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Abstract: Fundus segmentation is an important step in the diagnosis of ophthalmic diseases,
especially glaucoma. A modified particle swarm optimization algorithm for optic disc segmentation
is proposed, considering the fact that the current public fundus datasets do not have enough images
and are unevenly distributed. The particle swarm optimization algorithm has been proved to be a
good tool to deal with various extreme value problems, which requires little data and does not require
pre-training. In this paper, the segmentation problem is converted to a set of extreme value problems.
The scheme performs data preprocessing based on the features of the fundus map, reduces noise on
the picture, and simplifies the search space for particles. The search space is divided into multiple
sub-search spaces according to the number of subgroups, and the particles inside the subgroups
search for the optimal solution in their respective sub-search spaces. The gradient values are used to
calculate the fitness of particles and contours. The entire group is divided into some subgroups. Every
particle flies in their exploration for the best solution. During the iteration, particles are not only
influenced by local and global optimal solutions but also additionally attracted by particles between
adjacent subgroups. By collaboration and information sharing, the particles are capable of obtaining
accurate disc segmentation. This method has been tested with the Drishti-GS and RIM-ONE V3
dataset. Compared to several state-of-the-art methods, the proposed method substantially improves
the optic disc segmentation results on the tested datasets, which demonstrates the superiority of the
proposed work.

Keywords: particle swarm optimization; optic disc segmentation; subgroups; exploration area

1. Introduction

According to statistics of the World Health Organization (WHO), glaucoma is the
second leading cause of blindness in the world [1]. It is estimated that people with glaucoma
will increase to 111.8 million in 2040 [2].

An early diagnosis of glaucoma is of great importance. Glaucoma is irreversible after
blindness, which leads to structural modifications as the disease progresses [3]. Fortunately,
glaucoma has a long lesions cycle, and the patient’s vision is slowly weakened. If detected
and treated as early as possible, patients still can maximize the preservation of useful vision
to maintain a normal life and work life [4]. Therefore, the early diagnosis and treatment of
glaucoma are particularly necessary.

In actual medical diagnosis, ophthalmologists usual use cup to disk ratio (CDR [5])
as one of the factors in diagnosing glaucoma. The optic disc (OD) in the digital fundus
image is the area where blood vessels and optic nerve fibers enter the retina. In digital
fundus images, OD appears as a bright oval area, and the optic cup (OC) is the brighter
oval area in the center of OD [1]. When the ratio of optic cup to the optic disc that means
the diameter of the cup divided by the diameter of the disc [6,7] is greater than 0.6, which
is considered to indicate glaucoma [8]. Glaucoma and normal fundus images are shown in
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Figure 1. Figure 1a shows a fundus diagram with glaucoma, for which its CDR is much
greater than 0.6, while Figure 1b is a fundus of the normal eye, which can be seen when
the central bright area; that is the cup area, and it is much smaller than the optic disc area.
Therefore, many scholars use computers as an aid for the early diagnosis of glaucoma. The
effective division of the optic disc area on the fundus is of extraordinary significance to
the diagnosis of glaucoma. In this paper, the segmentation of the OD region is the main
research focus.

In recent years, different approach of optic disc segmentation such as machine learning
and clustering have been proposed so far. Thus, a deep learning architecture called M-Net
is proposed by Fu, H. [9], which uses U-shaped neural networks as the main frame and
introduces polar coordinate transformations to solve the problem of OD segmentation in
a multi-level label system. Al-Bander and Baidaa et al. [10] found a new method based
on deep learning that separates OD in the fundus image by using a combination of a fully
convolutional network and DenseNet. Although deep learning-based approaches obtain
a satisfactory performances of optic disc segmentation, those approaches require a huge
number of data for the time-consuming training required. On the basis of color similarity
and image proximity, Achanta et al. [11] segmented the optic disc with the generation of
superpixels using clustering. There is no doubt that superpixel methods do not consider
color information, which may adversely impact performance.

There are many drawbacks when applying deep learning to the segmentation of optic
discs. One of the main reason for this is that the glaucoma datasets are too small to meet the
training requirements of deep learning. The datasets originate from hospitals, and to protect
the privacy of the patient, the patient’s permission must be obtained [12]. Furthermore,
the optic disc must hand labeled by experienced ophthalmologists, which undoubtedly
increases the difficulty of obtaining datasets.

To overcome the drawback of the lack of glaucoma dataset, a new particle swarm
optimization-based approach for optic disc segmentation SePSO is proposed in our work.
The proposed algorithm does not require large amounts of data for preprocessing, which is
a self-learning approach. In addition, the information of image color and optic disc shape
is also taken into our consideration, which reduces the interference of relevant information
on experimental results [13].

Figure 1. Retinal fundus of glaucoma and normal eyes. (a) Schematic diagram of the structure of
fundus with glaucoma; (b) fundus of normal eyes.

Furthermore, the subsequent sections are organized as follows: Section 2 describes
details on the PSO approach that we modified for the segmentation of optic disc. Section 3
provides some results with datasets, evaluation parameters used for our experimental
study, and the discussion. Moreover, the conclusion is highlighted in Section 4.

2. Materials and Methods

This section described the Particle Swarm Optimization algorithm that we modified in
this paper to segment the optic disc in retinal images. As described by Shi and Eberhart [14],
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PSO is a multi-agent system, and the system is initialized with a population of random
solutions. For each potential solution, called particle, all particles fly in the exploration
area for the global optimum. Each particle tracks its coordinates in exploration area.
The coordinates of each particle tracks are associated with the best solution [15] (fitness)
achieved by itself so far, which is called PP, and the entire group’s best solution, which is
called GP. The particle can be described as Pari,j = (Xi,j, Vi,j, PPi), where Xi,j is the current
position of particle, and Vi,j is the current velocity of particle. Each particle moves toward
PP and GP at every iteration.

The basic idea of PSO is to find the optimal solution through collaboration and informa-
tion sharing between individuals in the animal populations. Usually, the PSO algorithm can
be used to optimize continuous nonlinear functions and to solve some discrete problems.

In this paper, the optic disc segmentation problem is converted into a series of the
extreme value problem. Based on a large number of experiments, we found that it is
not sufficient to solve the optic disc segmentation problem by original PSO. To solve this
problem, we propose an improved algorithm based on Particle Swarm Optimization, called
SePSO. The goal of SePSO is to find a set of best solutions for the particles. Moreover, the
closed shape formed by these particles is the boundary of the predicted optic disc. The
components of the SePSO algorithm we modified are described in subsequent sections.

2.1. Subgroups and Edges

In this paper, the PSO approach has been used in segmenting OD in a fundus image. In
order to achieve this goal, the concept of subgroups are drawn into PSO. The entire particle
group is divided into a certain number of subgroups pop. There are N subgroups in the
original group, where the subgroups consist of the same number of particles np. Particles
in every subgroups are marked with numbers from 1 to np. For a clear expression, Pari,j
represents a particle with a label of No.j in the ith subgroups. Each subgroup popi, which
searches within its respective regions (details in Section 2.2.1), contains some particles Pari,j.
The subgroups pop can be described as Equation (1):

popi = {Pari,1, Pari,2, . . . , Pari,np} (1)

where

• popi is the ith subgroup;
• The parameter i = 1, 2, . . . , N;
• np is the number of particles belonging to every single subgroup;
• Pari,j is the particle marked as No.j in subgroup popi.

The closed curve, which consists of all the No.j particles in each subgroups connected,
is called Edgej in this paper. The number of potential boundary is the same as the number
of particles in each subgroup, which is np. In addition, Edge is the potential solution of
optic disc boundary. Edge can be defined as Equation (2):

Edgej = {X1,j, X2,j, . . . , XN,j} (2)

where

• Edgej is the jth potential OD boundary;
• The parameter j = 1, 2, . . . , np;
• N is the number of subgroups;
• XN,j is the position of No.j particle in subgroup popN .

As the search progresses, most particles in each subgroup converge to the optimal
solution and the Edge with best solution (fitness, details in Section 2.3) makes up the final
predicted boundary.
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2.2. Exploration Area and Initiation
2.2.1. Exploration Area

Using the SePSO algorithm for OD segmentation means that each particle searches in
the two-dimensional space for a set of Edge. Obviously, the entire two-dimensional space
in original image is too broad for all the particles to search. It is advisable to optimize the
exploration area first. To simplify the search processing, reduce the computation time and
increase the accuracy of OD segmentation; we pre-process the original images in three
steps. Figure 2 shows the diagram of exploration area.

Figure 2. Diagram of the exploration area. (a) The blue and yellow lines, respectively, represent the
internal and external contours of exploration area, and the besieged point is the radial points map
EA. (b) Ea is the exploration area of each subgroups.

Firstly, the ROI images prepared for OD segmentation are initially resized to
256 × 256 pixels by using the interpolation of a Lanczos interpolation [16] over an
8 × 8 pixel neighborhood. On one hand, making the size of images homogeneous is
helpful for the subsequent calculations and evaluations. On the other hand, the exploration
area can be compressed as small as possible on the premise of preserving features.

Secondly, according to prior knowledge and the circle nature of the optic disc, we
set the entire exploration area as an annular area. Considering the center of the disc as
the center Pc of the entire exploration area, the outer Eouter and inner Einner exploration
contours are, respectively, defined by the circle of center Pc and radius Rmax and Rmin,
which are defined as Equation (3).

Eouter = {(x, y)|x2 + y2 = R2
max}

Einter = {(x, y)|x2 + y2 = R2
min}

(3)

In addition, a polar transform [17] is applied to OD segmentation. The entire explo-
ration area consists of a series of radial points, which is defined as a radial points map
EA. The radial points map is a two-dimensional polar coordinate system, and the points
represent where particles are likely to explore. The radial points of this map are described
by distance and angle, where the polar coordinate of Pc is (0, 0). Rays that proceed horizon-
tally to the right from Pc are called polar axes [18]. The distance between the search points
and center point Pc is called radius r ∈ [Rmin, Rmax]. The angle is calculated by gradually
adding an increment of δθ . Therefore, the location of pixels on the map is described with a
radius and angle by Equation (4):

∀i ∈ Z∩ [0, Rmax−Rmin
δr

], j ∈ Z∩ [0, 2π
δθ
]

Pi,j = (ri,j, θi,j)

= (Rmin + δr × i, δθ × j)

(4)
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where

• Pi,j is the particle in the exploration map;
• ri,j is the distance between Pi,j and Pc;
• θi,j is the angle of Pi,j.

Therefore, the Cartesian coordinates of pixel Pi,j is described with radius and angle by
Equation (5).

∀i ∈ Z∩ [0, Rmax−Rmin
δr

], j ∈ Z∩ [0, 2π
δθ
]

Pi,j = (xi,j, yi,j)

= (xc + ri,j × cos θi,j, yc + ri,j × sin θi,j)

(5)

where

• xi,j and yi,j is the horizontal and vertical ordinate of Pi,j;
• xc and yc is the horizontal and vertical ordinate of Pc.

The entire exploration area EA consists of a set of pixels, which can be described as
Equation (6).

EA = {Pi,j : ∀(i, j) ∈ Z∩ [0,
Rmax − Rmin

δr
],Z∩ [0,

2π

δθ
]} (6)

EA = (V, E) (7)

Similarly to the relationship between POP and pop, the exploration area of subgroups
SE is not only defined as part of the entire exploration area or any two regions that do not
intersect. Equations (8) and (9) are the properties and definition of SEi:

∀ i ∈ Z∩ [1, N]

EA =
⋃N

i=1 Eai⋂N
i=1 Eai = ∅

(8)

SEi = {Pi,j : ∀(i, j) ∈ Z∩ [0,
Rmax − Rmin

δr
],Z∩ [

2π

δθ
× (i− 1),

2π

δθ
× i]} (9)

where SEi is the exploration area of subgroup popi.

2.2.2. Initiation

The shape of the optic disc varies from circle to ellipse, and usually it is an irregular
approximation of the ellipse. If too few points are used for fitting, it is difficult to express
the true disc’s boundary. The more points are used for fitting, the closer the fitted shape
is to the real boundary. However, too many points will slow down the calculation and
increase time complexity. We need to find the proper number of points to balance speed
and accuracy. In this paper, the number of points on the boundary Edge is equal to the
number of subgroups N. The influence of the parameter N will be shown in subsequent
experiments.

In PSO, the particle number np of each subgroup usually is between 20 and 40. The
more particles there are, the wider the search space is. It is easy for SePSO to find the global
optimal solution with more particles; however, computational consumption will become
higher.

In this paper, the particle number np is set as np = 30 based on a large number of
experiments.

Each particle is assigned a randomized location at the beginning. Considering of the
circle nature of OD, the distances from particles on the predicted boundary Edgej to Pc
should be equal approximately for each j. Therefore, the initial location of each particle is
set using the following rules:
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• For all particles Pari,j belonging to the same Edgej having the same radius r, r is the
distance between Pari,j and center Pc.

• The radius r of particles Pari,j on Edgej is randomly assigned from Rmin to Rmax. Based
on experiments, Rmin is set as 30% of the image width, and Rmin is the 70% of the
image width.

2.3. Fitness Function

When particles fly in the subgroup’s exploration area Ea, an indicator should be
introduced to evaluate the locations, and a fitness function is used as the indicator in this
paper. In the task of image segmentation, considering the differences between the OD
region and the surrounding space, the red channel of the original RGB image is separated
to calculated the gradient of every radial points in the exploration area [19]. The differences
between the images of blue, green, and red channels are showed in Figure 3. The gradient
is regarded as the fitness value of points. Figure 4 shows the different gradient between
original exploration and modified exploration. The fitness value of each point is calculated
as Equation (10).

Figure 3. The different channel of ROI image in Rim-ONE.

We have the following equation:

valueP =

{
gradP, when P ∈ EA
0, when P /∈ EA

(10)

where

• valueP is the fitness value of point P;
• gradP is the gradient [20] of point P.

Figure 4. Comparison of the gradient between different methods. (a) The gradient in original
exploration area. (b) The gradient in the modified exploration area EA.
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In addition, the potential contours of OD, which is described as Edgej, consists of the
jth particle in every subgroup popi. The higher the fitness of a point, the more likely it
is that the point is part of the boundary. The higher the fitness value is, the higher the
possibility that it is part of Edge. The fitness of Edgej can be calculated with Equation (11):

valueEdgej
=

N

∑
i=1

valuei,j (11)

where valuei,j is the fitness of the jth particle in subgroup popi.

2.4. Position Update

In the traditional PSO, each particle changes the location toward the particle’s best
location PP and the global best location GP at each step. There are three control parameters,
the inertia weight ω, the cognitive cp, and social cg acceleration, that play an important
part in the exploration and exploitation capability of PSO. The velocity of every particle
can be calculated as Equation (12):

Vi,j(t + 1) = ω×Vi,j(t) + cp × rand× (PPi,j(t)− Xi,j(t)) + cg × rand× (GPi(t)− Xi,j(t)) (12)

where

• Vi,j is the velocity of the jth particle in subgroup popi;
• ω is the inertia weight;
• rand ∈ [0, 1], which is a random number;
• cp and cg are named as acceleration coefficients. Usually, cp + cg = 4;
• PPi,j is the best location of Pari,j has flied;
• GPi is the best location of the entire subgroup popi.

However, after a series of experiments (see Section 3.3.1), the fitness of the vessel
boundary in the fundus image may be greater than the gradient of optic disc boundary,
which is possible to interfere with the optimization results of the particles. Therefore, we
take the attraction between particles in adjacent subgroups into account in order to solve
this problem.

The modified velocity is calculated as Equation (13).

Vi,j(t + 1) = ω×Vi,j(t) + cp × rand× (PPi,j(t)− Xi,j(t)) + cg × rand× (GPi(t)− Xi,j(t))

+ca × rand× (Xi+1,j(t)− Xi,j(t)) + ca × rand× (Xi−1,j(t)− Xi,j(t))
(13)

As the system iterates, the individual agents, which are based on the interaction of the
subgroup’s public search and the particle’s search, are drawn toward a global optimum.
The position vector of each particle is updated as Equation (14).

Xi,j(t + 1) = Xi,j(t) + Vi,j(t + 1) (14)

PP and GP are also updated as iteration proceeds. The updated rules are described by
Equations (15) and (16).

PPi,j(t + 1) =

{
PPi,j(t), i f valuePPi,j(t) > valuePi,j(t + 1)
Pi,j(t + 1), i f valuePi,j(t + 1) ≤ valuePPi,j(t)

(15)

GPi(t + 1) =

{
GPi(t), i f valueGPi (t + 1) > valuePPi,j(t) : ∀j ∈ Z∩ [1, np]

PPi,j(t + 1), i f valueGPi (t + 1) ≤ valuePPi,j(t) : ∃j ∈ Z∩ [1, np]
(16)

2.5. Algorithm

SePSO evaluates the quality of particle positions by using the radial gradient value
as the fitness value. On fundus diagrams, the location with high radial gradient values
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include the optic disc boundary, the optic cup boundary, and the vascular region. In
order to segment the clear boundary of the optic disc and reduce the interference of blood
vessels and optic cup located in the central area of the optic disc, the exploration area of
the entire population is confined to a relatively narrow circular area. This exploration
area can not only meet the exploration needs of particles but also avoid particles falling
into local optimization as much as possible. In addition, the application of active shape
models transforms image segmentation tasks into a set of extreme value problems that
are easy to solve by PSO. To implement this mechanism, we divide the entire particle
swarm into multiple subgroups pop, and at the same time, we divide the exploration space
into multiple subspaces accordingly; each subgroup solves an extreme value problem,
each particle on the subgroup corresponds to a feature point on the shape model, and
all subgroups form a multi-group solution of the shape model. The quality of the shape
model Edgej is determined by the fitness of all particles that make up the model at their
current positions.

In the search for an optimal solution, each particle is represented by a triplet (Xi,j,
Vi,j, and PPi,j), and shape model Edgej is defined by the position of a set of particles. The
boundary of the disc is an approximate ellipse, and the position of adjacent particles on
the shape model has some guiding significance for the particle. To take full advantage of
this property, particles are attracted to the local optimal solution and the global optimal
solution. Moreover, the movements of the particles are also affected by the attractions
between adjacent particles. Shape model Edgej deforms as the iterative process progresses,
ultimately finding the optimal solution.

The main flow of the proposed Algorithm 1 is shown in the pseudo-code.

Algorithm 1: Pseudo-code for the main particle management algorithm.
input :A map of exploration area
output :A set of points

1 for each subgroup i do
2 for each particlej ∈ i do
3 Initialize velocity Vi,j and position Xi,j randomly
4 Calculate the fitness value valuei,j of particle j
5 Set PPi,j = Xi,j

6 Set GPi = max PPi,j

7 for each subgroup i do
8 for each particlej ∈ i do
9 Update the velocity and position of particle i

10 Calculate the fitness value of particle i
11 if valueXi,j > valuePPi,j then
12 PPi,j = Xi,j

13 if valuePPi,j > valueGPi then
14 GPi = PPi,j

3. Results and Discussion

This section describes the hardware facilities, software, and dataset used in the ex-
periment and, furthermore, includes the evaluation and performance metrics of the pro-
posed approach.

3.1. Software and Datasets

All experimental results are tested on PyCharm 2021 free community version with
Python 3.8.7, AMD “Zen 3” Core Architecture with 5600X CPU and 64-bit Operating
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System. In addition, the fundus images used for our experimentation belongs to public
datasets provided below.

The Drishti-GS is public access and available for free [21]. The dataset consists of
101 images, which is divided into 50 testing and 51 training images. The dataset is generated
from Aravind eye hospital. There are four experts to segment the OD region manually, and
all OD regions are fused together to generate the soft map. In this paper, we regard the
region with 75% support rate as the true ground of OD.

Up to date, there are three releases of Rim-ONE datasets. The first one is segmented
by five experts manually, which consists of 169 images. The second one consisting of
455 images segmented by one expert is classified into glaucoma (including the glaucoma
suspicious images) and normal. The most recent one, which is used for our experimentation,
consists of 159 images [22], which is collected at the Hospital Universitario de Canarias and
divided into 85 images of healthy subjects, 39 confirmed glaucoma individuals, and 35 that
are suspicious subjects.

3.2. Performance Metrics

The performance of the proposed method for segmenting OD when compared with
the ground truth is evaluated using many evaluation metrics that can be defined according
to four parameters: TN , FN ,TP, and FP.

True Negative TN is the region segmented as OD that proved to be not OD and is
defined as Equation (17):

TN =

{
1− SA−OA

BAO A , i f SA > OA
1, otherwise

(17)

where

• SA is the optic disc region that is segmented;
• OA is the region that belongs to ground truth;
• SA is the region that belongs to the background.

False Negative FN , which is the region segmented as not OD that proved to be OD, is
defined in Equation (18).

FN =

{
0, i f SA ≥ OA
OA−SA

OA , otherwise
(18)

True positive TP, which is the region segmented as OD that proved to be OD, is defined
in Equation (19).

TP =

{
1, i f SA ≥ OA
1− OA−SA

OA , otherwise
(19)

False Positive FP, which is the region segmented as OD that proved to be not OD, is
defined in Equation (20).

FP =

{ SA−OA
BS−OA , i f SA > OA
0, otherwise

(20)

In this paper, the evaluation metrics such as Dice similarly, overlapping error, and
accuracy are used to identify the level of accuracy of OD segmentation, which can be
defined as Equations (21)–(23).

Accuracy: It is the measure of correctness or preciseness with respect to some
standard [23]. It is calculated as provided in Equation (21).

Acc =
TN + TP

TN + FN + FP + TP
(21)
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Dice similarity: It is a metric that is used to calculate the similarity between two
samples that may be images or any other data. It is calculated as provided in Equation (22).

Dice =
2× TP

2× TP + FP + FN
(22)

Overlapping error: Overlapping error E is the one of the important indicators of image
segmentation. In this paper, it is calculated using the detected boundary and the ground
truth by Equation (23).

E = 1− TP
TP + FP + FN

(23)

3.3. Performance of Optic Disc Segmentation
3.3.1. Parameter Influence

In order to obtain the best results with proposed method, there are some important
parameters that should be adjusted. These parameters are as follows: the number of
subgroups N, which affect the Edge in Section 2.1; ω, cp, cg, and ca, which affect the
position update as described in Section 2.4; and the number of iterations.

Based on a large number of experiments on dataset, the proposed method produces
the best solutions with the following parameter settings: N = 50, ω = 0.8, cp = cg = 1.7,
ca = 0.3, and number of iteration = 100 (see Table 1). The values of TP, FP, TN , FN , Acc,
Dice, and E produced by the proposed approach for optic disc segmentation are observed
to be 84.88%, 0.73%, 99.27%, 15.12%, 92.28%, 90.35%, and 17.49% in the Drishti-GS dataset.

We have varied each parameter individually to observe its influence. Some of these
parameters mainly affect the quality of the solutions, while some have more impact on the
computation time needed to obtain the solutions.

Table 1. Performance metrics for the best solution of optic disc segmentation produced by the
proposed method for Rim-ONE and Drishti-GS datasets.

Dataset TP FP TN FN Acc(%) Dice(%) E (%)

Drishti-GS 0.85 0.01 0.99 0.15 92.28 90.20 17.71
Rim-ONE 0.90 0.02 0.98 0.10 94.31 89.85 17.93

The number of subgroups N: This parameter affects the number of points that make up
the boundary. The higher the value N, the closer the fitted shape is to the true boundary.
However, too many subgroups increase the calculation time’s complexity. There are some
experiments that show the impact of this parameter on accuracy and calculation time.
Table 2 provides E, Acc and the calculation time for a different number of subgroups
in Drishti-GS. Figure 5 shows the optic disc segmentation in Drishti-GS with different
numbers of subgroups. It can be seen clearly from Table 2 and Figure 5 that, when the
number of subgroups equals to 50, good results can be achieved. In fact, if the number of
subgroups is set to a higher value, better solutions can be obtained.

Table 2. E, Acc, and calculation time for different numbers of iteration in Drishti-GS.

Number of Subgroups 10 20 30 40 50

E (%) 23.14 18.49 17.76 17.73 17.54
Acc (%) 86.81 91.57 92.05 92.19 92.28

Calculation time (s) 2.60 8.20 17.35 28.40 45.04
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Figure 5. Optic disc segmentation in Drishti-GS with different numbers of subgroups and the shape
of the ellipse’s fit. From left to right, the number of subgroups is 10, 20, 30, 40, and 50. The last
column is the result of the interpolation fitting based on column 5.

cp, cg, and ca: These parameters affect the velocity of particles. cp and cg are used to
ensure that particles move toward the best global location. Usually, cp = cg = 2 in the
traditional PSO algorithm. Therefore, the experiments start by setting these two parameters
cp and cg to 2. The predict boundaries are not sufficient to fit ground truth boundary. The
reason is that it is difficult to converge to optimal solutions of all the subgroups. Therefore,
we introduce the attraction between adjacent particles by ca. Table 3 provides the E, Acc
and Dice for different parameter settings in Drishti-GS. It can be seen that the algorithm
can performs optimally when cp = cg = 1.7 and ca = 0.3.

Table 3. E, Acc, and Dice for different combinations of cp, cg, and ca.

TP FP TN FN Acc(%) Dice(%) E (%)

cp = cg = 2, ca = 0 0.86 0.01 0.99 0.14 92.28 90.07 17.96
cp = cg = 1.7, ca = 0.3 0.85 0.01 0.99 0.15 92.28 90.35 17.49
cp = cg = 1.5, ca = 0.5 0.85 0.01 0.99 0.15 92.28 90.32 17.54

The inertia weight ω: To obtain a better accuracy of OD segmentation with proposed
method, an inertia weight strategy is applied to our experiments. Inertia weight ω is an
important parameter in PSO, which significantly affects the convergence and exploration in
PSO processes. Since the inception of inertia weight in PSO, a large number of variations of
inertia weight strategy have been proposed [24]. In this paper, we compared the constant
inertia weight, linear descending inertia weight, random inertia weight, and chaotic random
inertia weight based on Drishti-GS dataset. Table 4 shows the different strategies of inertia
weight. The parameter settings of all those experiments are N = 50, cp = cg = 1.7, ca = 0.3,
and numbero f iteration = 100.
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Table 4. Inertia weight with different strategies.

Name of Inertia Weight Formula Reference

Constant inertia weight ω = c [25]
Linear descending inertia weight ωk = ωmax − ωmax−ωmin

itemmax
× k [26]

Random inertia weight 1+rand
2 [27]

Chaotic random inertia weight z = rand, z = 4× z× (1− z), ω = z+rand
2 [28]

Table 5 provides E, Acc, and Dice for inertia weights with different strategies. It can be
observed that the algorithm can perform optimally with the chaotic random inertia weight,
which is 0.75% higher in Acc than the linear descending inertia weight, 0.17% higher in
Dice, and 0.28% lower in E than the constant inertia weight.

Table 5. E, Acc, and Dice for inertia weight with different strategies.

Acc (%) Dice (%) E (%)

Constant inertia weight 92.18 90.08 17.92
Linear descending inertia weight 92.17 90.14 17.82

Random inertia weight 92.18 90.14 17.81
Chaotic random inertia weight 92.92 90.25 17.64

3.3.2. Comparison with Other Methods

A recent comparison of optic disc segmentation methods was presented in [29] using
Rim-ONE and Drishti-GS datasets. Those datasets contain disc segmentations of 169 and
101 images, and they are publicly available and are free. Table 6 shows the evaluation
results for disc segmentation using different methods in Rim-ONE and Drishti-GS datasets.
Moreover, the information in Table 6 is quoted from the article of N. Thakur et al. [29] in
2019.

As we can see, the proposed SePSO algorithm performs better in the Drishit-GS dataset
than the best method (region growing) in the performance parameter Acc. The algorithm
performs better on the Rim-ONE dataset and 2.59% higher than the region-based growth
algorithm that is optimal among the four algorithms and 1.81% higher on Drishti-GS
dataset. To further show performance and increase the comparability of the proposed
method, additional evaluation indicators are used, as shown in Table 7.

Table 6. Performance measures of approaches applied for optic disc segmentation.

Segmentation Approach Dataset TP FP TN FN Acc(%)

Superpixel classification [30] Drishti-GS 0.81 0.13 0.86 0.18 88.01
Rim-ONE 0.81 0 1.00 0.18 88.67

Contour based [31] Drishti-GS 0.81 0.13 0.86 0.18 88.98
Rim-ONE 0.82 0 1.00 0.17 89.78

Thresholding [32] Drishti-GS 0.81 0.12 0.87 0.18 90.00
Rim-ONE 0.82 0 1.00 0.17 90.45

Region growing [33] Drishti-GS 0.82 0.12 0.87 0.17 90.05
Rim-ONE 0.82 0 1.00 0.17 90.72

Proposed approach Drishti-GS 0.85 0.01 0.99 0.15 92.28
Rim-ONE 0.90 0.01 0.99 0.10 94.31

Table 7. The result of OD segmentation with SePSO in Drishti-GS.

E ≤ 0.1 E ≤ 0.2 E ≤ 0.3 E ≤ 0.4 E ≤ 0.5 E Acc Dice

5.94% 71.29% 99.01% 100.00% 100.00% 17.64% 92.2% 90.25%
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4. Conclusions

In this paper, we propose an improved method based on particle swarm optimization,
called SePSO, for optic disc segmentation in retinal fundus images. In the disc segmentation
task, the deformation of the segmented contour is completed by changing the position
of the particles, and the optimal contour is solved by iterative update. In addition, the
constraint equations for particle position and velocity are optimized. The particles are
additionally attracted by adjacent subgroups in addition to the attraction of local optimal
solutions and global optimal solutions during flight. Based on Drishti-GS, we test the
influence of different parameter of the proposed method on the segmentation effect.

Particles in subgroups can learn optimal solution information between adjacent popu-
lations in the process of optimization, which greatly enhances the anti-interference ability
of particles. The proposed method has been tested using Rim-ONE and Drishti-GS datasets
and compared to other state-of-the-art methods, such as methods based on superpixels,
contours, thresholds, and region growth method. Experimental results show that the
algorithm performs better on both datasets than the other four algorithms, which confirms
its effectiveness and superiority.

In future studies, we aim to conduct the proposed SePSO approach for solving optic
cup segmentation. The simultaneous division of OC and OD has great clinical medical
value, and the segmentation of the OC will become the next research content of our work.
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