS,
fasting blood glucose; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density
lipoprotein cholesterol; TG, triglyceride; BMI, body mass index; Hb, hemoglobin; EF,
ejection fraction.

Model evaluation

Models ran for one-to-five-year mortality based on the top
features selected and were evaluated on the test dataset. Table 2
compares the predictive values of different models concerning
their AUC, accuracy, sensitivity, and specificity. All the models
had at least acceptable performance for one-year mortality (10),
with LR presenting the highest [AUC (95% CI) = 0.81 (0.77–
0.85)] and KNN the lowest discriminatory ability [AUC (95%
CI) = 0.72 (0.67–0.76)]. Moreover, all techniques illustrated
acceptable performance (AUC > 0.7) for predicting two-to-five-
year mortality (10), excluding the SVM model. After tuning for
the threshold, the highest sensitivity was obtained in the LR
model (72.99%), while the highest specificity and accuracy were
calculated as 85.67% and 84.96% for the NB model, respectively.

By the same token, the LR model surpassed other models
for predicting two-to-five-year mortality. Figure 4 demonstrates
the ROC-AUC for all six models.

FIGURE 1

Number of survivors and non-survivors at each follow-up
endpoint.

Discussion

This study compared six ML models concerning one-to-
five-year mortality among CABG patients. Our study revealed
that the ventilation time after the surgery and baseline EF
were by far the most influential factors for predicting mortality.
Furthermore, the LR model had the best predictive ability for
one-year mortality with excellent discrimination (AUC = 0.81)
(10). Moreover, according to AUC interpretation, all ML
models other than LR presented an acceptable performance for
predicting one-year mortality (0.7 < AUC < 0.8) (10). The same
performance trend was ascertained for two-to-five-year follow-
ups.

CABG is one of the most prevalent surgeries worldwide.
Several calculators and models have been developed to detect
and minimize its main culprits of mortality and morbidity.
As the era of big data analytics unfolds, ML algorithms are
primed to have a considerable effect and improve contemporary
risk calculators and scoring systems. Likewise, the need to
have individualized systems to predict outcomes in operation-
specific cohorts has highlighted the importance of ML models
in recent years (12, 13). Methodologically, ML models allow
us to adjust sensitivity and specificity in each clinical setting
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FIGURE 2

Comparison of baseline and hospitalization characteristics of survivors and non-survivors with one-year follow-up. MI, myocardial infarction;
HF, heart failure; COPD, chronic obstructive pulmonary disease; CABG, coronary artery bypass grafting; PCI, primary cutaneous intervention;
PVD, peripheral vascular disease; CVA, cerebrovascular accident; FBS, fasting blood glucose; LDL-C, low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; BMI, body mass index; Hb, hemoglobin; EF, ejection fraction.

FIGURE 3

Feature importance based on the Random Forest model. MI, myocardial infarction; HF, heart failure; COPD, chronic obstructive pulmonary
disease; CABG, coronary artery bypass grafting; PCI, primary cutaneous intervention; PVD, peripheral vascular disease; CVA, cerebrovascular
accident; FBS, fasting blood glucose; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride;
BMI, body mass index; Hb, hemoglobin; EF, ejection fraction.

(14). Several techniques can be used in cases where we face
a meager outcome, such as mortality, with the oversampling
method being applied frequently. SMOTE oversampling creates
synthetic examples for the minority group and is suggested to

be better than undersampling methods because of retaining
valuable data (15, 16). Lowering the prediction threshold is
another common measure to overcome imbalanced data. As the
50% default threshold gives us many missed cases for mortality,
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TABLE 2 Evaluation of machine learning (ML) models for each of the five follow-up endpoints.

Sensitivity (%) Specificity (%) Accuracy (%) AUC [95% CI]

One-year mortality

Random forest 70.80 69.85 69.88 0.78 [0.74–0.82]

Naïve Bayes 59.85 85.67 84.96 0.78 [0.74–0.83]

SVM 63.50 74.65 74.35 0.74 [0.69–0.79]

XGBoost 66.42 77.73 77.42 0.79 [0.75–0.83]

KNN 68.61 63.52 63.66 0.72 [0.67–0.76]

Logistic regression 72.99 77.79 77.66 0.81 [0.77–0.85]

Two-years mortality

Random forest 66.17 73.01 72.73 0.77 [0.73–0.80]

Naïve Bayes 76.62 62.39 62.98 0.76 [0.72–0.79]

SVM 48.76 85.26 83.73 0.67 [0.63–0.72]

XGBoost 66.17 72.62 72.35 0.75 [0.71–0.79]

KNN 63.18 69.50 69.24 0.73 [0.70–0.77]

Logistic regression 75.12 70.37 70.57 0.79 [0.76–0.82]

Three-years mortality

Random forest 61.45 75.96 75.06 0.74 [0.71–0.77]

Naïve Bayes 58.55 80.03 78.70 0.74 [0.71–0.78]

SVM 45.09 84.53 82.08 0.68 [0.64–0.71]

XGBoost 68.00 67.11 67.16 0.74 [0.71–0.77]

KNN 70.18 64.92 65.24 0.72 [0.69–0.76]

Logistic regression 67.64 72.79 72.47 0.76 [0.73–0.79]

Four-years mortality

Random forest 50.14 81.75 78.91 0.72 [0.69–0.75]

Naïve Bayes 53.03 81.44 78.88 0.71 [0.68–0.75]

SVM 42.07 83.32 79.61 0.64 [0.60–0.67]

XGBoost 65.71 65.84 65.83 0.70 [0.67–0.74]

KNN 67.72 63.70 64.06 0.70 [0.66–0.72]

Logistic regression 69.74 67.52 67.72 0.73 [0.70–0.76]

Five-years mortality

Random forest 64.65 73.65 72.41 0.75 [0.72–0.77]

Naïve Bayes 58.14 77.67 74.98 0.73 [0.71–0.76]

SVM 48.37 80.61 76.16 0.66 [0.63–0.69]

XGBoost 65.35 72.98 71.93 0.74 [0.72–0.77]

KNN 60.70 73.20 71.48 0.73 [0.70–0.75]

Logistic regression 67.21 70.08 69.68 0.75 [0.72–0.77]

AUC, area under the receiver operating characteristic curve; CI, confidence interval; SVM, support vector machine; XGBoost, extreme gradient boosting; KNN: K-nearest neighbors.

we tuned this measure to have the optimum sensitivity and
specificity on the ROC curve. This method has been used in
several studies (14, 17).

Current risk scores such as STS, EURO-Score I and II
were designed to predict short-term mortality and need to
be modified to be used for long-term (2–4) as Puskas et al.
(18) have proposed. Several models have been developed to
predict the prognosis of CABG, with growing attention to
ML methods. ML can be a promising tool for improving
conventional scoring systems like STS (19, 20). Studies have
reported the effectiveness of an ensemble of various ML
algorithms concerning in-hospital mortality risk (21). A study

investigated five ML methods to predict long-term mortality
after CABG. In contrast to our study, this study concluded
that Gradient Boosting Machine was the best predictive
technique (AUC: 0.767), outperforming the LR technique
(22). In agreement with this finding, another study compared
various ML models for estimating the long-term mortality risk
of the elderly who underwent CABG. Models included LR,
RF, Classification And Regression Tree (CART), Multivariate
Adaptive Regression Splines (MARS), and XGBoost. Their
results showed that the XGBoost model and MARS had the
best prediction performance, before and after variable selection,
respectively (23).

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.977747
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-977747 August 18, 2022 Time: 15:56 # 7

Khalaji et al. 10.3389/fcvm.2022.977747

FIGURE 4

Receiver operating characteristic curve for mortality prediction. XGBoost, Extreme Gradient Boosting; SVM, Support Vector Machine; KNN,
K-Nearest Neighbors.

FIGURE 5

Summary of study design and machine learning models development and evaluation.

However, like our findings, a recent meta-analysis
concluded that in studies with low risk of bias, LR was as
predictive as other ML models, while in studies at high risk
of bias, other ML methods had better discrimination ability
than LR (24). Despite these controversies, LR is a tried-and-
true statistical method. It, therefore, should remain the gold

standard until newer approaches can show demonstrably better
predictive ability.

Many feature selection methods are available to select the
most relevant features in ML models, with RF technique being
commonly used in classification models (25). RF models work
by constructing several random decision trees with the top
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features. For the classification, they use major vote among all
decision trees to predict the class of the outcome (26).

Total ventilation hours as a peri-operative variable was
the most important feature based on our feature selector.
The importance of mechanical ventilation time for CABG
mortality has also been supported by other studies using LR,
RF, and XGBoost modeling (23). Other researchers have also
indicated that mechanical ventilation requirement is a predictor
of in-hospital and long-term mortality in patients undergoing
cardiac surgery (27). In our study, EF was the second most
important mortality predictor, followed by TG, age, Hb, Cr, total
cholesterol, FBS, LDL-C, HDL-C, and BMI. The importance of
these features has been reported in studies using ML methods
or otherwise. These factors chime in with a recent study
revealing creatinine, EF, and age among the most predictive
features for in-hospital and 30-day mortality of cardiac surgery,
using the XGBoost model (20). Similarly, a recent study on
long-term survival of elderly patients with CABG revealed
that age, renal disease, and hyperlipidemia are among the
most important survival predictors, using various ML methods
(23). The importance of EF on CABG survival has also been
repeatedly reported in other studies (28, 29), some of which
revealed a dose-response relationship between decreasing EF
and overall risk of death (28). This is also the case with the role
of our other selected features in estimating long-term CABG
survival, including age (30, 31), glucose and lipid profile (32–35),
Hb (36, 37), Cr (38, 39), and BMI (31).

Our cohort study was based on the cardiac surgery databank
of Tehran Heart Center, one of Iran’s largest observational
cardiovascular databases (40). The benefits of using this
databank are as follows: (1) it included various demographic,
preoperative, intraoperative, and postoperative information; (2)
more than 16,000 and 10,000 patients could be tracked for a 1
and 5-year follow-up, respectively; (3) it could present current
real-world experiences with CABG patients.

Nevertheless, there were some limitations to our study.
As the study was conducted based on single-center data,
the generalizability of models is a significant issue since the
demographic characteristics of patients are confined to a single
center (e.g., male predominance). Some relevant input features
were discarded due to high missing data. There is also the
potential for confounding variables that were not included in the
analysis. No electrocardiogram data and follow-up laboratory
results were available.

Conclusion

In this study, we developed different ML models for
predicting one-to-five-year mortality in patients undergoing
CABG. Feature selection chose eleven features for the
prediction, the most vital of which were total ventilation
hours and EF. Furthermore, all models demonstrated at least

acceptable performance for estimating one-year mortality, with
LR demonstrating the highest AUC (0.81). The overall summary
of ML models and findings of our study is illustrated in Figure 5.
In conclusion, ML algorithms may pave the way for clinicians
to select CABG candidates through weighing mortality risks
against the merits of receiving the surgery.
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