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leukemia unveils distinct mutational patterns between genetic 
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AbstrAct
To characterize the mutational patterns of acute lymphoblastic leukemia (ALL) 

we performed deep next generation sequencing of 872 cancer genes in 172 diagnostic 
and 24 relapse samples from 172 pediatric ALL patients. We found an overall 
greater mutational burden and more driver mutations in T-cell ALL (T-ALL) patients 
compared to B-cell precursor ALL (BCP-ALL) patients. In addition, the majority of the 
mutations in T-ALL had occurred in the original leukemic clone, while most of the 
mutations in BCP-ALL were subclonal. BCP-ALL patients carrying any of the recurrent 
translocations ETV6-RUNX1, BCR-ABL or TCF3-PBX1 harbored few mutations in driver 
genes compared to other BCP-ALL patients. Specifically in BCP-ALL, we identified 
ATRX as a novel putative driver gene and uncovered an association between somatic 
mutations in the Notch signaling pathway at ALL diagnosis and increased risk of 
relapse. Furthermore, we identified EP300, ARID1A and SH2B3 as relapse-associated 
genes. The genes highlighted in our study were frequently involved in epigenetic 
regulation, associated with germline susceptibility to ALL, and present in minor 
subclones at diagnosis that became dominant at relapse. We observed a high degree 
of clonal heterogeneity and evolution between diagnosis and relapse in both BCP-ALL 
and T-ALL, which could have implications for the treatment efficiency.
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IntroductIon

Acute lymphoblastic leukemia (ALL), the most 
common pediatric cancer, is a genetically heterogeneous 
disease that arises from the malignant transformation of 
lymphoid progenitors at different developmental stages. 
Although impressive improvements in treatment strategies 
during recent decades have resulted in survival rates now 
exceeding 85%, relapsed ALL remains a leading cause of 
cancer-related death in children [1]. Recurrent large-scale 
chromosomal aberrations in B-cell precursor ALL (BCP-
ALL) define genetic subtypes, which are used to support 
therapeutic decisions and correlate with the clinical 
outcome. Hyperdiploidy (51–67 chromosomes) and the 
t(12;21)ETV6-RUNX1 rearrangement are characteristic 
for the most common subtypes and are associated with 
a favorable outcome while MLL rearrangements and 
hypodiploidy have poor prognosis [2]. About 30% of the 
pediatric BCP-ALL patients remain uncharacterized by 
currently used genetic analyses at ALL diagnosis. The 
T-cell immunophenotype (T-ALL) comprises about 15% 
of pediatric ALL patients [3].

Next generation sequencing technology has opened 
up new possibilities to identify cancer mutations. Large-
scale sequencing studies of ALL genomes have identified 
driver mutations that affect lymphoid development 
and signaling, tumor suppression as well as cell cycle 
regulation, Ras and tyrosine signaling, cytokine receptors, 
and epigenetic regulation (reviewed in [4, 5]). Analyses 
of matched diagnostic and relapse samples have revealed 
that relapse-acquired mutations are enriched in genes 
involved in epigenetic regulation, tumor suppression, Ras 
signaling and drug metabolism [6–10]. It has also been 
shown that clonal heterogeneity is common in ALL, and 
that the dominant clone at relapse often evolves from a 
minor clone present at diagnosis [9].

In the genetic subtypes of ALL studied to date the 
prevalence of mutations in driver genes differs markedly 
[4]. With the exception of the finding that patients 
with MLL-rearrangements harbor very few somatic 
mutations [11], quantitative comparison between the 
different subtypes has yet to be performed. To explore 
the mutational spectrum in the distinct subtypes of ALL 
and study clonal evolution on the path to relapse, we 
sequenced 872 cancer genes in a large set of ALL patients, 
including relapse samples from a subset of the patients. 
The design of our study, which includes pediatric ALL 
patients of multiple subtypes, offers a unique opportunity 
to compare the pathogenesis between the subtypes. 

results

To comprehensively characterize the patterns of 
somatic mutations in pediatric ALL, we performed deep 
next generation sequencing of the exons of 872 cancer 
genes (Supplementary Table S1) in samples from 337 

patients with pediatric ALL. We included all genes in the 
Cancer Gene Census (http://cancer.sanger.ac.uk/census), 
and additional genes that have been shown in previous 
studies to be related to ALL or other types of cancer. Of 
the 337 patients, 172 were sequenced individually and 
are referred to as the “diagnostic cohort”. The diagnostic 
cohort includes 148 BCP-ALL patients and 24 T-ALL 
patients (Table 1, Supplementary Table S2) from four 
Swedish pediatric oncology clinics that use harmonized 
diagnostic criteria and treatment protocols. The BCP-
ALL patients comprised 107 patients from eight recurrent 
cytogenetic subtypes, 19 patients with a normal karyotype 
and 22 patients with non-recurrent clonal abnormalities 
as detected by routine cytogenetic analysis at diagnosis. 
We sequenced a sample collected at diagnosis from all 
172 patients in the diagnostic cohort. For 143 of these 
patients, referred to as the “core cohort”, sequence data 
from a germline reference sample collected at remission 
was available [12]. In addition, 24 samples collected 
at relapse from 19 of the patients were included in the 
study (Supplementary Table S3). Diagnostic samples 
from the 165 patients that were not part of the diagnostic 
cohort were sequenced in pools and are referred to as 
the “extension cohort”. The extension cohort was used 
for further investigation of genes predicted as putatively 
associated with relapse. The different cohorts are 
illustrated in Supplementary Figure S1.

somatic mutations at All diagnosis 

We detected 973 somatic single nucleotide 
variants (SNVs), 35 deletions and 34 insertions in the 
872 sequenced genes in the diagnostic cohort (n = 172) 
(Supplementary Table S4). In the core cohort (n = 143) 
the average number of somatic mutations detected per 
patient was 3.9 (range 0–31) (Figure 1A, Supplementary 
Figure S2), after exclusion of one outlier patient with high 
hyperdiploid (HeH) ALL (ALL_370) who harbored as 
many as 120 somatic mutations. We detected significantly 
more somatic mutations in T-ALL patients compared to 
BCP-ALL patients (averages of 6.4 and 3.5, p = 1.7 *10−4, 
Figure 1A), in line with our previous results from whole 
genome sequencing of four ALL patients [12]. We found 
no correlation between number of mutations and age at 
diagnosis (Supplementary Figure S3), indicating that the 
difference between the immunophenotype groups was 
not related to the older age of T-ALL patients (average 
of 10.1 and 6.9 years in the core cohort). We found no 
difference in terms of number of mutations between the 
major BCP-ALL subtypes (Figure 1A). In the 29 BCP-
ALL and T-ALL patients that are not part of the core 
cohort we identified 13.0 (range 3–35) mutations on 
average (Supplementary Figure S2). The higher number 
of mutations detected in these patients is expected, since 
the lack of a matched germline sample will allow rare 
germline variants to escape filtering. We found no somatic 
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or germline mutations, e.g. in DNA repair genes, that 
could explain the apparent hypermutation in the patient 
ALL_370. However, we cannot exclude the presence 
of such mutations since only a subset of all genes was 
sequenced.

The deep coverage in our sequence data (average 
638×) allowed accurate determination of mutant allele 
fractions that can be used to identify subclones. The allele 
fractions (AF) in the core cohort were distributed into two 
peaks, with an estimated boundary between the peaks 
at AF 0.32 (Figure 1B). A mutation that was present in 
the original leukemic clone is expected to be present in 
all leukemic cells at diagnosis, and have an AF slightly 
below 0.5, depending on the percentage of leukemic cells 
in the sample (typically 80–95%). Mutations in the peak 
with low AF are most likely subclonal, i.e. they occurred 
after the establishment of the original clone, and are 
consequently present only in a subset of the leukemic 
cells. A larger fraction of the somatic mutations in T-ALL 
compared to BCP-ALL belong to the peak with high AF 
(p = 3.3 * 10−10, Figure 1B, Supplementary Figure S4), 
while no trend of a difference was observed between the 
BCP-ALL subtypes (Supplementary Figure S4). Virtually 

all mutations in the hypermutated BCP-ALL sample 
(ALL_370) appeared to be subclonal (Figure 1B), despite 
an estimated percentage of leukemic cells of 90% in this 
sample. 

In the core cohort we observed an overall high 
abundance of C > T and C > A single-base substitutions 
across the ALL subtypes (Figure 1C). Based on 
information on the trinucleotide context of the somatic 
SNVs (i.e., the nucleotides before and after the SNV), 
we inferred the predominant mutational signatures in 
the diagnostic cohort and compared these signatures to 
previously described signatures [13]. Two such signatures 
were identified. One of them occurs as the result of an 
endogenous mutational process that has been observed in 
all cancer types and is characterized by C > T substitution 
at methylated cytosines. The second signature is 
characterized by a high proportion of C > G substitutions 
at TpCpA or TpCpT motifs (Supplementary Figure S5), 
was predominantly observed in BCP-ALL patients with 
the t(12;21) subtype, and is known to be induced by 
increased activity of the AID/APOBEC family of cytidine 
deaminases [13]. In comparison to BCP-ALL, the T-ALL 
patients showed a high fraction of C > T substitutions at 

table 1: Genetic subtypes, clinical outcome and number of driver mutations detected in All 
patients included in the diagnostic cohort (n = 172)

subtypea no. of
patientsb

no. of
relapses

no. of
other eventsc

Patients 
with ras 

mutationsd

no. of driver 
mutations per 

patiente

no. of patients 
with no 
driverf

T-ALL 24 (20) 2 4 3 (12%) 2.33 5 (21%)
HeH 47 (40) 9 0 29 (62%) 1.26 13 (28%)
t(12;21) 36 (28) 9 1 3 (8%) 0.28 28 (78%)
Other 22 (20) 7 0 11 (50%) 0.68 9 (41%)
Normal 19 (16) 4 1 7 (37%) 0.89 7 (37%)
t(9;22) 8 (5) 3 2 0 (0%) 0.50 4 (50%)
11q23/MLL 4 (4) 2 0 1 (25%) 0.50 3 (75%)
iAMP21 4 (4) 2 0 1 (25%) 0.50 3 (75%)
t(1;19) 4 (4) 1 0 0 (0%) 0.25 3 (75%)
dic(9;20) 3 (2) 1 1 2 (67%) 0.67 1 (33%)
>67chr 1 (0) 0 0 1 (100%) 2.00 0 (0%)
aHeH, high hyperdiploidy (51–67 chromosomes); t(12;21), translocation between the chromosomes (12;21)(p13;q22)
ETV6-RUNX1; t(9;22), translocation between the chromosomes (9;22)(q11;q34)BCR-ABL1; 11q23/MLL, translocation 
between MLL and various other genes; iAMP21, intrachromosomal amplification of chromosome 21; t(1;19), translocation 
between the chromosomes (1;19)(q23;p13)TCF3-PBX1; dic(9;20), dicentric chromosome (9;20)(p13;q11); > 67 chr, > 67 
chromosomes; Other, other clonal aberrations; Normal, no genetic aberrations detected and a normal karyotype observed 
in at least 5 of 25 metaphases. Patients that are not marked T-ALL have the BCP-ALL immunophenotype.
bWithin parenthesis is the number of patients that are part of the core cohort of patients with a matched germline sample.
cOther events include death in clinical remission 1 (DCR1), secondary malignancy (SMN), resistant disease and failed 
induction.
dNumber of non-silent mutations in the genes KRAS, NRAS, PTPN11 and FLT3 are listed. 
eMean number of non-silent mutations in 19 predicted driver genes.
fNumber of patients that do not have a non-silent mutation in any of the predicted driver genes.
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Figure 1: somatic mutations in acute lymphoblastic leukemia (All). (A) Boxplots showing the median number of somatic 
mutations detected at diagnosis in T-ALL, BCP-ALL, and the major genetic subtypes of BCP-ALL. Results from all patients with paired 
diagnostic and germline samples that constitute the core cohort are shown, excluding the hypermutated patient with the HeH subtype 
(ALL_370). The number of mutations is shown on the vertical axis and the patient subgroups, with number of individuals in each group, 
are indicated on the horizontal axis. BCP-ALL patients with non-recurrent genetic aberrations or any of the rare subtypes t(9;22), 11q23/
MLL, iAMP21, t(1;19), dic(9;20) are combined into one group denoted “Rest”. For clarity, one 11q23/MLL patient and two with normal 
karyotype that have more than 14 mutations (n = 16, 16, 31) are not shown in the figure although they were included in the analysis. (b) 
Subclonal structure inferred from somatic single nucleotide variants (SNVs) detected at diagnosis in T-ALL and the genetic subtypes 
of BCP-ALL. The five left-most panels show the allele fraction (AF) of SNVs (n = 610) detected in the patients from the core cohort, 
excluding ALL_370. Each gray vertical line denotes a patient and the black dots represent the mutations identified in each patient. Patients 
are sorted according to genetic subtype, as indicated above the panels. Mutations with apparently high AF are in most cases located on the 
X chromosome in males or in mitochondrial DNA. The two panels to the right show density plots of the AF of the SNVs in the core cohort, 
and ALL_370 (n = 117), respectively. In the core cohort, T-ALL and BCP-ALL patients are shown separately. The density peak with a 
maximum AF close to 0.4 corresponds to mutations presumably present in all leukemic cells, and the second peak with a maximum AF 
below 0.25 corresponds to subclonal mutations. (c) Pattern of single base substitution in patients with T-ALL, BCP-ALL, and the major 
genetic subtypes of BCP-ALL. The relative fraction of each substitution type is shown for the ALL patients in the core cohort as indicated 
by the color key. 
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ApCpG sequence motifs, both in the core cohort analysed 
here and in the whole genome sequenced patients in our 
previous study [12] (Supplementary Figures S6–S7).

driver genes

To identify the genes involved in the development 
of pediatric ALL we performed computational screening 
for driver genes based on the somatic mutations in the 
diagnostic cohort. We identified 19 putative driver genes 
(Table 2, Figure 2, Supplementary Figure S8) using a 
combination of three bioinformatics tools that are based 
on the assumptions that driver genes have more mutations 
than expected by chance, more mutations with a high 
functional impact, or tight clustering of mutations within 
a gene. Twelve of the 19 genes are well known driver 
genes in ALL from previous studies, which demonstrates 
the robustness of our results. We also replicate the finding 
of RPL10 as a T-ALL driver, which has only been reported 
once before [14]. KMT2D was previously found by us 
in the same cohort of ALL patients [12], and the ATRX, 
SYNE1, FUBP1, DNAH5, and ABCB5 genes, which were 
all identified in BCP-ALL, have not previously been 
described as driver genes for ALL. 

Because solely the identification of a gene by a 
computational tool does not imply that the gene is a 
driver gene, we analyzed the five novel putative driver 
genes in more detail. Each of the 14 previously described 
ALL driver genes was expressed on the RNA level and 
harbored mutations that were present in the original 
leukemic clone (Table 2, Figure 3). Thus it is plausible 
that novel driver genes would also show the same pattern 
in terms of gene expression and clonality, a criterion 
only fulfilled by ATRX and SYNE1 (Table 2, Figure 3). 
Computational predictions by PolyPhen-2 and SIFT 
suggested that virtually all ATRX and SYNE1 mutations 
could be deleterious (Supplementary Table S5). However, 
inspection of the protein sequence and structure indicated 
that none of the SYNE1 mutations have a strong effect on 
the protein (Supplementary Table S5). In addition, SYNE1 
is one of the largest genes in the human genome and its 
function appears unrelated to hematopoiesis and cancer. 
Thus, SYNE1 might not be a true driver gene in ALL. In 
contrast, several of the ATRX mutations are likely to have 
an effect on the protein (Supplementary Table S5), and this 
gene might represent a novel ALL driver gene. 

We observed major differences in terms of driver 
genes between T-ALL and BCP-ALL patients. The most 
prevalent driver mutations were in NOTCH1 in T-ALL and 
in the Ras signaling pathway (NRAS, KRAS, PTPN11 and 
FLT3) in BCP-ALL (Figure 2, Supplementary Figure S8). 
We found a non-frameshift deletion in the known ALL 
driver gene FLT3 in five HeH patients, which to our 
knowledge has not previously been reported as a recurrent 
mutation in ALL. T-ALL patients harbored on average more 
mutations in putative driver genes than BCP-ALL patients, 

and were less likely to lack a driver mutation (p = 9.7 * 10−5, 
Table 1, Supplementary Figure S9). Significant differences 
in number of putative driver mutations were also observed 
between the BCP-ALL subtypes, with most driver mutations 
in patients with HeH and few mutations in patients with 
the recurrent translocations ETV6-RUNX1, BCR-ABL, 
or TCF3-PBX1 (p = 1.9 * 10−5, Table 1, Supplementary 
Figures S9). The driver mutations in the Ras signaling 
pathway displayed a similar pattern, with few mutations 
in patients with recurrent translocations (Supplementary 
Figure S10). The only gene that was identified as a driver 
in the t(12;21) BCP-ALL patients was WHSC1 (NSD2) 
(Supplementary Figure S8). A total of 76 patients (44%) 
in the diagnostic cohort did not harbor any non-silent 
mutation in the 19 predicted driver genes (Table 1).  
In contrast to a previous study in chronic lymphoblastic 
leukemia, where patients with more driver mutations 
displayed a lower overall survival [15], we found no 
correlation between the number of putative driver mutations 
and clinical outcome (Supplementary Figure S11). 

Genes and pathways associated with relapse

To identify genes and pathways that are associated 
with relapse in ALL, we performed survival analysis 
using Gray’s test based on the somatic mutations detected 
in the diagnostic cohort. We analyzed all genes that 
harbored non-silent mutations in at least five patients in a 
specific patient subgroup (n = 0–10 genes per group). No 
single gene was found to be significantly associated with 
relapse. In a separate analysis, mutations were assigned 
to pathways according to the Kyoto Encyclopedia of 
Genes and Genomes (KEGG). All pathways that were 
mutated in at least five patients in a subgroup (n = 10–60  
pathways per group) were included in the analysis. 
We found an increased risk of relapse for BCP-ALL 
patients with a mutation in the Notch signaling pathway 
(p = 0.0237, Figure 4). Mutations in genes in the Notch 
pathway in patients that relapsed included nonsynonymous 
SNVs (nsSNVs) in CREBBP (n = 3), EP300 (n = 1), 
MAML2 (n = 1), HDAC2 (n = 1), NOTCH2 (n = 1) and 
DTX1 (n = 1), all of which are expressed in BCP-ALL 
(Supplementary Table S5). Computational predictions and 
functional evidence suggest that each of these patients 
harbored a damaging mutation in the Notch pathway at 
diagnosis (Supplementary Table S5). We also identified 
Notch pathway mutations that were called only at relapse 
in CREBBP (n = 3), which is a known relapse-associated 
gene in ALL [6], EP300 (n = 2), NOTCH1 (n = 1) and 
NOTCH2 (n = 1). EP300 is a paralog to CREBBP which 
has not yet been shown as relapse-associated in ALL, 
and the recurrent mutations in this gene are thus highly 
interesting. Investigation of the extension cohort identified 
one additional non-silent mutation in EP300, and the 
patient that harbored this mutation also relapsed (Table 3, 
Supplementary Table S5). 
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A mutation that was called at relapse but not at 
diagnosis has either occurred after the diagnostic sample 
was collected or it was present at diagnosis in a subclone 
too small to be identified by standard variant calling 
methods (see the next section on clonal evolution). 
Since in both cases, the mutation is present in a much 
larger proportion of leukemic cells at relapse compared 
to diagnosis and could have been involved in driving 
the relapse, we refer to these mutations collectively as 
“relapse-gained”. In addition to the CREBBP and EP300 

mutations described above, recurrent non-silent relapse-
gained mutations were detected in NOTCH1 (n = 3), 
KRAS (n = 2) and NT5C2 (n = 2), all of which are 
known in ALL, as well as SYNE1 (n = 2) and MUC5B 
(n = 2). Both relapse-gained mutations in SYNE1 appear 
benign (Supplementary Table S5), and MUC5B is not 
expressed in ALL. By joint analysis of relapse-gained 
and diagnostic mutations, including the extension cohort, 
we found that BCP-ALL patients with EBF1 or AFF3 
mutations and T-ALL patients with ARID1A mutations 

Table 2: Driver genes identified in ALL patients included in the diagnostic cohort (n = 172)

Gene Gene description cytoband GeX 
(FPKM)a All subtypeb All 

association
NOTCH1 notch 1 9q34.3 7.8 T-ALL T-ALL [21]
PTEN phosphatase and tensin homolog 10q23 152 T-ALL T-ALL [55]
PHF6 PHD finger protein 6 Xq26 13.1 T-ALL T-ALL [56]

FBXW7 F-box and WD repeat domain 
containing 7 4q31.23 23.7 T-ALL T-ALL [57]

DNM2 dynamin 2 19p13.2 11.2 T-ALL T-ALL [27]
RPL10 ribosomal protein L10 Xq28 339.1 T-ALL T-ALL [14]

NRAS neuroblastoma RAS viral oncogene 
homolog 1p13.2 31

BCP-ALL, 
HeH, normal, 
T-ALL

ALL [58]

KRAS KRAS proto-oncogene, GTPase 12p12.1 10.9 BCP-ALL, 
HeH ALL [59]

PTPN11 protein tyrosine phosphatase, non-
receptor type 11 12q24.1 48.6 BCP-ALL, 

HeH
BCP-ALL 
[60]

FLT3 fms related tyrosine kinase 3 13q12 61.3 BCP-ALL, 
HeH

HeH [61], 
11q/MLL 
[62]

CREBBP CREB binding protein 16p13.3 9 BCP-ALL, 
HeH

BCP-ALL 
[6]

KMT2D lysine methyltransferase 2D 12q13.12 15.4 BCP-ALL ALL [12]

WHSC1 Wolf-Hirschhorn syndrome candidate 1 4p16.3 48.2 BCP-ALL, 
t(12,21) t(12;21) [63]

IL7R interleukin 7 receptor 5p13 39.9 BCP-ALL, 
normal, T-ALL

BCP-ALL 
[64], T-ALL 
[65]

ATRX alpha thalassemia/mental retardation 
syndrome X-linked Xq21.1 41.1 BCP-ALL

SYNE1 spectrin repeat containing nuclear 
envelope protein 1 6q25.2 12.7 BCP-ALL, 

HeH
FUBP1 far upstream element binding protein 1 1p31.1 102.4 BCP-ALL
DNAH5 dynein axonemal heavy chain 5 5p15.2 0 BCP-ALL

ABCB5 ATP binding cassette subfamily B 
member 5 7p14 0.1 BCP-ALL

aThe shown expression value represents the mean of 18 T-ALL samples (for the genes identified as drivers only in T-ALL) 
or 27 BCP-ALL samples (for the remaining genes). FPKM, fragments per kilobase of transcripts per million mapped reads.
bThe ALL immunophenotype(s) and subtype(s) in which the gene was identified as a driver. BCP-ALL signifies that the 
gene was identified as driver in the set of all BCP-ALL samples. 
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table 3: somatic mutations in genes putatively associated with All relapse

Gene Protein 
change Patienta subtypeb sIFtc PP2d origine AFf GeX 

(FPKM)g Functional evidenceh

AFF3 p.I941V ALL_260 t(9;22) T B Dia (E) NA 87 Small change in amino 
acid properties *

AFF3 p.E811K ALL_784 HeH T D Dia (D) 0.46 87

Disordered part of 
the protein that folds 
upon binding. Could 
affect protein-protein 
interaction [66]

AFF3 NA ALL_128 other NA NA Rel 2 0.16 87 Splice site SNV *

ARID1A p.T626P ALL_217 T-ALL D D Dia (E) NA 20.8

Close to DNA-binding 
where the proline’s 
ability to bend the 
backbone is likely to 
affect the binding [67] *

ARID1A p.R893X ALL_358 T-ALL NA NA Rel 1 0.30 20.8
Premature stop codon 
that removes the 
majority of the protein *

EBF1 p.V440L ALL_54 HeH T B Dia (E) NA 131.1 Small change in amino 
acid properties *

EBF1 p.N100fs ALL_27 normal NA NA Rel 1 0.41 131.1
Frameshift that removes 
the majority of the 
protein *

EBF1 p.N100RN ALL_27 normal NA NA Rel 1 0.41 131.1

In DNA-binding domain 
but far away from the 
DNA binding site [68, 
69] *

EBF1 p.N100FGN ALL_168 t(9;22) NA NA Dia (D) 0.40 131.1

In DNA-binding domain 
but far away from the 
DNA binding site [68, 
69] *

EP300 p.N700K ALL_365 iAMP21 T D Dia (D) 0.24 10.7 Medium change in 
amino acid properties *

EP300 p.Q734R ALL_821 other T D Dia (E) NA 10.7 Small change in amino 
acid properties *

EP300 p.A794T ALL_244 other T D Rel 1 0.49 10.7 Medium change in 
amino acid properties *

EP300 p.S225SN ALL_5 11q23/
MLL NA NA Rel 2 0.27 10.7

Located close to a 
region involved in 
various protein-protein 
interactions *

aAll patients relapsed except ALL_168 who suffered from a secondary malignancy. 
bFor explanation of the subtypes, see legend to Table 1. 
cSIFT predictions: D, damaging; T, tolerated. 
dPolyPhen-2 (PP2) predictions: D, probably damaging; P, possibly damaging; B, benign.
eIndicates at which disease state (Dia, diagnosis; Rel 1, first relapse; Rel 2, second relapse) and in which cohort (D, 
diagnostic; E, extension) the mutation was first called. 
fThe mutations identified in the extension cohort have no allele fraction (AF) since they were called in pools of samples. 
gThe shown expression value represents the mean of 18 T-ALL samples (for ARID1A) or 27 BCP-ALL samples (for the 
remaining genes). FPKM, fragments per kilobase of transcripts per million mapped reads.
hA star indicates that no structural information was available for this region of the protein.
Additional information about these mutations is available in Supplementary Table S5.



Oncotarget64078www.impactjournals.com/oncotarget

relapsed frequently. Six patients, of which five relapsed 
and one experienced a secondary malignancy, harbored 
mutations in EBF1 or AFF3 (Table 3, Supplementary 
Table S5). However, computational prediction and 
structural information indicate that several of these 
mutations have no major effect on protein function 
(Table 3, Supplementary Table S5). Thus, although these 
genes are highly relevant in the context of BCP-ALL, 
their putative association with relapse needs to be further 
investigated in larger studies. Out of four T-ALL patients 
in the diagnostic and extension cohorts who relapsed, two 
harbored mutations in ARID1A. The mutations included 
a nonsense SNV and a nsSNV that introduced a proline 
at a position where it is likely to disrupt DNA binding 
(Table 3, Supplementary Table S5). Thus both mutations 
in ARID1A are predicted to have a strong functional 
impact on the encoded protein.

clonal evolution between diagnosis and relapse

In the 19 patients from whom paired diagnosis-
relapse samples were sequenced we identified 313 somatic 
mutations, including 69 mutations that were called only at 
diagnosis and 95 that were relapse-gained (Supplementary 
Tables S4, S6 and S7). We detected subclonal mutations 
at diagnosis and gain and/or loss of mutations at relapse 
in each of the 19 patients. Among the ALL driver genes, 
gain and loss of mutations were particularly common 
in the genes from the Ras pathway, with seven out of 
nine non-silent diagnostic Ras mutations lost at relapse 
and six relapse-gained mutations (Figure 5). Since we 
sequenced to a high coverage, we were able to determine 
whether mutations that were only called at relapse were 
in fact present in a minor subclone already at diagnosis 
by examining single reads that supported the variant. We 
found that 20 of the 95 relapse-gained mutations were 
detectable at low level (AF < 2%) at diagnosis, and six 

Figure 2: driver genes in acute lymphoblastic leukemia (All). Driver genes identified by computational analysis of somatic 
mutations detected at ALL diagnosis. In the top panel, each row represents a gene, each column represents an ALL patient, and each colored 
box indicates a mutation. Patients with at least one mutation in any of the predicted driver genes are shown. For patients with more than 
one mutation in the same gene, the color is prioritized according to the order shown in the color key in the figure. The violet bars below 
each column in the top panel indicate patients that are part of the core cohort with a matched germline sample. The clinical outcome and the 
genetic subtype of each patient are shown by grey bars in the two bottom panels. CR1, clinical remission 1; DCR1, death in CR1; SMN, 
secondary malignancy.
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Figure 3: Allele fractions of somatic mutations in driver genes. Allele fractions of all non-silent somatic mutations (n = 167) 
detected in predicted driver genes at ALL diagnosis. Allele fractions are plotted on the vertical axis and gene names are shown on the 
horizontal axis. To the right of the large panel is a density plot which includes all mutations shown in the figure. 

Figure 4: survival analysis of acute lymphoblastic leukemia (All) patients with and without mutations in the notch 
signaling pathway. Cumulative incidence of relapse in BCP-ALL patients in the diagnostic cohort with mutations in the Notch signaling 
pathway. The blue line represents patients that have at least one non-silent mutation in the Notch signaling pathway and the red line 
represents the remaining BCP-ALL patients. The Bonferroni-corrected Gray’s test p-value is shown. The symbols shown on the cumulative 
incidence curves represent the clinical outcome of patients that did not relapse. Vertical bars indicate clinical remission 1 (CR1), circles 
indicate resistant disease, and squares indicate secondary malignancy.
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additional mutations that were called only at the second 
relapse were detectable at low level at the first relapse 
(Figure 6A, Supplementary Figure S12). These results 
indicate that relapse clones are often derived from minor 
subclones that are present already at diagnosis and survive 
therapy. In contrast, only six of the 69 mutations called 
only at diagnosis were detectable at relapse, which 
indicates that it is a rare event that the prevalence of a 
clone is diminished without being eradicated. 

While the allele fractions of mutations that were 
called at both diagnosis and first relapse were in most 
cases relatively similar (Figure 6A), nine patients showed 
evidence of an expanding clone. Such rising clones 
are particularly interesting because they could harbor 
mutations that confer resistance to therapy. We have 
selected two BCP-ALL patients with non-recurrent clonal 
aberrations (ALL_128 and ALL_244) and one T-ALL 
patient (ALL_358) to illustrate the patterns of rising clones 
(Figure 6B–6D). In ALL_128 we observed simultaneous 
expansion of a clone harboring loss-of-function mutations 
in SH2B3 and ETV6 and loss of the wild type alleles of 
these genes which resulted in mutations present in a large 
proportion of leukemic cells (Figure 6B). We inferred 
two distinct rising clones in both ALL_244 (Figure 6C) 
and ALL_358 (Figure 6D). Two of these clones harbored 
mutations in EP300 or ARID1A, which were both 
identified as putatively associated with relapse (see 
previous section on genes associated with relapse), and 
one clone harbored a mutation in the previously known 
relapse-associated gene NT5C2 [7, 16].

dIscussIon

In the current study, we describe somatic mutations 
detected by deep targeted sequencing in a large cohort 
of pediatric ALL patients comprising different genetic 
subtypes. In light of the recent demonstration that the 
strategies used for both sequencing and data analysis can 
greatly influence the results of somatic variant calling 
[17], our study design is particularly useful for comparison 
of the mutational landscapes between immunophenotypes 
and subtypes of ALL. We found several differences 
between the T-ALL and BCP-ALL groups. These 
distinctive differences include an overall larger number 
of mutations and a larger number of mutations in driver 
genes in T-ALL. The high sequence depth of our study 
allowed accurate determination of allele fractions, which 
enabled us to observe that a higher proportion of the 
somatic mutations in T-ALL than in BCP-ALL were 
present already in the original leukemic clone. A possible 
explanation for this is that T-ALL generally has a faster 
and more explosive course than BCP-ALL, thus there has 
been less time to collect additional mutations since the 
establishment of the ancestral leukemic clone. 

A striking difference between the BCP-ALL 
subtypes is that the patients carrying the recurrent 
fusion genes ETV6-RUNX1, BCR-ABL or TCF3-PBX1 
harbored exceptionally few mutations in known driver 
genes compared to the other BCP-ALL patients. This 
finding may indicate that the fusion genes themselves 
act as strong drivers, so that few or no additional driver 

Figure 5: Gain and loss of driver mutations at relapse of acute lymphoblastic leukemia (All). Putative driver mutations 
detected at diagnosis and relapse in 19 ALL patients from whom relapse samples were sequenced. Each column represents an ALL sample 
with vertical black lines to mark separation between patients. Samples from the same patient are sorted chronologically (diagnosis, first 
relapse, second relapse). In the main panel, each row represents a gene and each colored box indicates a mutation. For samples with more than 
one mutation in the same gene, the color is prioritized according to the order shown in the legend. The numbers of gained and lost mutations 
are summarized to the right of the main panel for each gene. The genetic subtype of each patient is shown in grey in the lower panel.
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Figure 6: clonal evolution of acute lymphoblastic leukemia (All) cells. (A) Allele fractions of somatic mutations detected 
in the 19 patients from whom relapse samples were sequenced. Mutations detected at both diagnosis and relapse are shown in the large 
square, and those with indications of being part of rising clones are highlighted in green. The rectangular areas at the bottom and the left 
show mutations only detected at diagnosis (blue) and relapse (red), respectively. (b–d) Examples of clonal evolution patterns in the BCP-
ALL patients ALL_128 and ALL_244 with non-recurrent clonal aberrations, and in T-ALL patient ALL_358. Each circle represents an 
inferred subclone, marked with the estimated percentage of leukemic cells in this clone. The green squares represent aberrations detected 
by cytogenetic analysis. The most important mutations in each clone are shown. A red cross indicates that the clone is inferred to have been 
eradicated by therapy. A double circle or triangle indicates loss of heterozygosity (loh). The figures illustrate examples of clonal evolution, 
and do not necessarily represent the only possible evolutionary path in these patients. (B) ALL_128 harbored a subclone with frameshift 
indels in SH2B3 and ETV6 at diagnosis, which expanded at the first relapse. In addition, an allele fraction of 0.85 for the SH2B3 indel 
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mutations are required to induce ALL. Our finding that 
the APOBEC signature of nucleotide substitution is 
only observed in patients with the ETV6-RUNX1 fusion 
gene and the previous demonstration of frequent RAG-
mediated recombination in this subtype [18] suggests that 
different molecular mechanisms are active in patients 
with the ETV6-RUNX1 fusion gene than in the other 
ALL subtypes. Thus it would be interesting to study the 
mutational patterns in larger cohorts of patients with other 
recurrent fusion genes. Patients of the HeH subtype stood 
out as having many driver mutations, in particular in the 
Ras pathway. In contrast to a previous study [19], we 
found no indications of mutual exclusivity between Ras 
mutations in the HeH patients. 

We found that BCP-ALL patients with mutations 
in the Notch signaling pathway relapsed frequently. The 
Notch pathway is a well-known genetic determinant in 
T-ALL and has been implicated in several other cancers 
[20]. While the majority of somatic mutations in NOTCH1 
in T-ALL are activating and result in aberrant continued 
signaling [21], a tumor suppressor role of the Notch 
pathway has been shown in acute myeloid leukemia 
(AML) [22, 23]. Although the majority of the Notch 
pathway mutations detected in our study are predicted to 
have a functional effect on the protein, there is no evidence 
suggesting that they would be activating. Thus, it seems 
reasonable to assume that the mutations in CREBBP, 
EP300 and MAML, which all encode transcriptional co-
activators, could result in reduced Notch signaling. In 
contrast, HDAC2 and DTX1 are negative regulators of 
Notch signaling, and mutations in these genes are more 
likely to result in increased signaling. Given the complex 
role of the Notch pathway in hematological malignancies, 
it is not unlikely that different types of disturbances in 
Notch signaling could be involved in the progress of ALL.

Our results also highlighted the ATRX, EP300, 
ARID1A and SH2B3 genes as novel putative ALL drivers, 
associated with relapse, or being present in rising clones 
at relapse. All genes except ARID1A were identified in the 
BCP-ALL patient group. ATRX is a known driver gene 
in other cancers than ALL [24]. It encodes a chromatin 
remodelling protein whose activity affects genomic 
stability and heterochromatin structure. Although the 
mechanisms by which loss of ATRX leads to cancer 
progression are unclear, we find that all ATRX mutations 
detected in our study are predicted to be deleterious. 

EP300 is a known target of translocation in ALL 
[25], and has recently been reported to be recurrently 
mutated in adult T-ALL [26] and early T-cell precursor 

T-ALL [27], but not yet in BCP-ALL. EP300 is also a 
known driver gene in other types of cancer [28], and 
germline variants in EP300 have been shown to confer 
inherited risk of pediatric ALL in a Hispanic population 
[29]. There is evidence for somatic mutations in the 
paralogous gene CREBBP that result in impaired histone 
acetylation and transcription of CREBBP target genes, 
including glucocorticoid-receptor-responsive genes, which 
may influence response to therapy and the likelihood of 
relapse in ALL [6]. In light of this evidence, it will be 
crucial for future studies to investigate the effect of EP300 
mutations in ALL. 

ARID1A is recurrently mutated in several cancer 
types, including lymphomas [30]. The encoded protein 
contains a well conserved DNA-binding domain which is 
also present in several other proteins with related functions. 
Interestingly, a putatively relapse-associated mutation in 
ARID4B has been identified in pediatric T-ALL [31], and 
ARID5B has been associated with germline susceptibility 
to pediatric ALL [32]. ARID1A is a chromatin remodeler 
that appears to act as a tumor suppressor, and decreased 
expression of ARID1A is associated with poor prognosis 
in gastric cancer [33] and hepatocellular carcinoma 
[34]. Previous studies have shown that 97% of somatic 
mutations in ARID1A are inactivating [30], in line with 
the predictions of the mutations detected in our study. 
While 30% of ARID1A mutations in the literature affect 
both alleles, 73% of the cases lack protein expression, 
implicating that haploinsufficiency for ARID1A may 
be enough to promote tumor formation [35, 36]. Thus, 
although the mutations identified in ARID1A in our study 
were most likely heterozygous, these mutations could be 
involved in ALL progression. 

Homozygous germline mutations in SH2B3 have 
previously been found in familial ALL, and somatic loss 
of both SH2B3 alleles has been described in a few BCP-
ALL patients [37]. SH2B3 encodes a lymphocyte adaptor 
protein that plays a key role in hematopoiesis and has been 
suggested to be a tumor suppressor [37]. Our study is to 
our knowledge the first to report a heterozygous loss-of-
function mutation in SH2B3 at diagnosis that becomes 
homozygous at relapse, and suggests that the homozygous 
loss of SH2B3 could have been a driving factor for relapse 
in this patient. 

Our analysis of allele fractions at diagnosis and 
relapse in the deep sequencing data revealed that many 
apparently relapse-gained mutations were present in 
minor clones at diagnosis. The targeted approach used 
here enabled detection of small leukemic subclones 

suggests that the wild type allele of this gene had been lost, and a novel nonsynonymous SNV in ETV6 which appears to be on the other 
allele than the indel was identified. All mutations remained at the second relapse. (C) Two subclones were inferred at diagnosis in ALL_244, 
one with a KRAS mutation which was lost at relapse and one with an EP300 mutation which became dominant at the first relapse. At the first 
relapse we detected a minor clone with a SYNE1 mutation, which became dominant at the second relapse. (D) In ALL_358 we inferred as 
many as four distinct subclones at diagnosis. One subclone harbored a NOTCH1 mutation and was lost at relapse, and the other three shared 
an NRAS mutation. The two minor NRAS clones, which expanded at relapse, also harbored ARID1A and NT5C2 mutations, respectively. At 
relapse, the ARID1A clone acquired a novel NOTCH1 mutation.
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with one experiment. Our approach is time- and cost-
efficient compared to exome or whole genome sequencing 
followed by targeted deep-sequencing of sites with 
somatic mutations, but a smaller proportion of all somatic 
mutations will be identified. For example, a recent study 
of clonal evolution in ALL using exome sequencing 
identified a median of 18 SNVs and indels at diagnosis 
[9] in comparison to a median of 3 in our study. While 
a larger set of mutations enables more robust clustering 
into subclones, we expect that our approach identified 
the majority of the putative driver mutations and their 
evolution between diagnosis and relapse.

In summary, by targeted sequencing of cancer 
genes in ALL samples collected at diagnosis and 
relapse, we identified distinctive differences in the 
mutational landscape between the immunophenotypes 
and genetic subtypes of ALL, discovered ATRX as a 
novel putative driver gene in ALL and identified EP300, 
ARID1A and SH2B3 as relapse-associated genes. An 
interesting observation in our study was that germline 
variants in EP300, SH2B3 and ARID5B have previously 
been associated with ALL susceptibility. Although the 
heritability in ALL is low, genome-wide association 
studies have identified germline mutations in several genes 
that are also affected by somatic mutations, including 
IKZF1, ARID5B, CEBPE and CDKN2A [32, 38]. 
Likewise, studies of familial ALL have revealed inherited 
mutations in PAX5 [39] and ETV6 [40], both of which 
are also targets of somatic mutation and chromosomal 
translocation in ALL. Another interesting feature is that 
all four genes mentioned above are involved in epigenetic 
regulation. Somatic mutations in epigenetic regulators 
play a role in many cancer types, including T-ALL 
[41, 42]. In BCP-ALL, it has been shown that mutations 
in epigenetic regulators are gained during relapse [8, 9]. 
Our results are in line with these previous findings, with 
mutations in EP300, ARID1A and SH2B3 being present 
in rising clones at relapse. We observed a high degree of 
clonal heterogeneity and evolution between diagnosis and 
relapse, which could have implications for the treatment 
efficiency. 

MAterIAls And MetHods

Patient samples

The pediatric ALL patients analyzed in this study 
were diagnosed and treated at Swedish pediatric oncology 
centers in Uppsala, Umeå, Stockholm and Gothenburg, 
according to the Nordic Society for Pediatric Haematology 
and Oncology (NOPHO) protocols [43]. ALL diagnosis 
was established by analysis of leukemic cells with respect 
to morphology, immunophenotype, and cytogenetics. 
Immunophenotype (BCP-ALL or T-ALL) was defined 
according to the European Group for the Immunological 
Characterization of Leukemias. Gene fusions were 
screened for by fluorescence in situ hybridization (FISH) or 

reverse transcriptase polymerase chain reaction (RT-PCR). 
Karyotypes were assigned according to the International 
System for Human Cytogenetic Nomenclature [44]. DNA 
and RNA were extracted as described previously [12]. 
Targeted sequencing of 172 samples collected at diagnosis 
(“diagnostic cohort”) and 24 samples collected at relapse 
from 19 patients was performed (Table 1, Supplementary 
Tables S2 and S3). The percent of leukemic cells was at 
least 80 in the diagnostic samples (median 90%). For 163 
of the 172 patients, a matched germline sample collected 
during first clinical remission (CR1) was sequenced in 
pools. We have previously shown, using germline SNPs 
that were unique for each patient, that 143 of the 163 
remission samples were adequately represented in the 
pools [12]. In addition, a cohort of 165 samples collected 
at diagnosis (“extension cohort”) which were sequenced in 
pools (Lindqvist et al, manuscript in preparation) and used 
to further investigate putative relapse-associated genes 
(Supplementary Table S8). An in-house RNA-sequencing 
dataset containing 27 BCP-ALL samples and 18 T-ALL 
samples (Nordlund et al, unpublished data) was used to 
determine gene expression levels in ALL cells. The study 
was approved by the Regional Ethical Review Board in 
Uppsala, Sweden. The study was conducted according 
to the guidelines of the Declaration of Helsinki, and all 
patients and/or guardians provided informed consent.

target capture and next generation sequencing

The exons of 872 genes related to cancer were 
selected for resequencing (Supplementary Table S1). 
Target capture was performed using 200 ng of DNA and 
reagents from a HaloPlex Target Enrichment kit (Agilent), 
according to the Automation Protocol Version D.3. The 
172 samples in the diagnostic cohort and the 24 relapse 
samples were enriched individually. Remission samples 
were enriched in pools of ten samples. The 165 samples in 
the extension cohort were enriched in pools of ten samples 
without a unique individual barcode for each sample. 
However, each sample was present in two pools using a 
design that enabled assignment of rare somatic mutations 
to their carrier (Lindqvist et al, manuscript in preparation). 
In addition, 84 samples from healthy Swedish blood 
donors were enriched in pools of 21 samples and used 
for filtering purposes. Paired-end sequencing with 100 
bp reads was performed on a HiSeq2000/2500 system 
(Illumina). The average sequence depth per sample in 
the target region was 638× for ALL samples enriched 
individually (diagnostic cohort and relapse samples), 
529× for ALL samples in pools (extension cohort), 162× 
for remission samples and 133× for Swedish blood donors.

Analysis of sequence data

Variant calling in the diagnostic cohort and 
relapse samples was performed using FreeBayes (http://
arxiv.org/abs/1207.3907) for SNVs and the GATK 
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HaplotypeCaller [45] for indels. Variants were filtered 
based on sequence coverage, quality scores and germline 
variants, and annotated against the Ensembl database as 
described previously [12]. Putative driver genes were 
identified using MutSigCV [46], Oncodrive-fm [47] 
and OncodriveCLUST [48] as described previously 
[12], except that OncodriveCLUST version 0.4.1 was 
used. For this analysis, the 172 patients in the diagnostic 
cohort were divided into five subsets: 1) T-ALL, 2) BCP-
ALL, 3) BCP-ALL with HeH, 4) BCP-ALL with the 
translocation t(12;21), and 5) BCP-ALL with a normal 
karyotype. A gene was considered as a putative driver if 
it was predicted as a driver in at least one of the patient 
subgroups and harbored at least three non-silent mutations. 
RNA sequence data was generated and analyzed as 
described previously [12]. All somatic variants called in 
the diagnostic cohort or in the relapse samples are listed 
in Supplementary Tables S4, S6 and S7. 

Analysis of mutational signatures

Signatures of mutational processes were determined 
using the R package somatic signatures [49]. The analysis 
was performed on SNVs from the core cohort and from 
the four previously whole genome sequenced patients [12]. 
All recurrent SNVs (i.e. SNVs present in more than one 
patient) were excluded. The samples in the core cohort were 
divided into the same five groups as described above, except 
that ALL_370 was analyzed individually. The four whole 
genome sequenced patients were also analyzed individually. 
The trinucleotide context of all SNVs was determined 
using function mutation context and reference sequence 
from package BSgenome.Hsapiens.UCSC.hg19. Motif 
frequencies of the groups from the core cohort were then 
corrected according to differences in motif occurrence in the 
target region relative to the whole genome using the functions 
kmerFrequency and normalize motifs. Decomposition of the 
motif matrix to three signatures was done using non-negative 
matrix factorization with the function identify signatures. 
The similarity between mutational signatures identified in 
our data and previously validated mutational signatures 
available at http://cancer.sanger.ac.uk/cosmic/signatures was 
assessed using hierarchical clustering with the agglomeration 
method complete on a Euclidean distance matrix of the 
scaled signature matrix.

Analysis of protein structures and protein 
sequences

Protein sequence motifs and functional sites were 
predicted based on ProRule [50] and ProSite [51]. The 
nsSNVs located in protein domains with determined NMR 
or X-Ray structure deposited in the Protein Data Bank [52] 
or homologous structure was visually inspected to predict 
the effect of nsSNVs on the protein.

survival analysis

Survival analysis with Gray’s test [53], taking the 
competing risks death in clinical remission 1 (DCR1), 
resistant disease and secondary malignancy (SMN) 
into account, was performed for genes and pathways, 
assessing the association between clinical outcome 
(relapse) and mutation status. Only non-silent mutations 
were included, and samples from infants (< 1 year) 
were excluded from the analysis (n = 3). Patients were 
analyzed in the following subgroups: 1) the complete data 
set, 2) T-ALL samples, 3) BCP-ALL samples, 4) BCP-
ALL samples stratified by risk group (high, intermediate 
and standard risk), 5) BCP-ALL with HeH, 6) BCP-ALL 
with t(12;21), and 7) BCP-ALL with normal karyotype. 
To avoid spurious results caused by small patient groups, 
only genes and pathways that were mutated in at least five 
patients were considered. For analysis at the gene level, we 
compared patients with and without a somatic mutation in 
each gene. For analysis at the pathway level, we compared 
patients with and without a somatic mutation in any of the 
genes belonging to the pathway. Genes were assigned to 
pathways according to the Kyoto Encyclopedia of Genes 
and Genomes (http://www.genome.jp/kegg). Multiple 
testing correction was performed using the Bonferroni 
method [54], correcting for the number of genes or 
pathways that harbored non-silent mutations in at least five 
patients in the specific patient subgroup. 

Analysis of relapse-associated genes and clonal 
evolution

A gene was defined as putatively relapse-associated 
if it fulfilled at least one of the following two criteria: 1)  
we detected at least two non-silent relapse-gained 
mutations (i.e., mutations called only at relapse) in 
the gene, or 2) we detected at least one relapse-gained 
mutation in the gene, and additional mutations at diagnosis 
in patients in the diagnostic and extension cohorts that 
relapsed. For genes in the second category, we did not 
allow non-silent mutations at diagnosis in patients of the 
same immunophenotype that remained in CR1. 

To determine the allele fraction of somatic 
mutations at time points where they had not been called by 
FreeBayes, we used the GENOTYPE_GIVEN_ALLELES 
mode of GATK HaplotypeCaller [45]. For analysis of 
clonal evolution between diagnosis and relapse, somatic 
mutations were clustered manually, based on in which of 
the samples they were detectable and the allele fraction 
at these different time points. Although the clustering is 
somewhat arbitrary due to the low number of mutations, 
it still reflects the dynamics of gained and lost mutations 
during leukemic progression. A mutation is considered to 
be part of a rising clone if the allele fraction at relapse is at 
least twice the allele fraction at diagnosis. 
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statistical analysis

The number of somatic mutations in different 
patient subgroups was compared with Wilcoxon rank 
sum test. Correlation between number of mutations 
and age at diagnosis was performed using Spearman’s 
rank correlation. Comparisons between the fraction of 
mutations in the original clone, and the number of driver 
mutations in different patient subgroups was performed 
with the chi-square test. The association between number 
of driver mutations and clinical outcome was tested with 
a Poisson regression model, excluding 10 BCP-ALL 
patients and three T-ALL patients with a shorter follow-up 
time than five years. 
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