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Abstract

Background: The biological network is highly dynamic. Functional relations between genes can be activated
or deactivated depending on the biological conditions. On the genome-scale network, subnetworks that gain
or lose local expression consistency may shed light on the regulatory mechanisms related to the changing biological
conditions, such as disease status or tissue developmental stages.

Results: In this study, we develop a new method to select genes and modules on the existing biological network, in
which local expression consistency changes significantly between clinical conditions. The method is called DNLC: Differential
Network Local Consistency. In simulations, our algorithm detected artificially created local consistency changes
effectively. We applied the method on two publicly available datasets, and the method detected novel genes
and network modules that were biologically plausible.

Conclusions: The new method is effective in finding modules in which the gene expression consistency change between
clinical conditions. It is a useful tool that complements traditional differential expression analyses to make discoveries from
gene expression data. The R package is available at https://cran.r-project.org/web/packages/DNLC.
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Background
The biological system operates by tightly controlling the
abundance and activity of thousands of proteins. The reg-
ulations and interactions can be summarized as a scale-
free network [1–3]. The known networks summarized
from existing knowledge, e.g. protein-protein interaction
and signal transduction networks, are static in nature. Yet
in real biological systems, the activities of the edges on the
network are dynamic [4]. In the context of gene expres-
sion, nodes on the biological network correspond to
genes. The expression levels of genes that are close on the
network can change between states of correlated, uncorre-
lated, or even reversely correlated, depending on the

biological condition [5]. Currently, a number of methods
can analyze gene expression data in the context of an
existing biological network. Most of the methods try to
find “network markers”, i.e. small subnetworks that
change expression levels in response to clinical conditions
[6–17]. Some other methods study the dynamic correl-
ation patterns on the network, without considering the
clinical outcome [18–20].
Given the biological network is dynamic, and physio-

logical conditions influence the activity of the edges in the
network, it is natural to consider the change in expression
consistency, i.e. the co-expression patterns in subnet-
works, in response to changing physiological states. So far,
no method is available to find changes of expression
consistency on the network. In this manuscript, our goal
is to develop a computational method to detect genes
around which the expression consistency changes signifi-
cantly in response to physiological states. Finding such
genes can reveal important mechanisms related to disease
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development, by revealing biological functions that be-
come more tightly regulated or de-regulated in association
with disease status. Such a method should be able to com-
plement existing differential expression methods to shed
new light on the data.
For this purpose, we borrow the measure of Local

Moran’s I (LMI) from the field of spatial statistics, which
quantifies spatial auto-correlation on a map [21]. We
treat the network as a map, and calculate LMI for each
node based on its expression value and the expression
values of nearby nodes on the network. We then use the
LMI values to quantify the local expression consistency
around any given node. A high positive LMI value of a
node in a specific sample implies that the node has a
similar expression value to its neighbors in that sample,
and their expression values are either very high or very
low. In contrast, a large negative LMI value means the
node is a spatial outlier, i.e. a node that has low
consistency with its surrounding nodes on the network
[22]. By combining LMI scores with the clinical data,
and using regression models with local false discovery
rate correction [23], our method finds nodes around
which local expression consistency change significantly
between different clinical conditions. It showed promis-
ing result in both simulations and real data analyses.

Methods
Calculating local Moran’s I (LMI) score on the network
The overall workflow of the method is shown in Fig. 1.
The data contains four pieces: Mp×N is the gene expres-
sion matrix with p genes in the rows and N samples in
the columns; y is the clinical outcome vector of length
N; G= (V, E) is the network between the p genes, where
the vertices V correspond to the genes, and the edges E
represent functional relations between the genes; Cm×N

is the matrix of other clinical variables, such as age, gen-
der etc, with m variables in the rows and N samples in
the columns. We assume there is a one-to-one match
between the genes in the matrix and the nodes in the
network. Any unmatched genes/nodes are eliminated
from the analysis. To prepare for the analysis, the ex-
pression matrix is normalized using normal score trans-
formation for every gene.
We calculate the LMI score for every gene in each

sample. The goal of LMI is to quantify the extent to
which nodes that are close to a given node have expres-
sion values similar to it. The formula of LMI for gene i
in sample k is:

Ii;k ¼ zi;k−zk
σ2k

X
j≠i
wij z j;k−zk

� �
;

where zi, k is the expression of gene i in sample k, zk is
the average gene expression in sample k, zj, k is the

expression of gene j for all the other genes on the net-
work (where j ≠ i); σ2k is the variance of expression in
sample k; wij is the weight assigned to gene j, which
depends on its distance to gene i on the network.
There can be many strategies for the calculation of

weights. The goal is to focus on the small region
surrounding gene i on the network. One strategy is to
assign the inverse of the distance dij between gene i and
gene j as wij. Another strategy is to determine wij using a
distance threshold: genes within a distance are given the
same weight, while those farther away are given the
weight of 0. In this study, we use a truncated Gaussian
function to assign the weights,

wij ¼
1ffiffiffiffiffiffi
2π

p e−d
2
ij=2; dij≤2

0; dij > 2

8<
: ;

Where dij is the length of the shortest path between
nodes i and j. The weights are then normalized such that
for gene i, ∑j ≠ iwij = 1.
The intuition of the approach is as follows: for a given

node i, only nodes in its vicinity receive substantial
weights. Then the calculation of Ii, k essentially takes a
weighted sum of the products of ðzi;k−zkÞ and all the
nodes in the vicinity ðz j;k−zkÞ , normalized by the vari-
ance of the expression levels in the sample. We can see
that when ðzi;k−zkÞ and most of the ðz j;k−zkÞ are of the
same sign, and have large absolute values, Ii, k will have a
large positive value. On the other hand, when ðzi;k−zkÞ
and most of the ðz j;k−zkÞ are of opposite sign, and have
large absolute values, then Ii, k will be negative with a
large absolute value. When there is no expression
consistency between the nodes near node i, or if their
values are close to zero, Ii, k will be close to zero. Thus
the LMI value Ii, k is a good measure of the expression
consistency of node i with its network vicinity.

Selecting differential consistency (DC) genes
After computing Ii, k for every node i in every sample k,
we have a matrix with the LMI values. The dimension of
this LMI matrix is exactly the same as the original gene
expression matrix, with p genes in the rows and N sam-
ples in the columns. We then find if a gene’s LMI score
changes significantly between different clinical condi-
tions, while incorporating confounders such as age, race
etc.
The procedure here is similar to traditional differential

expression analysis where confounders are considered
(Table 1). The relationship between the clinical out-
come, the LMI score of a gene, and confounders can be
described by a generalized linear model:
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E y jLMI Score;Confoundersð Þ
¼ g−1 α� LMI Scoreþ

X
m
βm � Confounderm

� �
;

where g−1(·) is an inverse link function, which can be
chosen according to the specific type of the outcome
variable. In this study we use the logistic regression for

binary outcome variable, and Cox proportional hazards
model for survival outcome variable.
After the t-statistics for the parameter α for all genes

are calculated, we follow the local false discovery rate
(lfdr) procedure to adjust for multiple testing. For most
genes, their local consistency on the network are unre-
lated to the clinical outcome, and their t-statistics will
approximately follow a normal distribution. Genes
around which local expression consistency change sig-
nificantly between clinical conditions will have more
extreme t-statistic values. Thus, we can consider the t-
statistics of all the genes to follow a mixture model with
two components:

f tð Þ ¼ π0 f 0 tð Þ þ 1−π0ð Þ f 1 tð Þ;

where f is the mixture density for the observed t-statis-
tics of all the genes, f0 and f1 are the densities of the t-
statistics of the null (non-DC) and non-null (DC) genes
respectively, and π0 is the proportion of null genes [23].

Fig. 1 The overall workflow of our method. a The input data structure; b Calculating LMI scores for each gene; c Finding DC genes

Table 1 The pseudocode for conducting DC gene search on
the network

Input: G (gene network), M (expression matrix), y (clinical outcome
vector), T (local fdr threshold), C (confounder matrix)
Output: Collection of DC genes: S
Standardize each row of M
Local Moran’s I Matrix I = Local _ Moran _ I(G,M)
For each node i in G do
ti = t statistic from generalized linear model y~Ii + C
End for
Fit {ti}i = 1, …, p to mixture model using local fdr to find {lfdri}i = 1, …, p

S = {i : lfdri ≤ T}
Return S
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We can estimate the probability that each gene belongs
to the non-null category using mixture density estima-
tion. In this study, we use the R package locfdr for the
calculation [24]. By setting a threshold for the lfdr value,
we can distinguish DC genes from the others.

Finding network communities of DC genes
After selecting the DC genes, we use a simple and effi-
cient algorithm to group the DC genes and their directly
connected genes into network communities for better
data interpretation. We adopt the fast-greedy algorithm
that directly optimizes modularity score to get the com-
munities of a large graph [25]. After detecting several
communities among the DC genes and their neighbors,
biological function analysis is performed on each detected
community. We use the GOstats method [26], which is
based on the Gene Ontology biological processes, to per-
form the analysis.

Results
Simulation study
We conducted a systematic study using simulated data.
In each simulation, data was generated using the follow-
ing steps.

1. A scale-free network with m nodes was generated
using the Barabasi-Albert model [27]. Based on this
network structure, we calculated the Σ matrix, in
which Σi,j= cdi; j , where c was a constant between 0
and 1, and di, j was the shortest path between nodes
i and j on the network.

2. An m × n gene expression matrix was generated
using the multivariate normal distribution, using Σ
as the variance-covariance matrix.

3. We then randomly selected five nodes from the
network, the degree of which were within a certain
range. Among the nodes within two hops of these
five nodes, we changed the elements of the Σ
matrix to Σi,j= bdi; j , where b was a constant between
0 and 1, and di, j was the shortest path between
nodes i and j.

4. Another m × n gene expression data matrix was
generated using the multivariate normal density,
using the modified Σ matrix as the variance-
covariance matrix.

5. We joined the two matrixes horizontally to obtain
the simulated expression matrix, which was of
dimension m × 2n, where m was the number of
genes and 2n was the total number of samples.

6. The outcome variable corresponding to first n
samples (original correlation samples) were set to 0,
and the last n samples (changed correlation
samples) were set to 1.

Four parameters were used to control the signal
strength of the data: (a) The base correlation c, which
controlled the background correlation strength. Four
levels were used (base correlation = 0.2, 0.4, 0.6, 0.8).
(b) The changed correlation b. We applied four levels
(changed correlation = 0.2, 0.4, 0.6, 0.8) for simulation.
(c) The degrees of the five selected nodes. Two ranges
(degrees between 5 to 10, and between 15 to 20) were
used. (d) Sample size in the simulated expression data
(number of samples = 50, 100, 200, 300, 400, 500, 700,
1000).
Fifty datasets were simulated at each parameter set-

ting. After a dataset was generated, we used three
methods to analyze the data: (1) the DNLC algorithm;
(2) the differential network analysis (DNA) method [28],
and (3) simple differential expression (DE) analysis using
t-test and local fdr correction. We evaluated the results
by the PR-AUC (area under the precision-recall curve).
Each node was assigned a status depending on the gen-
eration process: 1 (changed correlation with neighbors)
or 0 (unchanged correlation with neighbors). The local
fdr values calculated by each method were used as the
predictor variable to generate the precision-recall curve.
In each setting, the average area under the curve (AUC)
was calculated to reflect the efficacy that the nodes with
true local expression consistency changes were differen-
tiated from other nodes.
As shown in Fig. 2, when the base correlation level c

was equal to the changed correlation level b, at all set-
tings the PR-AUC values were close to zero (Fig. 2). On
the other hand, when the base correlation level c was
different from the changed correlation level b, the PR-
AUC values increased with the sample size, both in the
cases of b > c and in the cases of b < c. When the base
correlation c was high (0.6 or 0.8), the power to detect
the DC nodes was limited (Fig. 2, second and fourth col-
umns). On the other hand, when the base correlation
was at low or medium level (0.2 or 0.4), which was close
to real data situations, the power was reasonably high
when the difference between b and c was high (Fig. 2,
first and third columns). In comparison, testing for differ-
ential expression didn’t detect the differential consistency
on the network in most cases. The differential network
analysis (DNA) method exhibited some power to detect
network differential local consistency, but its AUC values
were lower than the DNLC method in most cases, except
when the base correlation was high, and the network
density was high (Fig. 2, lower-right panel). Although the
DNA method seeks differential correlation, it doesn’t use
network information, which was likely the reason of the
inferior performance. Overall, the simulation results vali-
dated that the DNLC method was effective in separating
the nodes around which the expression consistency were
changed.
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Real data analysis: GSE10255
To test our method, we used the High-quality Interaction
(HINT) database [29] for the human biological network.
Two publicly available expression datasets were analyzed.
The first dataset was the gene expression dataset of acute
lymphoblastic leukemia (ALL) subjects in response to
methotrexate (MTX) treatment (GSE10255) [30]. The
dataset contained 12,704 rows (genes) and 161 columns
(samples). The clinical outcome variable was the reduction
of circulating leukemia cells after MTX treatment. At the
lfdr threshold of 0.2, a total of 510 DC genes were selected.
Furthermore, network modules were detected among the

selected genes and their immediate neighbors on the net-
work. In the following discussion, we focus on the largest
module. The plots and functional annotations of all the
modules are available at web1.sph.emory.edu/users/tyu8/
DNLC/MTX.
We used the GOStats package to find gene ontology

terms that were over-represented by the lists of genes
[26]. For the largest network module (Fig. 3a), the bio-
logical processes overrepresented by the positive DC
genes, i.e. genes with increased local consistency in
patients with higher MTX response, could be catego-
rized into five major groups: phosphorylation and

Fig. 2 Simulation results. The PR-AUC are plotted against the sample sizes. Each data point represents the average result of 50 simulations
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ubiquitination; peptide hormone secretion; catabolic
process; DNA synthetic and repairing; apoptosis and re-
sponse to hyperoxia. All these functions are closely re-
lated to MTX sensitivity in ALL. It has been well-
documented that genes that regulate protein modifica-
tion, apoptosis and DNA synthesis/repair influence
caner development [31]. Both phosphorylation and ubi-
quitination of proteins have been reported to play im-
portant roles in MTX resistance in leukemia treatment.
Phosphorylation of HSC70, an MTX-binding protein,
regulates the transportation of MTX into the cells and
contributes to MTX resistance in L1210 leukemia cells
[32]. It has also been demonstrated that the MTX chemo-
therapeutic effect can be significantly reduced by antiepi-
leptic drugs due to the downregulation of reduced folate
carrier (Rfc1) activity, regulated by the ubiquitin-
proteasome pathway [33]. Among the selected genes by
our method, genes 868 (CBLB), 5705 (PSMC5) and
5717 (PSMD11) regulate protein modifications. Many
research demonstrated the role of CBLB in leukemia
[34, 35], while PSMC5 and PSMD11 were only reported
to be involved in cancer development in very recent
studies [36–38].

We next focus on the genes that regulate hormone
secretion [39], catabolic process [40], and hyperoxia [41],
whose roles in ALL treatment are not self-evident. The
genes that regulate peptide/protein secretion interfere
with the efficacy of chemotherapy to cancer cells by
regulating hormone levels. It has been reported that the
secretion of peptide hormones are changed in ALL [42].
In addition, some papers reported that insulin and
insulin-like factor (IGF) secretions affect the resistance
of chemotherapy in ALL patients [43]. Among the se-
lected genes, genes 640 (BLK proto-oncogene), 3717
(JAK2), 8660 (IRS2) and 25,924 (MYRIP) are major
genes involved in peptide secretions. JAK2 mutation is
believed to have prognostic impact in acute myeloid
leukemia [44–46]. The BLK proto-oncogene is involved
in leukemia development [47]. IRS2 is an adaptor pro-
tein associated with the receptor of erythropoietin,
insulin-like growth factor 1. Defective IRS2 expression
plays a role in impaired hematopoietic cell differenti-
ation [48] .
The selected DC genes also included genes that regu-

late protein catabolic process. It has been reported that
resistance to methotrexate (MTX) in leukemia is related

Fig. 3 The first module from the GSE10255 dataset. a genes with LMI positively associated with MTX response (red); b genes with LMI negatively
associated with MTX response (blue). Entrez gene IDs are used in the plots
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to hydrolase and thymidylate synthase activities, which
are catabolic processes [49]. Among the selected genes,
2308 (FOXO1) and 5707 (PSMD1) are regulators of the
catabolic process. It has been reported that FOXO1 can
play a role in the development of acute myeloid leukemia
(AML) [50]. Currently, there are no report about the rela-
tionship between PSMD1 and leukemia. However, PSMD1
has been reported to be overexpressed in other cancers [51].
The negative DC genes, i.e. genes with decreased local

consistency in patients with higher MTX response (Fig.
3b), were also clearly related to cancer development and
progressions. The over-represented GO terms by the
negative DC genes include immune cell development
and activation [52, 53]; apoptosis [54]; mammary gland
epithelium cell proliferation [55, 56]; cell-cell adhesion
[57], and cell depolymerization [58]. A number of the se-
lected DC genes are known to affect ALL progression.
Also, some of them are known to regulate MTX resist-
ance in leukemia treatment. For example, our method
selected genes 595 (CCND1) and 3398 (ID2) that regu-
late mammary gland epithelial cell proliferation. It has
been reported that CCND1 G870A polymorphism is as-
sociated with the risk of leukemia and toxicity of MTX

in ALL [59, 60]. ID2 is known to be associated with
chemotherapy response and prognosis in acute myeloid
leukemia [61].

Real data analysis: TCGA BRCA dataset
We applied the method to a second data set, the breast
cancer (BRCA) gene expression dataset from The Can-
cer Genome Atlas (TCGA). We used the Cox propor-
tional hazards model to link gene LMI values with
patient survival outcome, while adjusting for baseline
demographic variables including age, gender, and ethni-
city. The plots and functional annotations of all the
modules are at web1.sph.emory.edu/users/tyu8/DNLC/
BRCA. Again we focus on the largest modules for the
discussion here.
In the first module (Fig. 4a), the negative DC genes,

i.e. genes with decreased local consistency in patients
with lower risk, appear to be more functionally coher-
ent. The biological processes over-represented by the
negative DC genes include protein/peptide metabolic
process, biogenesis, or membrane targeting and trans-
port, which are obviously related to breast cancer de-
velopment. As examples, genes 6125 (RPL5) and 6138

Fig. 4 The first two modules from TCGA BRCA data. a module 1; b module 2. Red: LMI positively associated with survival; blue: LMI negatively
associated with survival. Entrez gene IDs are used in the plots
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(RPL15) were among the most significant genes in
the list. RPL5 has been reported to be a tumor sup-
pressor gene in breast cancer development [62].
While there is no research paper reporting the role of
RPL15 in breast cancer, one study suggested the
methylation of RPL15 may be involved in cancer de-
velopment [63]. Genes 333 (APLP1), 476 (ATP1A1),
1113 (CHGA), and 2026 (ENO2) were on the positive
gene list. ATP1A1 has been previously reported to be
over-expressed in breast cancer [64]. The overexpres-
sion CHGA, a neuroendocrine carcinomas marker,
characterizes 10% of infiltrative breast cancer [65].
ENO2 is used as a biomarker to help identify neuro-
endocrine differentiation in breast cancer [66].
In module 2 (Fig. 4b), the majority of the positive

genes were involved in protein ubiquitination, which is a
critical process in cancer development [67]. Functional
groups of the negative genes include I-Kappa B kinase
signaling. Nuclear factor kappa-beta (NF-kappaB) is a
transcription factor that modulates the expression of
many genes involved in cell proliferation, differentiation,
apoptosis and metastasis. Nuclear factor-kappa B is used
as a predictor of treatment response in breast cancer
[68]. Expression of nuclear factor kappa B (NF-κB) is
also used as a predictor of pathologic response to
chemotherapy in patients with locally advanced breast
cancer [69]. In the I-Kappa B kinase signaling pathway,
our method found genes 4792 (NFKBIA), 23,476
(BRD4), and 79,155 (TNIP2) to be significantly associ-
ated with breast cancer survival. One study investigated
common variants within the gene coding region for NF-
kappaB and IkappaB, NFKB1 and NFKBIA, for involve-
ment in sporadic breast cancer. However, the results did
not support an involvement of the NFKBIA polymor-
phisms in sporadic breast cancer in the Caucasian popu-
lation [70].
The local consistencies of genes 3636 (INPPL1) and

5027 (P2RX7) were also found to be negatively associ-
ated to breast cancer survival. They regulate phospho-
lipid dephosphorylation and transport. INPPL1 is also
known as SHIP2, which is involved in breast cancer de-
velopment [71–73]. P2RX7 is also known as P2X7. Puri-
nergic signaling has been implicated in the regulation of
many cellular processes and is involved in tumor devel-
opment and metastasis. Reports revealed that the activa-
tion of the P2X7 receptor promotes breast cancer cell
invasion and migration, and the P2X7 receptor may be a
useful therapeutic target for the treatment of breast
cancer [74].

Discussions
In this manuscript, we presented a new method to detect
differential consistency (DC) genes on the biological

network, as well as network modules where DC genes
are concentrated. By using the Local Moran’s I (LMI) for
measuring local expression consistency on the network,
and using the regression framework, the method is ver-
satile enough to be able to study continuous, categorical,
and survival outcomes.
Given a large-scale network containing thousands of

nodes, the number of possible sub-networks is astro-
nomical. Thus we take the approach of focusing on a
specific type of subnetwork: the ego-network, which is
defined by the neighborhood of a given node [11]. This
approach reduces the number of sub-networks to the
number of nodes in the network. The algorithm focuses
on the relations between the center node of each sub-
network to its surrounding nodes, using the LMI to
measure their expression consistency. The computing
time of the method increases roughly linearly with the
number of genes (nodes) and the sample size (Fig. 5).
For example, with 10,000 genes and 500 samples, the
method costs roug hly 12 min using single thread
computation.

Conclusion
In simulations and real data analyses, we have shown
the method is effective in finding genes around which

Fig. 5 The computing time of the DNLC method. The computing
time was recorded on a Lenovo Think Station P9000 with Xeon E5–
2630 CPU, using a single thread for computing
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expression consistency changes in response to the
clinical outcome. The method is a useful tool that
complements traditional differential expression type of
analyses to make discoveries from gene expression
data.
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