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ABSTRACT

Defining the target genes of distal regulatory
elements (DREs), such as enhancer, repressors
and insulators, is a challenging task. The recently
developed Hi-C technology is designed to capture
chromosome conformation structure by high-
throughput sequencing, and can be potentially
used to determine the target genes of DREs.
However, Hi-C data are noisy, making it difficult to
directly use Hi-C data to identify DRE–target gene
relationships. In this study, we show that DREs–
gene pairs that are confirmed by Hi-C data are
strongly phylogenetic correlated, and have thus de-
veloped a method that combines Hi-C read counts
with phylogenetic correlation to predict long-range
DRE–target gene relationships. Analysis of pre-
dicted DRE–target gene pairs shows that genes
regulated by large number of DREs tend to have
essential functions, and genes regulated by the
same DREs tend to be functionally related and
co-expressed. In addition, we show with a couple
of examples that the predicted target genes of
DREs can help explain the causal roles of disease-
associated single-nucleotide polymorphisms
located in the DREs. As such, these predictions
will be of importance not only for our understanding
of the function of DREs but also for elucidating the
causal roles of disease-associated noncoding
single-nucleotide polymorphisms.

INTRODUCTION

Distal regulatory elements (DREs), including enhancer,
insulator and repressor, are cis-regulatory elements that
regulate gene expression from long distances. Though

the precise mechanism of how DREs regulate target gene
expression is not well understood, one widely held model of
enhancer function proposes that on transcription factor
(TF) binding and mediation by cohesin and mediators,
enhancer can be brought proximately to the promoter
of target genes through the bending of DNA structure,
a process called DNA looping (1), which facilitates the
regulation of target gene expression. Enhancers play
central roles in many cellular processes, such as regulation
of transcription, site-specific recombination and replication
(2). For example, the expression of NANOG (3) and OCT4
(4) that play important roles in human embryonic stem cell
development are controlled by enhancers; members of the
bone morphogenetic proteins (BMPs) family, such as
Bmp2, Bmp4, Bmp5 and Gdf6, which play important roles
in developmental processes, are regulated by enhancers (5).
Owing to its important functional roles, mutations on en-
hancers may disturb normal cell activities and cause
diseases, such as aniridia (6), Hirschsprung’s disease (7),
preaxial polydactyly (8) and X-linked deafness (9). A
recent survey found that almost half of single-nucleotide
polymorphisms (SNPs) that show significant association
with common/complex diseases are located in noncoding
regions that potentially are DREs (10), further highlighting
the important roles of DREs.
To define the function of DREs, it is necessary to

determine their target genes, such that the biological
processes regulated by DREs can be inferred.
A common way to determine the DREs that regulate a
given gene of interest is to scan for conserved noncoding
sequences that are located near the target gene in genome.
For example, in Fugu rubripes, the enhancers of Hoxb-1
and Hoxb-4 were identified by searching for conserved
noncoding sequence blocks upstream of the two genes
through sequence comparisons with mouse genome (11);
the enhancer of Gli3 was also identified in a similar way
(12). However, DREs can regulate target genes from a
long distance (13), or even across chromosomes (14),
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and their relationships with the target genes are not limited
to a one-to-one relationship (15). All these complicate the
task of defining the target genes of DREs. Mark et al. (16)
developed the Site Clustering Over Random Expectation
(SCORE) algorithm to predict enhancer–target gene pairs
that share common Transcription Factor (TF) binding
sites, which does not require enhancer to be located close
to target genes. However, sharing commonTF binding sites
is not required for enhancer–target gene interactions (17),
limiting its usefulness in detecting enhancer–target gene re-
lationships. Recently, Chromosome Conformation
Capture (3C) (18) and Hi-C (19) as well as ChIA-PET
(20) techniques have been developed to capture long-
range chromatin interactions. Because enhancer and the
target gene may form a chromosome looping structure
during the interaction, the data generated by these tech-
niques can be potentially used to identify DREs–target
gene relationships. However, these data have not been
explored for this purpose yet.
Hi-C experiment generates millions of short sequence

reads. Each sequence read contain sequence fragments
from two different chromosome locations resulted from
a chromosome interaction event. If a Hi-C read can be
mapped to both a DRE and a gene, then it is likely the
gene is the target gene of the DRE. This makes Hi-C data
useful for detecting DRE–target gene relationships.
However, on one hand, the sequence data produced by
Hi-C are noisy. On the other hand, Hi-C may capture
random chromosome interactions as well. Thus, the
direct use of Hi-C data to determine the target genes of
DREs may generate many false positives. Given that a
DRE regulates its target gene expression by forming a
looping structure, we hypothesize that such looping struc-
ture may place strong evolutionary constraints on the evo-
lution of both the DRE and the target gene. If for some
reasons, either the DRE or its target gene is lost during
evolution, then the evolutionary constraints placed by
chromosome looping will disappear, which may result in
the loss of its counterpart as well. With a large number of
evolutionarily related genomes available, we should then
be able to observe a positive correlation between the
presence of a DRE and its target gene across the
genomes, making it possible to use phylogenetic correl-
ation to select DRE–target gene pairs from Hi-C data.
To test our hypothesis, in this study we first use DNase I

hypersensitive sites (DHS) downloaded from UCSC
genome browser to annotate DREs in human genome,
as DREs are often located within open chromatin
regions that are sensitive to DNase I digestion (21–23).
Then, we download Hi-C data generated by a recent
study (24), and annotate DRE–gene pairs using Hi-C
reads. Next, by preparing phylogenetic profiles for each
DRE and coding gene in the human genome using the
pairwise genome alignments between human and 45 ver-
tebrates, we investigate the phylogenetic correlation
between DREs and genes annotated by Hi-C reads. We
show that compared with random DRE–gene pairs, the
Hi-C annotated DRE–gene pairs tend to be significantly
phylogenetic correlated, and the correlation is stronger for
DRE–gene pairs confirmed with more number of Hi-C
reads or for those confirmed by Hi-C reads from more

cell lines. Thus, we have developed a method that
combines Hi-C read counts with phylogenetic correlation
to predict DRE–target gene relationships. Analysis of
the predicted DRE–target gene pairs reveals that genes
related to the same DREs tend to be functionally related
and co-expressed. In addition, we have shown with
examples that the predicted DRE–target gene pairs can
be used to infer the function of unknown genes, and to
explain the causal roles of disease-associated SNPs located
within DREs. As such, the predicted DRE–target gene
pairs will greatly facilitate our understanding of the
functional roles of DREs.

MATERIALS AND METHODS

Data collection and preprocessing

DHS annotations are downloaded from the wgEncodeReg
DnaseClustered track (25) of University of California,
Santa Cruz (UCSC) genome browser (26). The protein-
coding gene annotations are the union of the Ensembl
annotation (versions 64, genome version hg19) (27) and
UCSC ‘knownGene’ annotation (26). A DRE is defined as
a DHS that is not within any coding gene region and
whose distance to the nearest Transcription Start Site
(TSS) is longer than 2000 bp. Hi-C data are downloaded
from the Gene Expression Omnibus (GEO) database (ac-
cession number GSE35156) (24), and include sequencing
data of the two replicates of two cell lines (H1 hESC and
IMR90). The ChIP-seq data of all histone modifications
used in this study and EP300 are download from the
ENCODE project (25) and the Roadmap Epigenomics
(28), and then processed following the method in (29).
For peak calling, we use MACS software with default
parameters (30). The pairwise genome alignment data
between human and other 45 vertebrate species, from
lamprey to chimp, are downloaded from UCSC genome
browser (26). The list of the 45 species can be found in the
Supplementary Table S1.

Generation of phylogenetic profiles and calculation of
the correlations

See Figure 2 for the flowchart of phylogenetic profile prep-
aration. Based on the pairwise genome alignments between
human and the other 45 species, we collect all human
sequence fragments that have one or more homologous se-
quences in any of the other 45 genomes. We identify the
starting and ending positions of those fragments in human
genome, and use those positions to divide the human
genome into consecutive nonoverlapping sequence bins.
For each sequence bin, we prepare a phylogenetic profile
that consists of 0 or 1 with a length of 45; here, 1 indicates
this sequence bin has a homologous sequence in corres-
ponding specie and 0 otherwise. The phylogenetic profile
of a DRE or a gene is then computed as the weighted
average of the phylogenetic profiles of all sequence bins
inside the corresponding sequence region by the bin
length. The DRE sequence region is defined as the peak
region of the DHS, while the gene region is defined as the
sequence region from �1000 bp before TSS to gene end.
Then, for each combination of DRE and gene, we calculate
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the Pearson correlation coefficient (PCC) using their phylo-
genetic profiles.

Functional analysis

Gene Ontology (GO) enrichment analysis is performed
using FuncAssociate (31). GO annotations with ‘Inferred
from Electronic Annotation (IEA)’ evidence code are
removed, and only GO terms with three or more annotated
genes are used for enrichment analysis. GO terms with the
adjusted P< 0.05 are considered significantly enriched.
Functional similarity between two genes is computed
using the Resnik functional similarity measure that con-
siders not only the number of shared GO terms between
two genes but also the specificity of the GO terms. Details
about Resnik similarity measure can be found in (32).
Resnik similarity score is computed using only GO terms
belonging to the major GO branch of biological process.
For co-expression analysis, we download the expression
profiles of 79 human tissues from UCSC genome browser
[track gnfAltas (33)]. For every two genes, we compute the
PCCusing their own expression profile across the 79 tissues.

RESULTS

Annotation of candidate DRE–target gene pairs using
Hi-C data

We annotate protein-coding genes using a combined set of
Ensembl and UCSC gene annotation (26,27), and obtain

22 685 genes. Putative regulatory elements are annotated
based on the experimentally determined DHS downloaded
from UCSC genome browser. We define DREs as those
DHS that are not located within or close to any coding
gene regions (see ‘Materials and Methods’ section for
details), which results in 455 477 DREs. To identify
DRE–target gene relationships from Hi-C data, we
download the Hi-C data from Dixon et al. (24), which
includes �1.2 billion sequence reads from two cell lines
(H1 hESC and IMR90, both cell line have two replicas).
We consider a DRE–gene pair as a candidate DRE–target
gene pair if a Hi-C read contains the sequence fragments
from both the DRE and the gene.
However, a Hi-C read may be mapped to different lo-

cations in a gene region, making it necessary to investigate
which gene region should be used as the candidate region
for Hi-C reads mapping. According to the current model
of enhancer regulation, a DRE forms a looping structure
with the promoter of its target gene. It seems natural to
use the promoter region for Hi-C reads mapping.
However, though the DRE regions are significantly
enriched with Hi-C reads (Figure 1A), we find the
promoter regions are significantly depleted with Hi-C
reads (Figure 1B). We further inspect the distribution of
Hi-C reads in DHS inside the promoter, and find that Hi-
C reads are only locally enriched (Figure 1C). It is possible
that a DRE may form the looping structure with the DHS
inside the promoter region, but this looping structure may
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Figure 1. The distribution of Hi-C reads. The distribution of Hi-C reads around DREs (A), TSS (B), DHS inside promoter (C) and DHS inside gene
(D). For every target (e.g., a DHS or a DRE), the background Hi-C reads are the total number of Hi-C reads mapped to regions distant to the target
(�5��10 kb and+5�+10kb to the center of the target) divided by the length of the regions (10kb). The observed Hi-C reads at a given nucleotide
position are the averaged number of Hi-C reads mapped to that position with a window size of 50bp. The observed/background reads is then
computed at every nucleotide position and averaged across all targets.
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be transient, and will be unfolded upon RNA Pol II
binding to the promoter. Indeed, we find Hi-C reads are
significantly depleted around the center of RNA Pol II
binding region (Supplementary Figure S1). The depletion
of Hi-C reads in promoter suggests that it is not proper to
use promoter region for Hi-C reads mapping. We then
inspect the distribution of Hi-C reads along the gene
region. We find that Hi-C reads are significantly
enriched in DHS inside gene region (intragenic DHS)
(Figure 1D), and �55% of Hi-C reads mapped to the
gene region are located within the intragenic DHS
region (±1000 bp from the center of the DHS) (data not
shown). This suggests that a DRE may form a looping
structure with its target gene not only at transcription ini-
tiation but also during transcription elongation. Thus,
here we use the intragenic DHS for Hi-C reads mapping.
For each DRE–gene pair, we count the number of Hi-C

reads that are mapped to both the DRE and the intragenic
DHS. Intuitively, if a DRE–gene pair is confirmed by a
higher number of Hi-C reads, it is more likely a true
DRE–target gene pair. However, as genes with longer
length tend to have more intragenic DHS, the sum of
Hi-C reads over intragenic DHS is strongly biased by
gene length (Supplementary Figure S2). To solve this
problem, here we consider only the intragenic DHS that
has the highest number of Hi-C reads among all intragenic
DHS, and use the corresponding Hi-C read counts to rep-
resent the Hi-C read counts associated with the DRE–gene
pair. Finally, we obtain 35 337 425 Hi-C annotated DRE–
gene pairs, and consider them as candidate DRE–target
gene pairs. However, only 4.5% of them are present in
both cell lines (Supplementary Figure S3A), suggesting
that a large fraction of them may be false positives.

Combining Hi-C read counts with phylogenetic correlation
to predict DRE–target gene pairs

To identify DRE–target gene pairs from the candidate
pairs, an initial thought would be to rank those candidate
pairs by Hi-C read counts, and then select those above a
certain count. However, on one hand, Hi-C data are noisy.
On the other hand, Hi-C may capture random chromo-
some interaction as well. Thus, selection based only on
Hi-C read counts might still result in many false positives.
As chromosome looping is a necessary step for a DRE to
regulate its target gene expression, we hypothesize that
such looping structure may place strong evolutionary
pressure on the evolution of both the DRE and the target
gene. As such, we would expect to observe a positive cor-
relation between the presence of DRE and its target gene
across evolutionarily related genomes, which may then be
used for selecting DRE–target gene pairs additional to Hi-
C read counts. However, there are currently not many
known DRE–target gene pairs available for direct assess-
ment of our hypothesis. Considering Hi-C annotated
DRE–gene pairs are candidate DRE–target gene pairs,
here we use them to indirectly inspect the phylogenetic cor-
relation between DRE and target genes.
For a given DRE and a gene, we first prepare a phylo-

genetic profile for the DRE and the gene separately based
on the pairwise genome alignment between human and 45
other vertebrate species; then, we calculate the PCC using

the two profiles (Figure 2 and see ‘Materials and Methods’
section for details). A higher PCC indicates a stronger
phylogenetic correlation. However, the PCC is strongly
biased by the distance between the DRE and the gene in
genome, with DRE and gene located closer to each other
tend to have higher PCC (Figure 3A). For example, for
DRE–gene pairs whose distances are within 50 kb and
those within 50–500 kb, the mode PCC is 0.72 and 0.50,
respectively. In contrast, for DRE–gene pairs whose
distance is >500 kb, the distribution of their PCC is
close to that of the DRE–gene pairs from different
chromosomes (both the mode PCC are 0.35), indicating
the bias caused by distance can be ignored. Therefore, in
this study we focus only on distal DRE–gene pairs whose
distance is >500 kb or who are from different chromo-
somes, and exclude the DRE–gene pairs that are within
500 kb to each other in the following analysis.

The Hi-C annotated distal DRE–gene pairs are strongly
phylogenetic correlated: the mode PCC is 0.60, in contrast
to 0.35 for background distal DRE–gene pairs (Figure 3B).
Besides Hi-C technology, ChIA-PET that detects genome-
wide chromatin interactions associated with certain
proteins (20) can also be used to annotate DRE–gene
pairs. Here, we analyze the PCC of ChIA-PET annotated
distal DRE–gene pairs.We find that distal DRE–gene pairs
annotated by ChIA-PET data based on CTCF (34) and
ERRA (20) antibody are strongly phylogenetic related
(Figure 3C). Interestingly, however, distal DRE–gene
pairs annotated by ChIA-PET data based on RNA Pol II
antibody (35) are not phylogenetic correlated, which seems
consistent with the finding that Hi-C reads are depleted
around RNA Pol II regions. Thus, it can be inferred from
the above results that DRE and its target genes are strongly
phylogenetic correlated. Because there are only a small
number of ChIA-PET annotated DRE–gene pairs, here
we only focus on Hi-C annotated DRE–gene pairs.
Furthermore, we find that when a DRE–gene pair is
annotatedwith higher number ofHi-C reads or is confirmed
with Hi-C reads frommore cell lines, it tends to have higher
PCC (Figure 3D and E). As in these two conditions we
would expect to observe a higher fraction of true DRE–
target gene pairs, these results further validate that DRE
and its target genes are strongly phylogenetic correlated.

Based on the above results, Hi-C annotated DRE–gene
pairs with higher PCC or Hi-C read counts are more likely
to be true DRE–target gene pairs. To determine the
cutoffs of PCC and Hi-C read counts for selecting
DRE–target gene pairs, we compute the repeatability of
Hi-C annotated DRE–gene pairs between the replica cell
lines at a series of cutoffs (PCC: 0.7, 0.8 and 0.9, and Hi-C
read counts: 1, 2 and 3 and more).

Here, for the two replica of a given cell line (e.g.
IMR90), we first choose the replica that have lower Hi-
C reads at different read cutoffs, and identify the Hi-C
annotated DRE–gene pairs with Hi-C reads above the
read cutoff in this replica. The repeatability is then
defined as the ratio of these Hi-C annotated DRE–gene
pairs that can be confirmed in another replica without
using the read cutoffs. A higher repeatability indicates a
lower chance of observing DRE–gene pairs confirmed by
noisy Hi-C data, and consequently a higher chance of
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identifying true DRE–target gene pairs. We find that the
repeatability is significantly improved with the increase of
PCC and the number of Hi-C reads (Figure 3A and
Supplementary Figure S4). We choose the PCC cutoff to
be >0.8 and the cutoff of Hi-C read counts to be >2 to
predict DRE–target gene pairs, as they would not only
produce a higher repeatability (0.81 in Figure 4A) but
also result in a relatively large number of DRE–gene
pairs (Figure 4B). In addition, for those DRE–gene pairs
that have a PCC >0.8 and are confirmed by only one Hi-C
read in one replica cell line, if they can be confirmed by the
Hi-C data in another replica cell line, we also consider
them as DRE–target gene pairs. Finally, we combine the
predictions from the two cell lines, and obtain 260 897
predicted DRE–target gene pairs among which 48.4%
are present in both cell lines (Supplementary Figure. S3B).

Validation of predicted DRE–target gene relationships

The predicted DRE–target gene pairs correspond to 5344
genes and 104 636 DREs. A gene is usually regulated by
multiple DREs (Supplementary Figure S5A). Nearly half
of genes (47%) are regulated by nine or more DREs, and
>6.6% of them are regulated by >200 DREs. As there are
a large number of DREs and DREs regulating the same
gene tend to be located approximately to each other

(Supplementary Figure S6), we cluster DREs that are
within 5 kb distance to each other. The 104 636 DREs
are clustered into 44 760 DRE clusters, and genes
regulated by a DRE within a DRE cluster are considered
to be regulated by the corresponding DRE cluster.
To validate the predicted DRE–target gene relation-

ships, we consider two approaches. In the first approach,
given that there are specific active/repressive histone
markers at DREs or genes, we investigate whether the
combination of histone markers of DREs and of genes
are significantly enriched among the predicted DRE–
target gene pairs. The selected histone markers for
DREs are H3K4me1/2 (36) and H3K27ac (37). The
selected active histone markers for genes are H3K4me3,
H3K4/9ac at promoter and H3K36me3, H4K20me1 at
gene body (38), and the repressive marker is H3K27me3
(38) at promoter. We download the ChIP-seq data of these
histone markers on the two cell lines (25). Then, for a
given combination of histone markers such as H3K4me1
at DRE and H3K36me3 at gene body, we calculate the
observed-to-expected ratio of predicted DRE–target gene
pairs with the two markers. Here the expected ratio is
calculated by simply multiplying the ratio of DREs with
one histone marker and the ratio of genes with another
histone marker. For all the combination of histone
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Figure 2. Flowchart of phylogenetic profile preparation. A hypothetical genome with a DRE and a gene and four other related species are used here
to illustrate the process of phylogenetic profile preparation (see ‘Materials and Methods’ section for details).
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markers investigated, the observed-to-expected ratios are
higher than 1 (the P-values are all significant according to
chi-square test) (Figure 5A). In addition, in general, for
active DREs, our results show that the target genes are
more likely to have H3K36me3 and H4K20me1 at gene
body and H3K27me3 at promoter than the other histone
markers. Interestingly, H3K27me3 is a repressive maker,
indicating that a significant fraction of DREs may act as
repressors. We also repeat the same analysis for predicted
DRE cluster–target gene relationships, and find that all
above combinations of are even more enriched among
DRE cluster–target gene pairs than among DRE–target
gene pairs (Figure 5B). The enrichment of the combin-
ation of histone markers specific for DREs and genes
among our predicted DREs–target gene pairs therefore
indirectly suggest a regulatory relationship between the
predicted DREs and target genes.

In another approach, given that the regulation of DRE
on target genes requires the mediation of certain TFs, such
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as EP300 (39), we investigate whether the expression of the
predicted target genes of DREs is affected upon the
knockout of the TF. Because knockout of EP300 is
lethal (40) while the binding of EP300 requires CREB
(39), we download the gene expression data of CREB
knockout K562 cell line (41). Here, the reason why
K562 cell line is used is because there are no available
data for CREB knockout H1 hES or IMR90 cell lines.
Meanwhile, we download the ChIP-seq data of EP300
for K562 cell line (25) to identify DREs that bind
EP300. Next, we identify those genes that are significantly
differential expressed in between normal and CREB
knockout cell lines (P< 0.05, and with a fold change
>1.5 or <0.7). Among those genes that have been pre-
dicted to be regulated by DREs, �15.9% are differentially
expressed. In contrast, for those genes whose correspond-
ing predicted DREs are bound by EP300, this percentage
is 21.8%. The difference is statistically significant
(P=1.3e–4 according to Fisher’s exact test). As CREB
binds not only DREs but also gene promoters, we
exclude all CREB binding genes and redo the analysis.
The percentage is 21.7%, which is still significantly
higher than background (P=2.5e–3). For the predicted
target genes of DRE clusters, this percentage is 21.1 and
21.3% before and after the filtering of CREB binding
genes. Both percentages are statistically significant than
background (P=6.2e–5 and 8.6e–5, respectively). Thus,
our results show that the expression of the predicted target
genes is more likely to be affected than that of random
genes when the corresponding DREs are affected, which is
consistent with our predictions.

Functional analysis of predicted DRE cluster–target
gene pairs

We investigate the function of those genes regulated by
large number of DRE clusters. DLG2, TMPRSS3 and
PDE4D are the top three genes regulated by the most
number of DREs. DLG2 is located at 11q14.1, and is
regulated by 729 DRE clusters in which 532 are located
at chr11. It encodes a postsynaptic density protein, which
is required for perception of chronic pain (25). The
dysregulation of it in hippocampus is found to be related
with major depressive disorder (42). TMPRSS3 is located
at 21q22.3, and is regulated by 692 DRE clusters in which
102 are located in chr21. This gene encodes a transmem-
brane protease, and is found to be differently expressed in
tumors (43). Defects inTMPRSS3 can cause deafness auto-
somal recessive type 8 (44). PDE4D is located at chromo-
some 5q12.1, and is regulated by 673DRE clusters in which
523 are located at chr5. It encodes a cAMP hydrolase. Its
genetic variation causes acrodysostosis type 2 (45), andmay
be related with risk of stroke (46). We perform further
function enrichment analysis on the top 5% genes (271
genes) ranked by the number of DREs. Interestingly, we
find that these genes are significantly enriched with essential
functions, such as nervous system development (GO:
0007399) and cell adhesion (GO:0007155) (Supplementary
Table S2). In comparison, those genes regulated by only
one DRE cluster are not enriched with any GO terms
(adjusted P> 0.05).
Most DRE clusters regulate only one or two genes.

But there are also a large number of DRE cluster
regulating more genes. For example, over 1000 DRE
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clusters are found to regulate �10 genes (Supplementary
Figure S5B). For genes regulated by the same DRE
cluster, it is likely that those genes may be functionally
related because of the common regulatory mechanism.
To investigate this possibility, for each DRE cluster
regulating three or more genes, we compute a mean
Resnik functional similarity score (32) between genes
regulated by the cluster. The Resnik score is computed
using the GO annotations of two genes; with a higher

Resnik score indicating a higher functional association
(a random pair of genes would have a Resnik score of
0.73). As a control experiment, we randomly select the
same number of genes from the genome, and calculate
their mean Resnik score. Then, we compute the propor-
tion of DRE clusters whose mean Resnik score is above a
given cutoff, and compare it with the proportion obtained
from the control experiments. We find that at a given
Resnik score cutoff, the proportion of DRE clusters is
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significantly higher than that obtained from the control
experiments (P< 2.2e–16) (Figure 6A), indicating that
genes regulated by the same DRE cluster tend to be func-
tionally related. We also investigate whether genes
regulated by the same DRE cluster tend to be co-
expressed. We download a gene expression data set that
includes the expression profiles of 79 human tissues (33),
and calculate the co-expression PCC for every pair of
genes using the gene expression profiles. Then, we repeat
the above experiments by replacing Resnik functional
similarity score with co-expression PCC, and find that
similar to the experiment of functional relatedness, at a
given co-expression PCC cutoff, the proportion of DRE
clusters is significantly higher than that obtained from the
control experiment (P< 2.2e–16) (Figure 6A), indicating
that genes regulated by the same DRE cluster tend to be
co-expressed.

However, genes regulated by the same DRE cluster tend
to be located near to each other, and those genes are more
likely to be co-expressed and functionally related
(Supplementary Figure S7), which may cause some bias
to the above results. We then filter out the gene pairs that
are within 500 kb to each other, and repeat the above
analysis. The conclusions still hold true, though the
result of co-expression PCC is not as significant as
before (Supplementary Figure S8). Thus, we conclude
distal genes regulated by the same DRE cluster also tend
to be functionally related and co-expressed.

Literature validation and application of predicted
DRE–target gene pairs

In this study, we focus on predicting distal DRE–target
gene pairs that are either located >500 kb distance from
each other or from different chromosomes. Most current
studies on DRE regulation focus on DRE and genes that
are relatively close to each other in genome, making it dif-
ficult to find direct literature evidence to validate our pre-
dictions. We then search for experimentally validated
DRE–target gene relationships in other genomes, and
find one example that supports our predictions. In this
example, a regulatory archipelago located in a 600 kb-
long gene desert between Atp5g3 and HoxD13 in mouse
genome was found to regulate the expression of HoxD
genes (48). HoxD genes perform essential functions in
many development process, and defects on HoxD genes
would cause various limb malformation (44). We map
this mouse regulatory archipelago to the human genome,
and find it contains 21 DRE clusters in which 9 regulate
HOXD genes according to our predictions. These HOXD
genes include HOXD13 (regulated by six DRE clusters),
HOXD11 (regulated by three DRE clusters) and HOXD3
(regulated by four DRE clusters) (Figure 6B). In addition,
we find several DRE clusters downstream to the HOXD
gene clusters that regulate HOXD genes. Therefore, our
predictions provide a great resource for experimental
biologists to derive novel hypothesis and design new
experiments to study distal gene regulations.

Because genes regulated by the sameDRE cluster tend to
be functionally related, it is possible to use the predictions
to infer the function of unknown genes. To test this possi-
bility, we perform GO enrichment analysis without using

GO IEA evidence (computational predictions) on 56 DRE
clusters regulating>23 genes. Among them, 17 have signifi-
cantly enrichedGO terms (Supplementary Table S3). Then,
we investigate whether any genes inside these clusters are
annotated with the enriched GO terms by IEA evidence. In
one example, the DRE cluster 22833 (the ID of the DRE
cluster defined in this study, see Supplementary File for
details) (chr3:34039485-34072215) is enriched with the
function of brain development (GO:0007420). Among the
genes regulated by the cluster, RARB and EXT1 are both
annotated with this GO term by IEA. In another example,
the DRE cluster 29008 (chr4:190563175-190584645) is
enriched with the function of cell–cell adhesion
(GO:0016337). PCDH7 is regulated by this cluster, and is
annotated with the same GO term by IEA. Therefore,
function of unknown genes may be inferred based on the
patterns of DRE regulation.
The predicted DRE–target gene relationships also offer

an opportunity to investigate the regulatory mechanisms
between DRE and target gene. PDE4D, an important
cAMP-specific phosphodiesterase (44), is predicted to be
regulated by 1287 DREs. Motif enrichment analysis by
Multiple EM for Motif Elicitation (MEME) (motif
length is set to be 5–20 bp with default parameter
setting) (48) on these DREs reveals that a 7 bp motif is
enriched in 880 DREs (E-value=7.0e-38). This motif is
found to be highly similar to the STAT3 motif by
TOMTOM (49) against the JASPAR database (core
2009) (Figure 6C). STAT3 is a transcription activator
that mediates cellular responses to growth factors (44).
Previous study has shown that the
PI3K�PDE3B�cAMP pathway is interacting with the
Jak2�Stat3 pathways (50). Because both PDE4D and
PDE3B are members of cAMP phosphodiesterase family
and PDE4D may share common inhibitor with PDE3B
(51), our analysis suggests that STAT3 binding to the
DRE may play an important role in regulating the expres-
sion of PDE4D. In another example, out of 1030 DREs
predicted to regulate ASAP1, 1028 are found to contain a
12-bp motif (E-value=5.5e–102) that is similar to the
KLF4 motif (Figure 6C). ASAP1 is involved in the differ-
entiation of fibroblasts into adipocytes (44), and was pre-
viously named differentiation-enhancing factor 1. KLF4 is
a stem-cell TF interacting with CREB binding protein
(52). A previous study showed that KLF4 regulates the
expression of FAK, an intracellular tyrosine kinase related
to neovascularization in endothelial cells (53). Because
ASAP1 is interacting with FAK (52), this suggests that
KLF4 may regulate the expression of ASAP1 through
binding to its DREs.
Recent analysis on disease-associated noncoding SNPs

has revealed that many of them are located within regula-
tory elements (10). Here we showwith a couple of examples
that our predictions can be used to explain the casual roles
of disease-associated regulatory SNPs. SNP rs11610206
is associated with Alzheimer’s disease (54). This SNP is
located within a noncoding region, and the nearest
coding gene to this SNP is FAM113B whose function is
unknown. Thus, the exact reason why this SNP is disease
associated is unclear. We find this SNP is located within the
DRE cluster 7987 (chr12:47637135-47642135) whose target
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gene is VDR. VDR is located 600 kb downstream to the
DRE cluster. It encodes the Vitamin D3 receptor that is
a TF regulating many hormone sensitive genes. The sup-
pression of VDR has been found to be related with
Alzheimer’s disease in several studies (55–57). Therefore,
it is likely the reason why SNP rs11610206 is associated
with Alzheimer’s disease is because this SNP influences
the function of the DRE, which then affects the expression
ofVDR and leads to Alzheimer’s disease. SNP rs7578326 is
another example. It is associated with type II diabetes
according to a genome-wide association study (58). This
SNP is located within the intron of a noncoding RNA,
BC017935, whose function is unknown, making it difficult
to explain the causal role of this SNP. We find this SNP is
located within the DRE cluster 20449 (chr2:227013575-
227022415), which targets a 500 kb downstream gene that
encodes IRS1 (insulin receptor substrate 1). Because IRS1
signaling is essential for glucose homeostasis in liver (59),
and is related with the insulin sensitivity (60) and resistance
(61), it is likely that this SNP may affect the function
of DRE, which may impact the expression of IRS1 and
contribute to type II diabetes. Given the increasing aware-
ness of disease-associated noncoding SNPs, our predic-
tions provide a valuable resource for explaining the
causal roles of disease-associated SNPs in DRE region.

DISCUSSION

Defining the target genes of DREs, including enhancers,
repressors and insulators, is crucial to our understanding
of the function of DREs and the mechanisms of long-
range regulation. In this study we develop a method that
combines phylogenetic correlation with Hi-C read counts
to predict distal DREs–target gene pairs that are located
>500 kb from each other or from different chromosomes.
Analysis of the predicted DRE–target gene pairs reveal
that genes regulated by a large number of DREs tend to
have essential functions, and genes regulated by the same
DREs tend to be functionally related and co-expressed.
We consider the predicted DRE–target gene pairs are of
high quality, as they not only are captured by Hi-C but
also show strong phylogenetic correlation. In addition,
these predictions are validated by the histone modification
patterns and the differential gene expression pattern in a
CREB knockout cell line. However, there may still exist
false positives, which can be attributed to the following
reasons. The read cutoff is set at two reads, which is not a
stringent cutoff, and may result in false positives. On the
other hand, phylogenetic correlation is not a sensitive
measure, and can be affected by the nearby genomic
context of the gene or DREs under consideration, which
may cause the inclusion of false positives as well. As for
false negatives, first there is always a tradeoff of reducing
false positives. Second, in this study we only analyze
intergenic DREs, while DHS inside a gene may also act
as DRE of other genes. Third, we focus only on distal
DRE–target gene relationships. Fourth, not all DRE–
target genes are phylogenetic correlated, especially for
those newly evolved DRE–target gene relationships.
Finally, DRE–target gene relationships may be cell-type
specific, and our predictions are based only on two cell

lines. Nevertheless, our predictions are of great value for
experimental biologists to design new experiments to
study the mechanisms of long-range regulation. In
addition, these predictions can be explored to infer the
function of uncharacterized genes. Furthermore, given
the increasing awareness of the importance of noncoding
SNPs with disease association from recent genome-wide
association studies (10,62,63), the predicted target genes of
DREs are of importance for elucidating the causal roles of
those SNPs that are located in DREs.
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