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Abstract: Artificial intelligence (AI) for medical imaging is a technology with great potential. An
in-depth understanding of the principles and applications of magnetic resonance imaging (MRI), ma-
chine learning (ML), and deep learning (DL) is fundamental for developing Al-based algorithms that
can meet the requirements of clinical diagnosis and have excellent quality and efficiency. Moreover,
a more comprehensive understanding of applications and opportunities would help to implement
Al-based methods in an ethical and sustainable manner. This review first summarizes recent research
advances in ML and DL techniques for classifying human brain magnetic resonance images. Then,
the application of ML and DL methods to six typical neurological and psychiatric diseases is sum-
marized, including Alzheimer’s disease (AD), Parkinson’s disease (PD), major depressive disorder
(MDD), schizophrenia (SCZ), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum
disorder (ASD). Finally, the limitations of the existing research are discussed, and possible future
research directions are proposed.

Keywords: artificial intelligence; machine learning; deep learning; human brain-related diseases;
magnetic resonance image

1. Introduction

Magnetic resonance imaging (MRI), as a non-invasive medical imaging technique, has
been widely used in the early detection, diagnosis, and treatment of diseases [1]. In the
study of the human brain, MRI can not only provide information about the anatomical
structure of the brain, but also provides comprehensive multi-parameter information about
the function and metabolism [2]. Structural magnetic resonance imaging (sMRI) and
functional magnetic resonance imaging (fMRI) have respectively made great progress in
the study of human brain structure and function, due to their high spatial resolution [3].

Al (artificial intelligence) in MRI is a technology with great potential. Based on the
principles and application of ML (machine learning), DL (deep learning) is fundamen-
tal for developing Al-based algorithms that can achieve improved results, quality, and
efficiency [4]. The relationship between Al, ML, and DL is shown in Figure 1.

Machine learning [5,6], as a pattern recognition technology, has already been applied
to the medical imaging field. ML usually starts by selecting features that are considered
important for making predictions or diagnoses. The ML algorithm then identifies the best
combination of these selected features for classifying or computing some metrics for the
given image. With the development of Al technology, ML will continue to have a great
influence in the future [7].

Deep learning [8] is an end-to-end algorithm featuring automatic feature learning.
Since it does not rely on the artificial extraction of features, as in traditional ML, more
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original features of the data can be obtained [9]. Recently, DL has renewed the potential
of neural networks and has been widely applied to natural language processing, image
recognition, and other fields, using its powerful feature modeling and learning capabilities.
Due to the complexity and unpredictability of the human body and diseases, biological
signals and information are detected and expressed according to their manifestations and
changing patterns (self-changes and changes after medical intervention). The analysis of the
acquired data and information, decision-making, and many other aspects has complicated
nonlinear relations, which is suitable for application of neural networks. Furthermore,
there exist a number of popular reviews: Noor et al. [10] compared performances of the
existing deep learning (DL)-based methods for detecting neurological disorders from MRI
data acquired using different modalities, including functional and structural MRI, they
also summarized the application of DL and reinforcement learning (RL) in biological
data [11,12].

Artificial Intelligence

Deep Learning

Figure 1. The relationship between Al, ML, and DL.

In the diagnosis of human brain-related diseases, such as AD (Alzheimer’s dis-
ease) [13], PD (Parkinson’s Disease) [14], MDD (major depressive disorder) [15], SCZ
(schizophrenia) [16], ADHD (attention-deficit/hyperactivity disorder) [17], ASD (autism
spectrum disorder) [17,18], etc., the use of Al methods to diagnose diseases has achieved
satisfactory results [19]. In the radiological research of the human brain, the raw data is
mainly the collected magnetic resonance images of the human brain. The main imaging
methods include T1-weighted imaging, T2-weighted imaging, diffusion tensor imaging
(DTI), diffusion-weighted imaging (DWI), and blood oxygen level-dependent functional
magnetic resonance imaging (BOLD-fMRI), etc. After the raw data is preprocessed, images
are classified with different ML and DL models, which can overcome the subjective lim-
itations of traditional diagnosis by doctors and realize a transformation from subjective
qualitative analysis to objective quantitative analysis.

Differently from traditional two-dimensional images, magnetic resonance images are
three-dimensional, or even four-dimensional, spatial images. Considering this feature, we
have summarized related ML and DL methods and their applications in human brain-
related neurological and psychiatric diseases.

A certain amount of literature works have reviewed the application of ML and DL
methods on MRI data [4,20], and some representative examples are listed in Table 1. Some of
them reviewed the MRI data of different parts of the human body, including the brain, chest,
breast, and others [21]. Others reviewed only ML, while some reviewed only DL methods.
Almost no papers simultaneously reviewed ML and DL in human brain neurological and
psychiatric diseases in the classification task. As the two most popular research directions
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in the field of Al in the past decade, it is necessary to conduct a comprehensive review and
pay closer attention to human neurological and psychiatric diseases.

Table 1. Review papers of the application of ML and DL methods to MRI data.

Reference

Year

Number of Papers Reviewed Years Covered Pathology/Anatomical Area

[10]

[22]

(23]

[7]

2020

2020

2020

2019

2020

2017

2019

2017

Alzheimer’s disease,
42 2015-2019 Parkinson’s disease,
Schizophrenia
Neurological disorders,
Alzheimer’s disease,
Schizophrenia,
Brain tumor,

155 2010-2019 Cerebral artery,
Parkinson’s disease,
Autism spectrum disorder,
Epilepsy,

Other
Alzheimer’s disease,
Parkinson’s disease,

Autism spectrum disorder,
Schizophrenia
Brain age,
Alzheimer’s disease,
56 2016-2018 Vascular lesions,
Brain extraction,
etc.
22 2010-2019 Schizophrenia
Image/exam classification,
Object or lesion classification,
Object or lesion detection,
Object or lesion detection,
Lesion segmentation,
etc.
Schizophrenia,
Autism spectrum disorder,
Parkinson’s disease,
65 2008-2018 Depression,
Substance Abuse disorder,
Epilepsy,
etc.
Model/ Algorithm,
85 - Alzheimer’s disease,
etc.

100 2016-2019

300 1995-2017

This paper’s contribution lies in its systematic and comprehensive introduction to the
application of ML and DL methods to human brain magnetic resonance data in neurological
and psychiatric diseases. We briefly introduce the principle of the algorithms and then
review the related literature on the application of these algorithms. Therefore, the structure
of this review can roughly be divided into five parts. In Section 2, the method for this
review is introduced. In Sections 3 and 4, we introduce some popular ML/DL models. In
Section 5, we provide a detailed overview of recent studies using Al-based techniques for
six human brain-related diseases, and finally, the article is concluded in Section 6.

2. Methods

The method described below was guided by scoping review methodological frame-
works [28]. The objectives and inclusion and exclusion criteria for this scoping review were
prespecified and published in a protocol using the open science framework [29,30].
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2.1. Search Strategy and Literature Sources

For this review, classification task Al-based methods were searched in databases
including PubMed and Web of Science, from January 2011 to May 2021. The search
string used in this study was (“Alzheimer’s Disease” or “Parkinson’s Disease” or “Major
Depressive Disorder” or “Schizophrenia” or “Attention-Deficit/Hyperactivity Disorder”
or “Autism Spectrum Disorder” or “AD” or “PD” or “MDD” or “SCZ” or “ADHD” or
“ASD”) and (“machine learning” or “deep learning”) and (“MRI").

2.2. Inclusion Criteria

Articles published between January 2011 and May 2021 on the six specified diseases
and written in English, using brain MR images and machine learning or deep learning
methods were included. According to effective practice and organization of care review
criteria, the following study designs were considered for inclusion: randomized control
trials, non-randomized control trials, and controlled before-after studies. Relatively new
research was included in this review.

2.3. Exclusion Criteria

Articles not written in English, reported before January 2011, not a classification task,
not using brain MR images, not the specified diseases, case reports/case series, letters to
the editor, opinions, commentaries, conference abstracts, dissertations, and theses were
excluded from this review.

2.4. Results

Initially, 6516 papers were found. After removing duplicates and reviewing the
abstracts of these papers, 625 papers were selected for full-text review. This study in-
cludes both journal and conference articles. After reviewing the full-text of these papers,
551 papers were excluded, as they used duplicate methods or were published earlier. Fi-
nally, 74 papers were studied in this research. Figure 2 illustrates the selection procedure of
the articles for this study using a Prisma diagram.

Identification of studies via databases

Records identified
Through Databases
Searching (PubMed =
1879, Web of Science =

Duplicate records removed

4637) (n=1445)
(n=6516)

l Records excluded (Review
Records screened Articles, Segmentation Task, Not
(Abstract Review) Brain MB Images, Not the

specified diseases)
(n=5071)

(n = 4446)

|

Full Text Articles

Full Text Articles Removed
(Duplicate methods, Published
earlier)

(n=625)

(n=551)

Studies included in
review

(n=74)

Figure 2. Prisma diagram of the selection process of the research articles of this review.

3. Related Machine Learning Methods

In the past ten years, many ML models have been used on a variety of MRI data,
and we recorded statistics on the commonly used classification algorithms through Web
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of Science. The results showed that SVM was used in 1973 papers, ANN in 1491 papers,
RF in 581 papers, LR in 266 papers, KNN in 177 papers, NB in 106 papers, AdaBoost in
72 papers, and GBDT in 7 papers. Figure 3a lists the most popular ML methods. The first
six models are reviewed in this paper.

MCNN
B Transfer Learning
Hean
HRNN
Henn
Hsae
Hoen
Coem

W AdaBoost
GDBT

() (b)

Figure 3. Application of different Al-based models to MRI data. (a) The related machine learning
methods. Legend, SVM: support vector machine, ANN: artificial neural network, RF: random forests,
LR: logistic regression, KNN: K-nearest neighbor, NB: naive Bayes, GDBT: gradient boosting decision
tree. (b) The related deep learning methods. Legend, CNN: convolutional neural network, GAN:
generative adversarial network, RNN: recurrent neural network, GNN: graph neural network, SAE:
stacked auto-encoders, DBN: deep belief network, DBM: deep Boltzmann machine.

3.1. K-Nearest Neighbor (KNN)

KNN is a comprehensive model that can be used for both classification and regression
tasks [31]. The KNN algorithm can be easily understood; if a sample belongs to category A
in most of the K closest samples in the sample space, then the sample also belongs to A.
When making a classification decision, the method is based only on the type of samples
with the largest number among the closest K samples. In other words, the classification
decision of the KNN method is only related to a very small number of adjacent samples.
A Euclidean function is used to calculate the neighboring distance, which stands for
the correlation between two samples [32]. The principle of KNN algorithm is shown in
Figure 4.

h

Y
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Figure 4. The red circles, blue squares and green triangles represent three different categories of data,
the yellow point is the data to be predicted. Since it is closer to the green triangle type, it should be
predicted to belong to the green triangle type.
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3.2. Naive Bayes (NB)

NB is a simplified model based on the Bayes algorithm, which assumes that attributes
are conditionally independent of each other; i.e., no attribute has a larger or smaller weight
in affecting the decision result. It calculates the result of individual groups, which are not
associated with other variables [33]. NB is a simple and efficient classification model and
has been widely used for classification and multi-class predictions [34].

3.3. Support Vector Machine (SVM)

As one of the most used ML models, SVM is an algorithm developed for classification
tasks. In the SVM model, the features are mapped onto high-dimensional space, and classifi-
cation is performed to decide the optimal hyperplane [35]. The fundamental concept of the
SVM model is to transform the classification problem into a convex quadratic programming
problem, which can be solved by the relevant ideas of operations research. Specifically,
SVM uses labeled data to generate the best hyperplane through the training step, and the
hyperplane can optimally separate the data into different types. This hyperplane is a line
of binary classification, and tuning parameters can help to improve the performance of the
model [36,37]. A schematic diagram of a hyperplane is illustrated in Figure 5.

Y

Figure 5. The red circles and blue squares represent two different categories of data. Hyperplane B
can classify the red circles and blue squares better than hyperplane A.

3.4. Random Forests (RF)

RF was introduced by Leo Breiman [38] and is an ensemble algorithm that is an
extension of the bagging idea [39]. Multiple weak classifiers are combined to form RF, and
the final result is obtained by voting or averaging these weak classifiers, so that the RF can
achieve a higher accuracy and generalization performance. The “random” function makes
the model resistant to overfitting, and the “forests” make the result more accurate. RF can
be used for either a classification problem or a regression problem. Similarly, the predictor
variables can be either categorical or continuous. The algorithm flow of RF is illustrated in
Figure 6.
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Random sampling of training
set with replacement

‘ Training set 1 ‘ ‘ Training set 2 ‘

Randomly select features for
the training set

Classification Classification Classification
del 1 model 2

model N

Voting to determine the
optimal classification model

Figure 6. The algorithm flow of RE.

3.5. Logistic Regression (LR)

LR was first used by Cornfield et al. [40]. The use of LR has continued to increase in
the past thirty years. It is one of the most widely used methods in health science research,
especially epidemiological research [41]. The difference between LR and linear regression
is that LR assumes that the dependent variable y follows a Bernoulli distribution, while
linear regression assumes that the dependent variable y follows a Gaussian distribution.
LR is theoretically supported by linear regression, but LR introduces nonlinear factors
through the use of a sigmoid function. A graphical representation of the sigmoid function
is shown in Figure 7.

Sigmoid Function

0.5

0
-10 -5 0 > 10

Figure 7. The sigmoid function maps a real number to the interval of (0,1) and can be used for binary
classification.

3.6. Artificial Neural Network (ANN)

ANN is a significant model in the field of ML. It is inspired by the working principle
of biological nerve cells and combines multiple hierarchical relationships. The neural
network structure is formed by interconnected artificial neurons. The signal transmission
between these neurons can be simulated by a mathematical expression, so that a nonlinear
relationship between an input and output can be established and visualized. ANN can
simulate any nonlinear functions with different structures, and therefore it can be used to
process nonlinear systems or black-box models with more complex internal expressions.
The schematic diagrams of a neuron and an ANN are shown in Figure 8.
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Figure 8. Each neuron is a computing unit, which can be represented by a calculation function f. An ANN is composed of

one input layer, several hidden layers, and one output layer.

4. Related Deep Learning Methods

DL models have also been widely used on MRI data. Figure 3b lists the most popular
DL methods. The first six models are reviewed in this paper. The statistics results showed
that CNN was used in 1986 papers, transfer learning in 334 papers, GAN in 251 papers,
RNN in 120 papers, GNN in 71 papers, SAE in 67 papers, DBN in 41 papers, and DBM in
23 papers.

4.1. Stacked Auto-Encoders (SAE)

The so-called auto-encoder (AE) is an unsupervised learning process, i.e., there is no
need for a label. The self-encoding is accomplished by making the label of each sample y
equal to x, which is the data x of each sample, and the label is also x. Self-encoding generates
the label itself, and the label is the sample data itself. The optimization goal during training
is to make the output value as close as possible to the input value, preferably the same.
This can be understood in this way: the input data represents some information, which
is initially represented by the data of a certain dimension; then, after being encoded by
the intermediate hidden layer, the dimension is compressed (reduced), and finally it is
restored to data that is very close to the original information. The basic realization of
the “stacked” process trains the above AE structure and discards the decoding process.
Thus, it can be seen that the code contributes to dimensionality reduction and feature
extraction. The code at this time is taken as input, and input into the new AE structure,
for training. To date, a variety of stackable autoencoders have been proposed, such as
denoising auto-encoders (DAE) [42], sparse auto-encoders (sparse AE) [43], and variational
auto-encoders (VAE) [44]. The basic structures of an AE and an SAE are shown in Figure 9.

o) ® ®
® @ ® AN

& B K 7 ®
AN ) . AN ) @)
o g ®

() (b)

Figure 9. (a) An AE, including encoding and decoding, and (b) an SAE without the decoding process.
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2D Raw Data

4.2. D Conuvolutional Neural Network (2D-CNN)

Convolutional neural networks (CNN) were proposed by Yann LeCun and evolved
from multi-layer perceptron (MLP) [45]. The greatly reduce the number of parameters
through weight sharing, making a neural network easy to optimize and resistant to over-
fitting. A CNN is a feedforward neural network, and it is specially designed to process
two-dimensional data. The structure parameters in the network can be optimized through
a backpropagation algorithm with chain rules. CNN is considered the first truly successful
robust DL method to be based on a multi-layer hierarchical network.

Developed from artificial neural networks, a CNN can preserve the spatial relationship
between data. A CNN model consists of several types of layer, including an input layer,
convolutional layer, pooling layer, fully connected layer, and output layer. CNN has
multiple layers of convolutions and activations, which makes it able to form a highly
efficient representation of the input data [46]. Moreover, the fully connected layers compute
the final outputs at the end of the model [24]. The basic architecture of a 2D-CNN is shown
in Figure 10. Since MRI images are three-dimensional, the input layer needs to convert
the 3D human brain image into one in 2D space, and then input it into the corresponding

network model.
|
|
]
[ )
B — °

Convolution Feature maps Pooling Fully connected layer

kernels

Figure 10. The convolution of a two-dimensional picture calculates the output with convolution by moving the convolution

kernel step by step on the picture, down-sampling through pooling layer, and finally connecting the results of the output

layer through several fully connected layers.

4.3. D Convolutional Neural Network (3D-CNN)

Compared with 2D convolution, 3D convolution on the entire MRI image can capture
potential 3D structural information, which is essential for discrimination [47]. Three-
dimensional CNN has shown excellent performances in AD and MCI classification [48] and
is a supervised learning framework that learns discriminant features from training data.
The design of the network structure is inspired by the functioning of the human eye [47].
In recent years, convolutional neural networks have been widely applied to the fields of
visual computing and artificial intelligence. Especially, in the field of visual recognition the
use of 3D convolutional neural networks is developed rapidly.

Three-dimensional convolution differs from 2D convolution in that the input image
has an additional depth dimension. In this case, the input size (channel, depth, height,
width) and the convolution kernel have one more dimension. Thus, a sliding window
operation is performed on the height and width dimensions, as well as the depth dimension,
to obtain a value in the output 3D image. Exploiting 1D and 2D CNNs, a 3D-CNN can
simultaneously extract spectral and spatial features from the input data. These features of
3D-CNNs are very useful for analyzing volume data in the field of medical imaging. A
schematic diagram of 3D convolution is shown in Figure 11.
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3D Convolutional kernels

3D Raw Data

Hidden layers

Figure 11. Similar to 2D convolution, the input image, convolution kernel, and final output are all
three-dimensional.

4.4. Recurrent Neural Network (RNN)

RNNSs are obtained by connecting the output of neurons of a feedforward network to
their inputs [49]. “Recurrent” means that the network model performs the same operation
on each element, and the output of the model depends on previous calculations. The
RNN with pattern recognition was introduced by Hopfield in 1982 [50]. As a part of DL
techniques, RNN is suitable for processing temporal data, such as fMRI, because it models
the temporal correlations among data explicitly with its recurrent structure. Recently, more
and more researchers have become interested in using RNN to model fMRI signals [51,52].
Specifically, Giiglii et al. [53] used RNN to predict brain activity response nature activity, to
investigate the expression of complex visual and auditory information in the brain.

RNNSs can be regarded as deep networks with shared parameters at each layer. This
results in the problem of vanishing gradients. To solve this problem, the long-short-term
memory (LSTM) architecture was proposed by Hochreiter and Schmidhuber [54]. LSTM is
composed of a memory cell Cy, a forget gate f;, an input gate i;, and an output gate o;. The
basic architecture of LSTM is shown in Figure 12.

C'_l @ e g Cr

X

Figure 12. The basic architecture of LSTM.
4.5. Graph Neural Network (GNN)

The human brain can be regarded as a graph structure, in which different brain areas
can be regarded as nodes and the relationship between these areas can be regarded as
edges. The graph structure is represented by G = {V, E, A}, where V represents a set of
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nodes, and | V| = n means there are n nodes in the graph; E represents a set of edges, and
A is an adjacency matrix, which defines the interconnection between nodes.

In the past few years, inspired by DL models like CNNs, RNNs, and AEs, new gener-
alizations and definitions of important operations have been rapidly proposed to deal with
the complexity of graphics data. Sperduti et al. [55] first applied neural networks to directed
acyclic graphs, which motivated early studies on GNNSs. The concept of graph neural net-
work was originally proposed by Gori et al. and further elaborated by Scarselli et al. and
Gallicchio et al. [56-58]. The information of the entire graph is represented by an iterative
aggregation of neighbor information. This process is time-consuming in computation, and
recently efforts have been made to overcome this challenge [59,60]. The representative
algorithms for graph neural networks include DeepWalk [61], GCN [62], CTDNE [63], and
JODIE [64]. Encouraged by the success of CNNs in the field of computer vision, many
methods have been developed to redefine the concept of graph data convolution. These
methods are in the category of convolutional graph neural networks (ConvGNNs), which
can be divided into spectral-based and spatial-based approaches. The basic architecture of
GNN is shown in Figure 13.

O
> N Aggregate " ®
function

Graph construction Pooling Fully connected layer

Figure 13. The connections between different brain areas can be abstracted into a graph structure. The high-level represen-

tation of the graph structure is learned through aggregation functions, and the output layer is connected through the fully
connected layer to obtain the classification result.

4.6. Generative Adversarial Network (GAN)

GAN was proposed by Goodfellow et al. [65] and is one of the most effective methods
for unsupervised learning of complex distributions of recent years. A GAN contains two
key components: the generative model (G) and the discriminative model (D). Neural
networks are usually exploited as G and D, but this is not fixed. In other words, G and D
are not required to both be neural networks, they can be the functions that can realize the
corresponding generation and distinction.

GAN has been extensively explored by researchers, and there have been many conclu-
sive works. Creswell et al. [66] classified GAN models in terms of the network architecture
and loss function. Hong et al. [67] summarized the development of the GAN model from
the perspective of learning methods, including supervised learning, unsupervised learn-
ing, and theoretical analysis. Guo et al. [68] focused on modifying the model structure,
developing the theory, and the use of GAN. The expansion of the data set is also an impor-
tant function of GAN. Different forms of GAN are receiving more and more attention in
biomedical research [69]. The basic architecture of GAN is illustrated in Figure 14.



Diagnostics 2021, 11, 1402

12 of 27

Real
Samples O
ratent Space n '@
’@ Label N
N enerated
Fake
Samples
. Fine Tune Training
Noise

Figure 14. Two models are trained in the framework of GAN at the same time. The training procedure of G is to maximize

the error probability of D.

4.7. Transfer Learning

Transfer learning is a DL method that transfers knowledge from one domain (source
domain) to another domain (target domain), so that better learning results can be achieved
in the target domain. Since researchers in brain imaging deal with small datasets, transfer
learning might be an approach that improves results [70-72].

Transfer learning first trains a basic network on a large sample dataset and then
migrates the first k layers of the basic network to that of the target network. Based on this,
the remaining layers of the target network are randomly initialized and trained on the
target data set. During the training process, the parameters of the first k layers are usually
frozen to avoid overfitting during backpropagation. Specifically, whether to fine-tune the
first k layers of the target network depends on the size of the target data set and the quantity
of the parameters in the first k layers. If the target data set is small and the number of
parameters is large, fine-tuning may lead to overfitting. Otherwise, if the target data set is
large or the number of parameters is small, then overfitting can be avoided, and transfer
learning can contribute to performance improvements [73]. This is an efficient approach for
improving the training effect on small sample data sets. Since the current MRI data volume
is far from sufficient, the application of transfer learning in MRI is necessary. Figure 15 is
the schematic diagram of transfer learning.

____________________________________

Original Input —— e o o f—’l . — Original task
y \ !

\
A\
1\

k hidden layers \‘I .

Figure 15. Transfer learning first trains the parameters in the original task. Then, it freezes k hidden

Target task

Target Input /

layers and uses these k layers for the target task.
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5. Applications in Human Brain MRI Image Classification Tasks
5.1. Alzheimer’s Disease

Alzheimer’s disease is a neurodegenerative disease with a slow onset and worsens
over time. This disease accounts for 60% to 70% of the causes of dementia [74]. One of
the most common early symptoms of this disease is the loss of short-term memory. As the
disease gradually progresses, the patients suffer from the following symptoms: language
disorder, disorientation, emotional instability, loss of motivation, inability to take care of
themselves, and many behavioral problems [74]. Neuroimaging is an important method
for assisting in the diagnosis of AD. Researchers have achieved unparalleled results by
analyzing MRI images through AI methods.

ML models usually achieve good performances on small datasets. Battineni et al. [75]
used a total of 373 MRI tests to investigate 14 distinct features related to AD diagnosis. Four
ML models: NB, ANN, KNN, and SVM were exploited to validate the model performance.
The joint model with limited features achieved the best accuracy, of 98%. Dyrba et al. [76]
used a multimodal method, with T1, DTI, and resting-state fMRI (rs-fMRI) as inputs to an
SVM classifier. DTI obtained the highest accuracy and the multimodal analysis obtained
the same accuracy. Moradi et al. [77] created a classifier and used the MRI data along
with age and behavioral data as inputs to a random forest. This method obtained an
accuracy of 81.72% on progressive mild cognitive impairment (pMCI) and stable mild
cognitive impairment (sMCI). Liu et al. [78] exploited multiple weak classifiers, which were
constructed following the sparse representation-based classification (SRC) method, and
combined the results of these classifiers to produce a final result.

Although the dataset is not large enough, many researchers have tried to use DL
models. Odusami et al. [79] used a fine-tuned ResNet18 network to perform seven binary
classifications, based on the principle of transfer learning. Yang et al. [80] proposed a visual
3D-CNN model. Meanwhile, they proposed three types of visual inspection methods:
sensitivity analysis, 3D class activation mapping, and 3D-weighted gradient weighted
mapping. Some well-known 2D-CNN models were converted into corresponding 3D
architectures, and the best accuracy was 79.4%. Kruthika et al. [81] trained an auto-
encoder to derive an embedding from the input features of 3D patches. Their proposed
model performed the best in all cases, with a validation accuracy of 98.42% for AD and
healthy control (HC). Feng et al. [82] stacked LSTM layers on 3D-CNN layers, so that
the 3D fully connected CNN layers could obtain deep feature representations and the
LSTM could achieve improved performance. Wegmayr et al. [83] used a large number of
subjects, and a deep 3D-CNN was researched on a sizeable dataset for the classification
task. Ahsan Bin Tufail et al. [84] constructed multiple deep 2D-CNNs for feature learning,
and then the whole brain image was passed through two transfer learning architectures.
Hosseini-Asl et al. [85] proposed a general feature that can help the neural network model
to display AD biomarkers extracted from brain images and classify subjects through fine-
tuning methods. The proposed architecture is based on SAE, and the fully connected layer
is then fine-tuned. Abrol et al. [86] developed a 3D-CNN based on the ResNet architecture,
and experiments were conducted to verify its performance for several binary and multiclass
tasks. The model performed better than the SVM and SAE methods. Wang et al. [87] used
a 3D dense model to maximize information flow, and each layer of the model was directly
connected to all subsequent layers. Then, a probability-based fusion method was exploited
to combine the proposed method with different architectures. Cui et al. [88] proposed a
longitudinal analysis based on convolution and RNN, and they constructed a 3D-CNN
to capture spatial features. Then, three bidirectional gated recurrent units (BGRU) were
constructed with cascades at multiple time points on the output of the 3D-CNN to capture
timing features. Zhao et al. [89] proposed a 3D multi-information GAN to predict the state
of the whole brain, while a 3D-DenseNet-based multi-classification model was also built,
which could generate high-quality sMRI on individual 3D brain and multi-information at
the baseline time point.
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With the increase in the number of samples, more and more DL methods have been
applied to AD diagnosis, and some representative examples in the literature are listed in
Table 2.

Table 2. Literature review of AD diagnosis using ML and DL methods.

Reference Model Year Modality Subjects Training Set/Test Set Accuracy (%)
(75] NB, ANN, KNN, SVM 2020 Tl-w ;g ‘;118' 373,/150 98 for hybrid modeling
T1-w, 28 AD rs-fMRI-74,
[76] SVM 2015 DTI, 25 HC, leave-one-out DTI-85,
rs-fMRI GM volume-81
200 AD,
231 HC,
[77] SVM, RF 2014 T1-w 164 pMCI, 10-fold cross-validated pMCI/sMCI-81.72
100 sMCI,
130 uMCI
198 AD,
(78] SVM, SRC 2012 Tl-w 225 MCI, ; Qg;gg:gggb
229 HC ’
EMCI/LMCI-99.45,
12?:51\1;11 gI’ AD/HC-75.12,
‘ HC/EMCI-96.51,
[79] 2D-CNN, . 2021 rs-fMRI 25 EMCI, 51443/27310 HC/LMCI-74.91,
Transfer learning 25 LMCI,
25 SMC EMCI/AD-99.90,
25 AD 4 LMCI/AD-99.34,
MCI/EMCI-99.98
47 AD,
[80] 3D-CNN 2018 Tl-w 56 HC 103/8 79.4 + 0.070
AE, Tl-w, 345 AD, MCI/AD-94.6,
[81] 3D-CNN 2019 PET 991 M, 3/1 NC/AD-92.98,
605 NC NC/MCI-94.04
RNN 723 11?/[%1 AD/HC-94.82,
[82] . 2019 T1l-w p ! 10-fold cross-validation pMCI/HC-86.36,
3D-CNN 128 sMCI, MCI/HC-65.35
100 HC s :
sppcss
[83] 3D-CNN 2018 Tl-w 8268 MCI, - /
4076 AD MCI/HC-67,
MCI/AD/HC-60.2
[84] 2D-CNN, Transfer 2020 Tlw 90 AD, 9-fold Cross-Validation, 99.45
learning 90 HC etc.
AD/MCI/HC-94.8,
AE 70 AD, AD+MCI/HC-95.7,
[85] 3D-C1<IN 2016 T1-w 70 MCI, 10-fold Cross-Validation AD/HC-99.3,
70 NC AD/MCI-100,
MCI/HC-94.2
157 AD, AD/HC-89.3,
189 pMCI, S pMCI/HC-86.5,
[86] 3D-CNN 2020 T1-w 245 SMCI 5-fold Cross-Validation SMCI/AD-87.5,
237 HC sMCI/pMCI-75.1
21 AD, MCL/HO-98.42,
[87] 3D-CNN 2019 T1-w 297 M, 10-fold Cross-Validation AD/HC o
315 HC /HC-98.83,
AD/HC/MCI-97.52
198 AD,
167 pMCI, o AD/HC-91.33,
[88] 3D-CNN, RNN 2019 T1-w 236 SMCL 5-fold Cross-Validation pMCI/sMCL71.71
229 HC
151 AD,
[89] 3D-CNN, GAN 2020 T1-w 341 MCI, 7-fold Cross-Validation MCI/AD/HC-76.67,
113 HC pMCl1/sMCI-78.45

5.2. Parkinson’s Disease

Parkinson’s disease is a chronic neurodegenerative disease that mainly affects the
central nervous system and the motor nervous system. The most common early symptoms
include tremor, limb stiffness, decreased motor function, and abnormal gait. MDD and
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anxiety disorders also appear in more than one-third of the cases. Other possible symptoms
include perception, sleep, and emotional problems [90].

As for ML methods, Solana-Lavalle et al. [91] used seven classifiers, including KNN,
SVM, RE and NB, to classify the MRI images, which act as an assisting tool for di-
agnosis of PD by using the Parkinson’s Progression Markers Initiative (PPMI) dataset.
Filippone et al. [92] applied a multinomial logit classifier to 62 subjects, including 14 sub-
jects with HC, 14 subjects with PD, 16 subjects with progressive supranuclear palsy (PSP),
and 18 subjects with multiple system atrophy (MSA). Marquand et al. [93], from the same
research group, applied this classifier to a different population with two variations: either
healthy controls were included or not in the given classifiers. In addition, the MSA cohort
was further divided into Parkinsonian and cerebellar subtypes (MSA-P, MSA-C).

DL methods have also made a significant contribution. Esmaeilzadeh et al. [94] used
an sMRI scan and demographic information of patients to train a 3D-CNN model and
found that the upper parietal lobe of the right hemisphere of the brain is essential for the
diagnosis of PD. Zhang et al. [95] and McDaniel et al. [96] both used a graph convolutional
neural network (GCN) model and presented an end-to-end pipeline, which can directly
take brain graphs from multiple views as input and make a prediction on this input.
Shinde et al. [97] used a CNN model to create prognostic and diagnostic biomarkers of
PD on neuromelanin sensitive magnetic resonance imaging (NMS-MRI). Kollias et al. [98]
proposed a model that exploits rich internal descriptions derived by CNN on input data.
Furthermore, bidirectional LSTM/gated recurrent units (GRU RNNs) were used to analyze
the time course of the input. Moreover, Sivaranjini et al. [99] analyzed T2-weighted MRI
scans and performed the classification task through AlexNet. Yasaka et al. [100] applied a
CNN model to parameter weighting. They used DWI to calculate a streamline (NOS)-based
structural connection group matrix, and applied gradient-weighted category activation
mapping (Grad-CAM) to the trained CNN model. The above papers reviewed for the
application of Al methods in PD diagnosis are summarized in Table 3.

Table 3. Literature review of PD diagnosis using ML and DL methods.

Reference Model Year Modality Subjects Training Set/Test Set Accuracy (%)
226 male PD,
. 86 male HC, . Male-99.01,
[91] KNN, SVM, RF, NB et al. 2021 T1-w 104 female PD, 10-fold Cross-Validation Female-96.97
64 female HC
i
[92] LR, SVM 2013 T2-w, 16 PSP, 4-fold Cross-Validation 62.7
DTI 18 MSA
Tl-w, 17 PSP PSP/IPD/MSA-91.7,
N 19 MSA, PSP/IPD/HC/MSA-73.6
93] LR, SVM 2013 Zw 141PD, leave-one-out [PSP/IPD/MSA-P/MSA-C-84.5
19 HC PSP/IPD/HC/MSA-P/MSA-C-66.2
292 male PD,
) 134 male HC, .
[94] 3D-CNN 2018 T1-w 160 female PD, 17:1 100
70 female HC
[95] GNN 2018 o B 5-fold Cross-Validation -
Tlw, 117 PD,
[96] GNN 2019 DTI 30 HC - 92.14
T1-w, 45PD,
[97] 2D-CNN 2019 T2-w, 20 APS, 5-fold Cross-Validation 80
DWI 35 HC
55 PD,
[98] 2D-CNN, RNN 2017 T1-w 23 Parkinson-related 78/26 94
syndromes
. 100 PD,
[99] 2D-CNN, Transfer learning 2020 T2-w 82 HC 8/2 88.9
[100] 2D-CNN 2021 "]l;l‘;\v]\{, Eg EI% 5-fold Cross-Validation 81

5.3. Major Depressive Disorder

Major depressive disorder is a mental disorder that is often accompanied by lack of
energy, lack of interest in general leisure activities, unexplained pain, and low self-esteem.
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Patients may have delusions or hallucinations and auditory hallucinations. MDD can
adversely affect the daily life, work, education, sleep, eating habits, and overall health of
patients [101].

The SVM model has made a significant contribution to research on this disease.
Jie et al. [102] proposed a feature selection method based on linear SVM and applied it to
sMRI and rs-fMRI data. This method can extract distinguishing features from these two
kinds of data and classify bipolar disorder (BD) and MDD through the selected features.
Rubin-Falcone et al. [103] performed individual-level classification of BD or MDD using
gray matter volume (GMV) through SVM, which obtained a combined accuracy of 75%.
Deng et al. [104] incorporated diffusion measures of the tracked profiles into SVM and
discovered new biomarkers. Jing et al. [105] used SVM to identify every pair of current
MDD (cMDD), remitted MDD (rMDD), and HC groups, based on abnormal Hurst expo-
nent features with an AAL-1024 and AAL-90 atlas. Hong et al. [106] exploited SVM to
performed a cross-sectional assessment of adolescent/young people, so as to distinguish
suicide attempters from those who have suicidal ideas but have not attempted suicide.
Hilbert et al. [107] used SVM on generalized anxiety disorder (GAD), MDD, and HC sub-
jects as a case classification and to distinguish GAD from MD as a disorder classification.
Guo et al. [108] proposed a new method for generating a high-order minimum spanning
tree function to connect the network. In addition, they applied multi-kernel SVM to the
selected features to obtain classification results.

The applications of DL models are less than those of ML, but good results are also
achieved. Zeng et al. [109] clustered the voxels within the perigenual cingulate cortex into
two subregions, according to their unique functional connection mode in the rest state.
It was shown that the unsupervised ML method based on maximum margin clustering
can extract enough information from the sub-cingulate functional connection graph to
distinguish the depressed patients from the HC. The level of clustering agreement and the
individual level of classification agreement both reached 92.5%. Zhao et al. [110] proposed
a GAN based on functional network connectivity (FNC). The discriminator and generator
of the proposed GAN model both have four fully-connected layers. Jun et al. [111] used
spectral GCNs based on a population graph to successfully integrate effective connectivity
(EC) and non-imaging phenotypic information. The above papers on the application of Al
methods in MDD diagnosis are summarized in Table 4.

Table 4. Literature review of MDD diagnosis using ML and DL methods.

Reference Model Year Modality Subjects Training Set/Test Set Accuracy (%)
21 BD,
[102] SVM 2015  rs-fMRI 25 MDD leave-one-out 92.1
26 BD,
[103] SVM 2018 T1-w 26 MDD leave-two-out 75
31 BD,
[104] SVM 2018 DTI 36 MDD - 68.3
19 cMDD, cMDD/HC-87
[105] SVM 2017  rs-fMRI 19rMDD, leave-one-out rMDD/HC-84
19 HC cMDD/rMDD-89
[106] SVM 2021 T1-w 66 MDD leave-one-out 78.59
19 GAD
¢ GAD+MDD/HC -90.10,
[107] SVM 2017 T1-w 14 MDD, leave-one-out GAD/MDD-67.46
24 HC
38 MDD,
[108] SVM 2017  rs-fMRI 28 HC - 97.54
[109] SVM-based 2014  rs-fMRI 239M I-]IDCD/ leave-one-out 92.5
[110] GAN 2020  rs-fMRI 269 MDD, 10-fold Cross-Validation 80.7
286 HC
[111] GNN 2020  rs-fMRI 29 MDD, 10-fold Cross-Validation 74.1

44 HC
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5.4. Schizophrenia

Schizophrenia, a major psychiatric disorder [112], is a devastating illness that results
in chronic impairments in cognition, emotion, and behavior [113,114]. Patients with SCZ
usually suffer from other psychological health problems, such as anxiety, clinical depression,
or substance abuse disorder [115]. The symptoms of this disease usually appear gradually,
and generally begin in early adulthood and last for a long time [116]. The detection of
the early symptoms of SCZ through neuroimaging, in a timely and effective manner, is
essential for the prevention and diagnosis of SCZ.

In terms of ML models, Jo et al. [117] used network analysis and ML methods to
classify SCZ and HC. Bae et al. [118] used an SVM model, and nine features were selected
as input. The results suggest that there are significant differences between HC and SCZ
subjects regarding the regional brain activity detected with fMRI. Plaschke et al. [119] com-
pared the classification performance of a given network with that of predefined networks
of each group and all groups, and SVM was used in this experiment. Ulloa et al. [120]
designed a data-driven simulator to generate synthetic samples, and a 10-layer ANN was
trained on continuously generated synthetic data, which greatly improved the generaliza-
tion ability of the model. Kim et al. [121] learned the features from low-level to high-level
through an ANN model. In this model, L1-regularization was added to each hidden layer
to control the sparsity of weights.

DL models have also been extensively exploited. Kadry et al. [122] used brain
MRI slices of T1 modality to detect Schizophrenia, a pre-trained VGG16 model was con-
structed, and the deep-features extracted were optimized with the slime-mold-algorithm.
Pinaya et al. [123] created an SAE model using sMRI data obtained from 1113 healthy
people, and they used the model to estimate total and regional neuroanatomical devia-
tion in individual patients, using two independent data sets. Yan et al. [124] proposed a
multi-scale RNN model, which enabled direct classification of 558 subjects with SCZ and
542 subjects with HC through time courses of fMRI data. Compared with the existing pop-
ular algorithms, such as SVM and RF, SZC achieves a significantly improved classification
accuracy. Mahmood et al. [125] proposed a self-supervised pre-training method that can
directly pre-train the fMRI dynamics of healthy control subjects and transfer the learning
to a smaller SCZ dataset. Patel et al. [126] trained an SAE model on each brain region. The
input layer directly uses the time series of voxels, which ensures that the model retains
much of the original information. Zeng et al. [127] constructed a multi-site rs-fMRI dataset.
Meanwhile, an SAE model with optimized discriminants was used to learn the functional
connections of the whole brain. Qureshi et al. [128] established a classification framework
based on 3D-CNN, which takes an independent component correlation algorithm (ICA)
function network graph as input. The results indicate that these ICA mappings can be used
as highly discriminative features to distinguish SCZ. Qi and Tejedor [129] used correlation
analysis and an AE model to fuse multi-modal features and obtained better results than
the trimming features used in the baseline system. The papers reviewed above on the
application of Al methods in SCZ diagnosis are summarized in Table 5.

5.5. Attention-Deficit/Hyperactivity Disorder

Attention-deficit/hyperactivity disorder is a mental disease of neurodevelopmental
disorders [130,131]. Patients with this disease usually suffer from difficulties in concen-
trating, being overactive, and doing things without considering the consequences, etc. In
addition, patients may exhibit behaviors that are not age-appropriate and have difficulty in
emotional regulation or executive function, due to lack of attention [132]. This disease can
also be related to other mental disorders or drug abuse [133]. A plethora of studies have
been conducted for the diagnosis of ADHD.
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Table 5. Literature review of SCZ diagnosis using ML and DL methods.

Reference Model Year Modality Subjects Training Set/Test Set Accuracy (%)
[117] SVM, RF, NB 2020 Tl-w 42518;125 ! 10-fold Cross-Validation 68.6
[118] SVM 2018 fMRI 251451_(ch2 ’ 10-fold Cross-Validation 92.1
[119] SVM 2017 rs-fMRI 886481_?5 ’ 10-fold Cross-Validation 72

198 SCZ, A
[120] ANN 2015 Tl-w 191 HC 10-fold Cross-Validation -
[121] ANN 2015 rs-fMRI %%SI_CI:CZ ’ 5-fold Cross-Validation 85.8
500 HC slices,
[122] 2D-CNN 2021 T1-w 500 SCZ slices - 94.33
355CZ, A
[123] SAE 2019 T1-w 40 HC 10-fold Cross-Validation -
558 SCZ, N
[124] RNN 2019 fMRI 549 HC 5-fold Cross-Validation 83
. 151 SCZ,
[125] Transfer learning 2019 rs-fMRI 160 HC 8/1 -
[126] SAE 2016 fMRI 772451_$CZ ! 10-fold Cross-Validation 92
357 SCZ, N
[127] SAE 2018 rs-fMRI 377 HC 5-fold Cross-Validation 85
72 SCZ, S
[128] 3D-CNN 2019 rs-fMRI 74 HC 10-fold Cross-Validation 98.09
T1-w, 69 SCZ,
[129] AE 2016 EMRI 75 HC - -

ML methods play an important role in the classification task. Luo et al. [134] applied
ensemble learning on multimodal neuroimaging data. The bagging-based ensemble learn-
ing techniques based on a SVM model achieved the best results. Du et al. [135] exploited
graph kernel principal component analysis (PCA) to extract features from the discrimina-
tive subnetworks and adopted the SVM model for classification. lannaccone et al. [136]
applied a variety of structural brain patterns to the Flanker/NoGo task and detected error
processing and inhibition through functional activation on the sMRI data. Then, they
used SVM to make predictions. Eslami and Saeed [137] used a model based on a KNN
classifier and also designed a model selection method to select the value of k for KNN.
Shao et al. [138] proposed an improved RF method that combines functional connectivity
(FC) and low-frequency fluctuation amplitude (ALFF). Moreover, synthetic minority over-
sampling technology was exploited to generate minority ethnic group cascading feature
samples, thus making the distribution of the sample data more balanced. Chen et al. [139]
designed a dual-subspace classification algorithm, and SVM was taken as the feature
selection strategy for its high computational efficiency. Sen et al. [140] input structural
texture and FC features to an SVM classifier and explored a series of three learners.

Extensive research has also been done on DL-based classification tasks. Mao et al. [141]
constructed a 4D-CNN model based on 3D-CNN. Since an rs-fMRI image can be regarded
as a series of brain 3D models constructed over time, they proposed several spatio-temporal
computing methods and fusion models. Yao and Lu [142] proposed an improved GAN
model with a data enhancement function, which exploited Wasserstein distance and two-
level distance constraints to enhance the data of subjects and control groups. The ability of
the classifier was improved by the data generated by the proposed model. Wang et al. [143]
introduced a dilated 3D-CNN method and also proposed a framework based on this
method. These two methods can classify individual MRI images and image sequences.
Atif Riaz et al. [144] proposed a neural network architecture based on a 2D-CNN to diag-
nose ADHD. The model takes fMRI pre-processed time series signals as input and outputs
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a diagnosis. The papers reviewed above on the application of Al methods in ADHD
diagnosis are summarized in Table 6.

Table 6. Literature review of ADHD diagnosis using ML and DL methods.

Reference Model Year  Modality Subjects Training Set/Test Set Accuracy (%)
Tl-w, 36 ADHD, ADHD/HC-81.6
[134] SVM, KNN, LR, NV, RF et al. 2020 f]]?/[gi 36 HC 5-fold Cross-Validation ADHD-P/ADHD-R-78.3
118 ADHD,
[135] SVM 2016 rs-fMRI 98 HC 9/1 9491
T1-w, 18 ADHD,
[136] SVM 2015 EMRI 18 HC leave-one-out 77.78
[137] KNN 2018 fMRI 973 - 81
78 ADHD,
[138] RF 2019 fMRI 116 HC 541/128 82.73
272 ADHD,
[139] SVM 2020 rs-fMRI 361 HC leave-one-out 88.1
T1-w, 279 ADHD,
[140] SVM 2018 MRI 270 HC 558/171 68.9
[141] 3D-CNN-based 2019 rsfMRI B D 626/126 713
[142] GAN 2019 fMRI 487 - 90.2
[143] 3D-CNN 2019 T1l-w 587 5-fold Cross-Validation 76.6
[144] 2D-CNN 2020 rs-fMRI 359 349/117 73.1

5.6. Autism Spectrum Disorder

Autism spectrum disorder is a disease caused by brain developmental disorders. It
features emotional, verbal, and nonverbal expression difficulties, and social interaction dis-
orders. Patients with this disease display restrictive behaviors and repetitive actions [145].
These symptoms become serious gradually, but some children with autism have a normal or
near-normal early stage of development before one or more idiosyncratic features of autism
appear, such as language regression. Therefore, the specific period of early development is
less affected by autism, which makes diagnosis difficult [146]. With the development of Al
technology, more and more auxiliary diagnostic methods have been proposed.

As for the application of ML models, Chen et al. [147] used an SVM model with
features of whole brain FC-networks, which were constructed in specific frequency bands.
The study indicates that frequency specified FC-networks have the potential to become
biomarkers for ASD. Chen et al. [148] exploited intrinsic functional connectivity between a
set of functionally defined ROIs (region of interest) for ML-based diagnostic classification.
This approach obtained a higher accuracy than SVM. Plitt et al. [149] performed leave-one-
out cross-validation on a dataset, considering nine ML models. LR and SVM performed
the best, with an average accuracy of 73.33% and 73.89% for distinguishing ASD from
typical development (TD). Wang et al. [150] proposed a multi-site adaptation framework
with low-rank representation and then applied a SVM/KNN classifier on the target data.
The proposed method exhibited better effectiveness than that of several state-of-the-art
methods. Eslami and Saeed [151] fed the features extracted by MLP into an SVM classifier
to investigate the discriminative power of these features. A technique called auto-tune
models (ATM) was exploited to optimize the hyperparameters of the SVM model.

DL models have also been applied to various applications. El-Gazzar et al. [152]
exploited local and global spatio-temporal structures through 3D-CNN and 3-D Convolu-
tional LSTM, which provided an alternative method for hard-coded features and summary
measures, to reduce the dimensionality. Li et al. [153] trained an SAE model and then
used transfer learning for ASD classification. Yao and Lu [142] proposed a GAN model to
augment brain functional data. The experimental results indicated that the classification
accuracy was greatly improved by data augmentation. Kong et al. [154] constructed an
individual brain network for each subject and extracted 3000 top connectivity features
between each pair of ROIs, which were later used to perform ASD/TC classification via
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an SAE classifier. Hazlett et al. [155] implemented an SAE-based model that exploited
the surface area information of infant brain MRI images to predict the 24-month autism
diagnosis of high-family-risk children. Khosla et al. [156] took the functional connectivity of
each voxel with the target ROI as input features, and they exploited a 3D-CNN framework
for classification. Ktena et al. [157] implemented a GCN model which considered the graph
structure in terms of the similarity between two graphs. Anirudh and Thiagarajan [158]
proposed another version of the GCN model to reduce the sensitivity of the model in the
initial graph construction step. Yao et al. [159] used a multi-scale triplet GCN to overcome
the spatial limitation of a single template. Dvornek et al. [160] directly input rs-fMRI time
series data, instead of the pre-calculated measures of connective tissue brain function, to
an LSTM model. The papers reviewed above on the application of Al methods in ASD
diagnosis are summarized in Table 7.

Table 7. Literature review of ASD diagnosis using ML and DL methods.

Reference Model Year Modality Subjects Training Set/Test Set Accuracy (%)
112 ASD,
[147] SVM 2016 fMRI 128 HC leave-one-out 79.17
126 ASD,
[148] RF 2015 fMRI 126 TD 137/43 91
LR, 148 ASD,
[149] SVM et al. 2014 rs-fMRI 148 TD leave-one-out 73.89
SVMV, 250 ASD, R
[150] KNN 2020 rs-fMRI 218 HC Cross-Validation 73.44
187 ASD, S
[151] SVM 2019 fMRI 183 HC 5-fold Cross-Validation 80
3D-CNN, 184 ASD, S
[152] RNN 2020 fMRI 110 TD 5-fold Cross-Validation 77
SAE, 149 ASD, R
[153] Transfer learning 2018 rs-fMRI 161 HC Cross-Validation 70.4
[142] GAN 2019 fMRI 454 - 87.9
[154] SAE 2019 T1-w 78 ASD, 10-fold Cross-Validation 90.39
104TD o 0SS o .
34 ASD, S
[155] SAE 2017 T1-w 145 HC 10-fold Cross-Validation 81
379 ASD,
[156] 3D-CNN 2018 rs-fMRI 395 HC - 73.3
403 ASD, N
[157] GNN 2017 fMRI 468 HC 5-fold Cross-Validation -
[158] GNN 2019 rs-fMRI 872 - 70.86
[159] GNN 2021 fMRI 1160 - 86
539 ASD, L
[160] RNN 2017 fMRI 573 TD Cross-Validation 68.5

6. Conclusions and Discussion

Six traditional ML algorithms and seven DL algorithms were reviewed in this paper.
Then, six typical neurological and psychiatric diseases were discussed, and the recent
representative research works exploiting ML and DL methods to diagnose these diseases
were summarized. The use of artificial intelligence to assist in the diagnosis of disease will
be a crucial method in the near future.

In the early days, ML was widely used because of its simplicity and efficiency. Reduc-
ing the dimensionality of features and selecting the most important features are crucial
parts of ML. Based on a series of feature selection algorithms, different types of subjects
are classified through a classifier. Although deep learning does not need feature selection,
DL-based MRI image classification often requires various methods of pre-processing of
images, thus failing to achieve real end-to-end learning. Furthermore, because the sample
size of the dataset is not big enough, the deep learning models are easy to overfit, and the
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generalization ability of the models is not strong enough. Moreover, DL depends highly
on the configuration of hyper-parameters, which may make its performance fluctuate
dramatically, and sometimes experience is a big factor affecting the result.

Compared with traditional ML methods, DL does not show advantages in classifica-
tion. In terms of overhead, DL consumes more resources than traditional ML. Recently,
with the continuous increase of the amount of MRI data and the continuous improvement
of DL methods, more and more DL methods have been applied to MRI image classifi-
cation tasks. However, the growth of the data set still cannot meet the requirements of
DL models. In this case, traditional ML is still a popular and important technology for
medical diagnosis.

Among the six traditional ML models, SVM is most used, because of its advantages of
computational overheads and generalization performance. Meanwhile, different imaging
methods usually reflect different temporal and spatial scale information of the brain. For
example, sMRI data reflects the spatial structure information of the brain, while fMRI data
provides information on the time domain. Among all the DL models, 3D-CNN aggregates
the spatial structure features of the image very well, based on the data characteristics of
sMRI. Since timing features can be extracted by RNN, transfer learning can transfer the
knowledge or patterns learned in a certain field to different but related fields. This improves
the generalization ability of the training model on a small sample to a certain extent.

The combination of traditional ML and DL models has achieved unexpected results.
Researchers have exploited DL models to automatically extract features. The combination
of these features with traditional ML feature selection and classification algorithm models
contributed to better results than that of a single model. In addition, the doctor’s clinical
diagnosis plays an important role in the classification model, and currently the main
objective is for Al to assist in diagnosis.

To date, there is no real ML or DL model designed for human brain MRI data, because
most models are migrated from other fields. For example, the 3D-CNN was migrated from
the 2D-CNN on two-dimensional images. The exponential increase of computing resource
consumption brought about by the migration process poses great challenges for clinical
applications. Meanwhile, different diseases, or even the same disease on different data
sets, different models, or different parameters of the same model, can lead to different
results. This makes the models difficult to interpret. Furthermore, the prediction accuracy
achieved by DL-based methods is far from sufficient for clinical diagnosis. Thus, there is
still a long way to go for DL-based methods to be used as auxiliary diagnosis methods.
Moreover, artificial intelligence in medical diagnosis is still a relatively new method, and
many clinicians still do not believe in its reliability and sensitivity. Thus, it is critical to
integrate it into clinical practice without harming clinical expertise.

This review paper is based on the author’s own analysis and summary of the literature,
and although we tried to remain objective in the analysis process, it is still highly subjective
and all findings are based on personal opinions. This review paper only covers part of the
scientific research results of the past ten years. The sources of article retrieval were Pubmed
and Web of Science, so readers need to understand the limitations of this review paper in
terms of time and sources.
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