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A B S T R A C T   

Like other mammalian species, the pig genome is abundant with transposable elements (TEs). The importance of 
TEs for three-dimensional (3D) chromatin organization has been observed in species like human and mouse, yet 
current understanding about pig TEs is absent. Here, we investigated the contribution of TEs for the 3D chro-
matin organization in three pig tissues, focusing on spleen which is crucial for both adaptive and innate im-
munity. We identified dozens of TE families overrepresented with CTCF binding sites, including LTR22_SS, 
LTR15_SS and LTR16_SSc which are pig-specific families of endogenous retroviruses (ERVs). Interestingly, 
LTR22_SS elements harbor a CTCF motif and create hundreds of CTCF binding sites that are associated with 
adaptive immunity. We further applied Hi-C to profile the 3D chromatin structure in spleen and found that TE- 
derived CTCF binding sites correlate with chromatin insulation and frequently overlap TAD borders and loop 
anchors. Notably, one LTR22_SS-derived CTCF binding site demarcate a TAD boundary upstream of XCL1, which 
is a spleen-enriched chemokine gene important for lymphocyte trafficking and inflammation. Overall, this study 
represents a first step toward understanding the function of TEs on 3D chromatin organization regulation in pigs 
and expands our understanding about the functional importance of TEs in mammals.   

1. Introduction 

The mammalian genomes, which are usually meters long, are pack-
aged into three-dimensional (3D) chromatin structure in the nucleus [1]. 
The 3D organization enables the looping of distal enhancers to their 
target promoters (i.e. E-P loops), thus is crucial for transcriptional 
regulation [2]. In principle, topologically associating domains (TADs) 
form the basic architectural chromatin units, with the chromatin con-
tacts preferred within instead of across TADs [3]. Recent applications of 
chromosome conformation capture (3 C)-based techniques, particularly 
Hi-C, have greatly improved our understanding on 3D chromatin orga-
nization [4,5]. Increasing evidence suggest that the 3D chromatin or-
ganization is not only important for development and cell differentiation 

but also associated with various diseases [6,7]. 
The transcription factor CCCTC-binding factor (CTCF), a highly 

conserved and ubiquitously expressed C2H2 zinc finger protein, is a key 
player for 3D chromatin organization [8]. Together with cohesion and 
likely through a loop extrusion mechanism, it serves as an insulator 
protein to create TAD boundaries and as anchors to mediate E-P loops 
[9,10]. While CTCF binding is largely constitutive [11], many loci also 
show dynamic CTCF binding during cell differentiation [12] or under 
stress/stimulation [13]. The biological importance of CTCF have been 
demonstrated by plenty of studies. For example, cell-type-specific CTCF 
binding is crucial for the transcriptional regulation during hematopoi-
esis [14]. CTCF also facilitates the acute inflammatory response in 
macrophages [15]. Interestingly, one IFITM3 SNP influences the risk of 
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severe influenza in humans by affecting CTCF boundary activity [16]. 
These studies highlight the importance of CTCF binding on 3D chro-
matin structure and transcriptional regulation. 

Despite the high conservation of CTCF protein, its binding sites have 
undergone waves of expansions – frequently through lineage-specific 
transposable element (TE) insertions [17,18]. TEs are mobile DNA ele-
ments constitute a large proportion of mammalian genomes [19]. While 
traditionally been regarded as “junk DNA”, many TE families - partic-
ularly those belonging to endogenous retrovirus (ERV) – are known to 
facilitate the regulatory evolution in mammals [20-23]. Increasing evi-
dence also suggests the importance of TEs for 3D chromatin organization 
by mediating CTCF binding [24]. For example, frequent binding of CTCF 
on TEs was observed in both human and mouse [25-28]. Comprehensive 
across-species comparison further suggests that TEs have facilitated 
species-specific expansions of CTCF binding [29]. Recent studies further 
revealed that TE-derived CTCF binding loci can be co-opted to mediate 
TAD boundaries and chromatin loops [30-32]. 

The domestic pig (Sus scrofa) is valuable for meat production, organ 
xenotransplantation and biomedical studies [33]. TEs are also abundant 
in pig genome, with ~40% of pig genome made up of TEs and 4.8% as 
LTRs/ERVs [34]. While plenty attentions have been paid to the risk of 
porcine ERVs (PERVs) for xenotransplantation [35,36], current knowl-
edge about their regulatory function in pigs is lacking. It is also unclear 
how TEs may mediate the 3D chromatin organization in pigs. We and 
others previously analyzed the contribution of TEs (particularly ERVs) 
for the regulatory evolution in species like human and mouse [37,20,21, 
38,39], and it is attractive to investigate their potential regulatory roles 
of pig TEs. The accumulation of OMICs data of pigs in recent years 
[40-44] provides an opportunity for the systematical characterization of 
the regulatory function of porcine TEs. 

Here, we performed integrative analysis of public and newly gener-
ated ChIP-seq, RNA-seq and/or Hi-C data in three porcine tissues, 
focusing on the involvement of pig-specific ERVs for 3D chromatin or-
ganization in pig spleen. We identified dozens of TE families that are 
likely to mediate CTCF binding in pigs. Importantly, our data highlights 
the importance of pig-specific ERVs for mediating CTCF binding and 
TAD formation in pig spleen, which may further influence immune gene 
expression. Overall, this study improves our understanding about the 
regulatory function of porcine TEs and highlights the importance of TEs 
for regulating 3D chromatin organization in pigs. 

2. Materials and methods 

2.1. Pig spleen sample collection 

Two male pigs, aged 70–80 days and weighing 80–90 kg, were 
selected for slaughter. The spleen was immediately collected and cut to 
small pieces of approximately 1 mg. After flushed with phosphate- 
buffered saline (PBS), the spleen samples were flash-frozen in liquid 
nitrogen for preservation. 

2.2. In situ Hi-C experiments 

Hi-C experiments were performed following a previous study [4] 
with slight modifications. In brief, following cross-linking with 1% 
formaldehyde and nuclei extraction, the chromatin was digested with 
Dpn II and labeled with biotinylated residue after the 5’ overhangs were 
filled. Blunt-end ligation of crosslinked DNA fragments was performed 
to obtain circular molecules, and then the DNA product was purified and 
sonicated into DNA fragments. Hi-C library was constructed by 
capturing the labeled target DNA fragments with biotin labeling pre-
cipitation technique followed by size selection. Finally, the obtained 
Hi-C library was sequenced by BGI company as 150 bp paired-end reads 
on DNBSEQ platform. 

2.3. Reference genome and annotation 

The reference genomes and gene annotations for human (GRCh38), 
mouse (GRCm37) and pig (Sscrofa11.1) were downloaded from Ensembl 
database [45]. Genome annotation files of GTF format were downloaded 
from Ensembl database [45]. Transposable element annotations for 
corresponding species were downloaded from UCSC Genome Browser 
[46]. 

2.4. ChIP-seq analysis 

The raw reads were first trimmed with Trim Galore! v0.6.5 (https:// 
www.bioinformatics.babraham.ac.uk/projects/trim_galore/), and then 
aligned to the corresponding reference genome (Sscrofa11.1 for pig) 
using Bowtie v2.3.5 [47] with default settings. Peak calling was per-
formed using MACS2 v2.2.6 [48] with settings: –g 2.1e9 –keep-dup all -q 
0.01”. High repeatability peaks were obtained through the IDR method. 
BigWig files were generated using the bamCoverage function of deep-
Tools v3.5.1 [49] with settings: –normalizeUsing RPKM. 

2.5. RNA-seq analysis 

Raw reads were trimmed with Trim Galore! v0.6.5, and then mapped 
to the reference genome (Sscrofa11.1) using STAR v2.7.3 [50]. Align-
ments with alignment MAPQ score < 30 were filtered using SAMtools 
v1.13 [51]. BigWig files were generated using the bamCoverage function 
of deepTools v3.5.1 [49] with settings: –normalizeUsing RPKM. 

2.6. ATAC-seq analysis 

Raw reads were first trimmed with Trim Galore! v0.6.5, then aligned 
using BWA v0.7.17 [52] with the “mem” alignment mode. Alignments 
with a MAPQ score < 30 were filtered using SAMtools v1.10 [51], and 
then PCR duplicates were marked and removed using the Picard toolkit 
v2.26.3 (https://github.com/broadinstitute/picard). Peak calling was 
performed using MACS2 v2.2.6 [48] with the same genomic parameters 
as ChIP-Seq. ATAC-Seq peaks were called in broad mark mode with a 
q-value cutoff of 0.05. High repeatability peaks were obtained through 
the IDR method. BigWig files were generated using the bamCoverage 
function of deepTools v3.5.1 [49] with settings: –normalizeUsing 
RPKM. 

2.7. Hi-C analysis 

The clean Hi-C reads were iteratively mapped to the pig genome with 
HiC-Pro v3.1.0 [53]. The makeTagDirectory module of HOMER [54] was 
used to convert the alignment file into the HOMER-style tag directory. 
Principal Component Analysis (PCA) was performed to infer the A/B 
compartments along the genome with the runHiCpca.pl script of 
HOMER [54] with settings: -res 500000 -genome susScr11. The TAD 
structure (insulation/boundaries) was defined with Arrowhead by juicer 
tools v1.6 [55]. The contact matrix normalized by the ICE method [56] 
was used to calculate the insulation score using the matrix2insulation.pl 
(https://github.com/dekkerlab/cworld-dekker) with the following set-
tings: –is 100000 –ids 60000 –nt 0.1 –ss 160000. Chromatin loops were 
analyzed by HiCCUPS [5] with minor modifications. The resolution 
parameters were set as “-r 5000,10000,25000 –ignore_sparsity”. 

2.8. TE analysis 

TE enrichment analysis was performed following the procedure from 
our previous study [20]. In brief, we adopted the fisher function of 
BEDtools v2.29.2 [57] with default settings to calculate the enrichment 
fold and p-values of each TE families within given genomic regions (e.g. 
CTCF binding sites) by using Fisher’s Exact Test. To control for Family 
Wise Error Rate, the calculated p-values were further adjusted with 
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Bonferroni method. 

2.9. Gene ontology analysis 

Genomic distribution of CTCF peaks was performed using ChIP-
seeker [58]. Gene Ontology (GO) enrichment analysis of CTCF peaks 
was performed by using Metascape [59] after obtaining their adjacent 
genes with ChIPseeker [58]. 

2.10. Motif analysis 

Motif enrichment analysis was performed using MEME-ChIP [60]. 
Motif scanning on LTR22_SS consensus sequence (downloaded from the 
RepeatMasker website on Oct 26, 2018) was performed against CTCF 
motif (MA0139.1, JASPAR database) using FIMO (Grant et al., 2011) 
with settings: –text –thresh 1E-3. 

2.11. Statistical analysis and data visualization 

All statistical analyses were performed with R statistical program-
ming language [61]. Heatmaps for ATAC-seq and ChIP-seq data were 
generated using deepTools v3.5.1 [49]. Hi-C data together with other 2D 
tracks were visualized with Juicebox [62]. 

3. Results 

3.1. Comparison of the genome-wide binding patterns of CTCF across 
three pig tissues 

CTCF is a key regulator for 3D chromatin organization in mammals 
[8]. We first compared its genome-wide binding patterns across different 
porcine tissues. For this purpose, we collected the ChIP-seq data of CTCF 
for spleen, adipose and hypothalamus from the FAANG project [41]. The 
matched RNA-seq, ATAC-seq and epigenomic (ChIP-seq of H3K4me3 
and H3K27ac) data for pig spleen together with CTCF ChIP-seq data for 
human and mouse spleen were collected from the ENCODE and FAANG 
projects [63,41,64]. In this study, we also profiled the 3D chromatin 
organization of pig spleen with Hi-C. The sources of the integrated data 
were summarized in Table S1. 

We identified 32,586, 22,821 and 27,994 CTCF peaks for adipose, 
hypothalamus and spleen, respectively. While many CTCF peaks are 
shared by all three tissues, those specific to one or two tissues are also 
observed (Fig. 1A,B). Specifically, 39.3% are shared by three tissues, 
25.1% are shared by two tissues, and 35.7% are tissue-specific (i.e. 
16.8%, 5.5% and 13.3% for adipose, hypothalamus and spleen, 
respectively). It confirmed the presence of shared and tissue-specific 
CTCF binding as reported for human previously [65]. As expected, the 
canonical CTCF motif is overrepresented in all groups of CTCF peaks 
(Fig. 1C). We further examined their genomic distribution and found 
that 30.2% of tissue-shared CTCF peaks occur in promoters, 28.8% in 
intronic regions, and 31.2% in intergenic regions (Fig. 1D). Relatively 
high proportions of tissue-specific CTCF peaks (particularly the 
adipose-specific group) occur within promoter regions (Fig. 1D). GO 

Fig. 1. Characterization of the genome-wide binding of CTCF across three pig tissues. A. Venn diagram shows the overlap of CTCF peaks of adipose, hypo-
thalamus and spleen. B. Heatmap shows the binding pattern of CTCF in different groups of CTCF peaks in adipose, hypothalamus and spleen. C. Enrichment of the 
canonical CTCF motif in different groups of CTCF peaks. D. Genomic distribution of different groups of CTCF peaks. E. Representative GO terms enriched for different 
groups of CTCF peaks. 
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enrichment analysis confirmed the association of each group of CTCF 
peaks with the properties of corresponding tissues (Fig. 1E, Table S2). 
For example, spleen-specific CTCF peaks are associated with immune 
response, while adipose-specific peaks are associated with regulation of 
cell differentiation and development. Together, these results charac-
terize the patterns and potential functional relevance of CTCF binding 
across different pig tissues. 

3.2. Thousands of CTCF binding sites are derived from conserved or pig- 
specific TE families 

Multiple studies revealed the contribution of TEs for the 3D chro-
matin organization in human and mouse [24], yet current knowledge on 
the function of pig TEs is lacking. Here, we identified dozens of TE 
families that are overrepresented in the CTCF peaks for the three pig 
tissues (Fig. 2A, Table S3). Notably, the degree of TE enrichment is 
significantly higher in spleen relative to the other two tissues (Fig. 2B), 
which is further confirmed by the comparison across different groups of 
shared or tissue-specific CTCF peaks (Fig. S1). Most of the significantly 
enriched TE families belong to LTRs/ERVs and DNA transposons 
(Fig. 2C, Table S3). The significantly enriched TE families include those 
that are known to create CTCF binding sites in human and mouse, such 
as MER20, MER91B, LTR41 and LTR50 [26,30,66,67]. Interestingly, 
three pig-specific ERV families including LTR22_SS, LTR15_SS and 

LTR16_SSc are also among the top enriched (Fig. 2D, Table S3). These 
results suggest the involvement of both conserved and lineage-specific 
TEs for mediating CTCF binding in pigs. 

To compare the CTCF binding on TEs across species, we determined 
the significantly enriched TE families in the CTCF peaks for human and 
mouse spleen based on the overlaps of TE elements and CTCF peaks 
(Fig. S2, Table S3). The enriched TE families were compared across 
species (Fig. 2E, S2), and impressively, the degree of enrichment for 
multiple pig-specific ERV families (particularly LTR22_SS) is remarkably 
higher than the TE families previously reported to mediate 3D chro-
matin organization, such as MER20 which is a DNA transposon family 
shared by placental mammals [26,30,66]. Specifically, 9.9% (n = 221) 
of the 2228 LTR22_SS elements are bound by CTCF in pig spleen, which 
is much more frequent than MER20 elements with only 1.8% (252/13, 
982) being CTCF-bound. Of note, CTCF binding on some LTR22_SS el-
ements show tissue-specificity, such as demonstrated by the represen-
tative loci flanking OAZ2, CD48 and IL17A, respectively (Fig. S3). CTCF 
binding is centered on LTR22_SS elements, likely by recognizing the 
canonical CTCF motif which is significantly enriched in these elements 
(Fig. 2F). Moreover, the LTR22_SS consensus also harbors two canonical 
CTCF motifs (Fig. S4), indicating that LTR22_SS elements have inherited 
motifs to bind CTCF since inserted into pig genome. Together, these 
results indicate that distinct conserved and lineage-specific TEs may 
have the potential to create CTCF binding sites in pigs. 

Fig. 2. Distinct conserved and lineage-specific TE families are overrepresented in the CTCF binding sites in pigs. A. Scatter plots show the enrichment of 
different TE families in the CTCF peaks in three pig tissues. The y-axis indicates the observed fraction of CTCF peaks that overlap each TE family, and the x-axis is the 
expected fraction of peaks that overlap each TE family. These values are calculated based on the results generated with the fisher function of BEDtools. B. Comparison 
of the TE enrichment in the CTCF peaks across three pig tissues. P-values calculated by Student’s t-test are indicated. C. Top enriched TE families in the CTCF peaks 
for human, mouse and pig tissues. D. Binding of CTCF on LTR22_SS elements based on ChIP-seq data. The presence of the CTCF motif in LTR22_SS consensus 
sequence is also indicated below. 
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3.3. TE-derived CTCF binding sites are highly accessible and enriched 
with active histone marks 

To characterize the epigenetic status of TE-derived CTCF binding 
sites, we integrated the ATAC-seq and histone modification data - 
focusing on spleen since CTCF binding on TEs is more frequent in this 
tissue. Spleen is a tissue important for both innate and adaptive immu-
nity [68]. We first compared the CTCF binding sites derived from major 
TE classes (i.e. LTR, LINE, SINE, DNA) or non-TEs. Over 80.0% of 
TE-derived CTCF binding sites overlap ATAC-seq peaks which is even 
higher than non-TE-derived ones (Fig. 3A), yet the degree of accessi-
bility on TE-derived CTCF binding sites is relatively low (Fig. S5). The 
two active histone marks H3K27ac and H3K4me3 are also enriched on 
CTCF binding sites (Fig. S5), which agrees with previous observation in 
human and mouse [65,69]. Interestingly, the occupancy of these histone 
marks on TE-derived CTCF binding sites is lower than those not over-
lapping with TEs (Fig. 3A,B, S5). For example, 12.0% of 
LTR/ERV-derived CTCF binding sites are marked with H3K27ac, which 
is much lower than the 41.2% for non-TE-derived ones (Fig. 3A). These 
results suggest that TE-derived CTCF binding sites are highly accessible 
but rarely serve as active cis-elements like promoters and enhancers. 

Given that multiple ERV families such as LTR22_SS are among the 
top enriched, we further compared the CTCF binding sites derived from 
different ERV families and observed substantial differences regarding 
CTCF binding intensity, chromatin accessibility and histone modifica-
tions (Fig. 3C). For example, relative to pig-specific ERV families like 
LTR22_SS, LTR15_SS and LTR16_SSc, CTCF binding sites derived from 
ancestral ERV families like LTR41, LTR41B/C, LTR50 and Mam-
GypLTR3 are more accessible and have strong intensity of CTCF binding. 
Interestingly, those with strongest CTCF binding don’t always have 

active histone marks, given that H3K27ac is not enriched on 
MamGypLTR3-derived CTCF binding sites. We further demonstrate that 
for LTR22-derived CTCF binding sites, only 6.8% (n = 15) and 4.1% 
(n = 9) are marked with H3K27ac and H3K4me3, respectively (Fig. 3D). 
Interestingly, LTR22_SS-derived CTCF binding sites are highly associ-
ated with adaptive immune system and adaptive immune response 
(Fig. 3E), matching the function of spleen. Together, these results 
characterized the epigenetic patterns of TE-derived CTCF binding sites 
and indicate the potential involvement of ERV-derived CTCF binding 
sites for immune-related regulation in spleen. 

3.4. Profiling of the 3D chromatin organization in pig spleen with Hi-C 
experiment 

Hi-C is a powerful technique for studying 3D chromatin organization 
[4]. To profile the 3D chromatin organization of pig spleen, we con-
ducted in situ Hi-C experiments with two biological replicates (Table S1). 
A total of 430 million valid paired contacts were obtained, which 
generated a chromatin interaction map at desirable resolution (Fig. 4A). 
The replicates are pooled for analysis after validating their high con-
sistency (Fig. S6). Principal component analysis (PCA) identified active 
A compartments and inactive B compartments, which comprise 49.9% 
and 50.1% of the whole genome, respectively (Fig. 4B). As expected, A 
compartments are more accessible, enriched with the active histone 
marks H3K27ac and H3K4me3, and have higher transcription level 
(Fig. 4A). Notably, A compartments also show stronger enrichment of 
CTCF binding (Fig. 4A), probably due to their higher accessibility. Using 
the pooled data, we identified 1927 TADs and 3410 loops, respectively 
(Table S4, S6). Closer inspection of the HOXA locus revealed the typical 
TAD structures of this region, as well as a loop on this locus (Fig. 4C). 

Fig. 3. Association of TE-derived CTCF binding sites with chromatin accessibility and histone marks. A. Bar plots show the frequency of ATAC-seq, K4me3 
and K27ac occupancy on CTCF peaks derived from LTR/ERV, LINE, SINE, DNA or not. B. Intensity of CTCF, ATAC-seq, H3K4me3 and H3K27ac on the ERV-derived 
CTCF binding sites. C. Similar to B, but for CTCF binding sites derived from each significantly enriched ERV family. D. Overlap of LTR22_SS-derived CTCF binding 
sites to the peaks for ATAC-seq, H3K4me3 and H3K27ac, respectively. E. GO enrichment results for LTR22_SS-derived CTCF binding sites. 
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Both the TAD boundaries and loop anchors frequently overlap CTCF 
peaks and are enriched with the canonical CTCF motif (Fig. 4D,E), 
agreeing with the crucial role of CTCF for 3D chromatin organization. 
The generated in situ Hi-C data enable the profiling of the 3D chromatin 
structure in pig spleen for the first time. 

3.5. TE-derived CTCF binding sites create hundreds of TAD boundaries 
and chromatin loops in pig spleen 

Taking advantage of the newly generated Hi-C data, we further 
inspected the association of TE families with the TAD boundaries and 
chromatin loops in pig spleen. We identified 21 and 13 TE families that 
are enriched within the CTCF binding sites from TAD boundaries and 
chromatin loops, respectively (Fig. 5A,B, Table S6, S7). These TE fam-
ilies are highly consistent with those enriched in CTCF binding sites 
(Fig. 5C). Thirteen TE families, including the pig-specific LTR22_SS and 

LTR16_SSc family ERVs, are simultaneously enriched in all CTCF bind-
ing sites and those within TAD boundaries and loop anchors (Fig. 5D). 
Notably, all these thirteen TE families belong to LTRs/ERVs, SINEs or 
DNA transposons, while none is from LINEs (Fig. 5D, Table S7, S8). It 
confirms the previous report that LINEs are under-represented at TAD 
boundaries, probably due to the length constrain [70]. 

To learn more about the insulation function of TEs, we further 
compared the insulation score for the CTCF binding sites derived from 
TEs or non-TEs. We demonstrate that the insulation score of the CTCF 
binding sites derived from each TE classes are comparable to those that 
don’t overlap with TEs (Fig. 5E). Inspection of the CTCF binding sites 
derived from eight top TE families confirmed the insulation function for 
all of them (Fig. 5F). These results support the functional importance of 
TE-derived CTCF binding sites for chromatin insulation. As an example, 
we identified one LTR22_SS-derived CTCF binding site (is located 50 kb 
downstream of the gene) on the TAD boundary upstream of XCL1 

Fig. 4. Profiling of the 3D chromatin organization in pig spleen by in situ Hi-C. A. Correlation map at 500 kb resolution for chromosome 5 in pig spleen, with the 
tracks for ATAC-seq, ChIP-seq (CTCF, H3K27ac, H3K4me3) and RNA-seq shown alongside at top. B. Pie to show the proportions of compartment A and B, 
respectively. C. TAD structure surrounding the HOXA cluster, with resolutions of 100 kb, 25 kb, 10 kb and 5 kb, respectively. At 5 kb resolution, a representative loop 
is highlighted in yellow square. D. The percentages of TAD boundaries and loop anchors bound by CTCF. Randomly shuffled regions are used as control. P-values 
calculated by using Fisher’s Exact Test are indicated. E. Enrichment of the canonical CTCF motif in TAD boundaries and loop anchors. 
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(Fig. 5G). XCL1, also known as lymphotactin, is a chemokine produced 
mainly by CD8+ T and natural killer cells and has important role in 
lymphocyte trafficking and inflammation [71]. Together, these results 
suggest the importance of TE-derived CTCF binding sites for mediating 
the 3D chromatin organization in pig spleen. 

4. Discussion 

The regulatory function of TEs in mammals has gained increasing 
attentions in recent years [23,24]. Like other mammals, the genome of 
pig is also abundant with TEs, with its 44.9% made up of TEs. However, 
most previous studies focusing on porcine ERVs for xenotransplantation 
[35], and studies on their regulatory function in pigs just began to 
emerge. For example, a few studies suggest that pig TEs may regulate 
immune gene expression either by acting as enhancers or through “viral 
mimicry” [72,73]. Apart from that, current understanding about the 
function of TEs in pigs remains obscure. In this study, we investigated 
the contribution of TEs, particularly lineage-specific ERV families, for 
the 3D chromatin organization in pigs. This study is initiated by the 
comparison of CTCF binding across three pig tissues, and then, we 
focused on spleen which is a tissue crucial for adaptive and innate im-
munity [68,74]. 

Through the comparison across adipose, hypothalamus and spleen, 

we found that only about one third of CTCF peaks are shared by all three 
tissues. Given that only three tissues are compared, we expect that the 
proportion of common CTCF peaks should be even less if more tissues 
are included. Thus, tissue-specific CTCF binding is pervasive. This is 
consistent with previous studies which compared CTCF binding across 
mouse tissues [65,75]. Importantly, GO analysis demonstrates that 
tissue-specific CTCF binding events have functional relevance to the 
corresponding tissue, indicating that tissue-specific binding of CTCF 
may regulate the transcription of tissue-specific genes in pig. Mecha-
nistically, the differential binding of CTCF is probably facilitated by 
other tissue-specific regulators, such as transcription factors crucial for 
each tissue. However, the exact factors that drive the tissue-specific 
binding of CTCF in these pig tissues remain unclear. 

Regarding the links of TEs to the 3D chromatin organization in pigs, 
we achieved two major findings. First, we identified dozens of TE fam-
ilies that are significantly enriched within CTCF binding sites. While 
previous studies reported the links between TEs and CTCF binding in 
species like human and mouse [24], we uncovered three pig-specific 
ERV families, including LTR22_SS, LTR16_SSc and LTR15_SS, that 
create many CTCF binding sites. Second, we found that while TEs are 
enriched in the CTCF binding sites for all tissues, the degree of enrich-
ment is remarkably higher in spleen. It is not surprising given that the 
immune system evolves relatively fast due to the host-pathogen conflict 

Fig. 5. Association of TE-derived CTCF binding sites to TAD boundaries and chromatin loops in pig spleen. A. Scatter plots to show the TE enrichment in the 
CTCF binding sites within TAD boundaries and chromatin loops, respectively. B. Bar plot shows the number of significantly enriched TE families in all CTCF binding 
sites or those within TAD boundaries or loop anchors. C. Comparison of the fold enrichment for different TE families in all CTCF binding sites or those within TAD 
boundaries and loop anchors, respectively. Pearson’s r and p-values are indicated. D. Enrichment of the TE families that are enriched in all CTCF binding sites or 
those within TAD boundaries and loop anchors, respectively. E. Insulation score flanking the CTCF binding sites derived from major classes of TEs or not. F. Similar to 
E, but for CTCF binding sites derived from representative TE families. G. TAD structure together with ATAC-seq, ChIP-seq (CTCF, H3K27ac, H3K4me3), RNA-seq and 
insulation score tracks on the XCL1 locus. The LTR22_SS-derived CTCF binding sites on the TAD boundary upstream of XCL1 is highlighted in orange rectangle. 
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[76]. Indeed, TEs have been well-recognized to facilitate both innate 
and adaptive immunity evolution by creating lineage-specific cis-regu-
latory elements [77,20,22,78]. We speculate that some immune-related 
transcription factors may facilitate spleen-specific binding of CTCF on 
TEs. Support this speculation, LTR22_SS consensus sequence harbors the 
motifs for multiple immune-related TFs (e.g. STAT1/2, IRF7/8, 
NFYA/B/C). 

After revealing the links between TEs and CTCF binding, we further 
performed Hi-C experiments to characterize the contribution of TEs to 
3D chromatin structure in pig spleen. Typical chromatin structures, 
including A/B compartments, TADs and loops, were identified in pig 
spleen. We also confirmed the enrichment of active histone marks in A 
compartments as well as the enrichment of CTCF binding in TAD 
boundaries and loop anchors. Regarding TEs, we confirmed that they are 
overrepresented in both TAD boundaries and loop anchors. Importantly, 
the CTCF binding sites derived from TEs, including the pig-specific 
LTR22_SS ERV family, show comparable insulation score to those 
don’t overlap TEs. Interestingly, one LTR22_SS-derived CTCF binding 
site demarcates a TAD border adjacent to XCL1, which is an immune 
gene highly expressed in spleen. These data suggest the importance of 
TEs for mediating 3D chromatin organization in pig spleen. We expect 
that Hi-C experiment with higher resolution and CRISPR/Cas9 engi-
neering of TE-derived CTCF binding sites would further improve the 
understanding about the regulation of 3D chromatin organization and 
immune gene expression in pigs. 

5. Conclusions 

In summary, this study represents the first step toward understand-
ing the function of TEs on 3D chromatin organization regulation in pigs. 
We identified dozens of TE families, including pig-specific ERV families, 
that are likely to mediate CTCF binding in pigs. Importantly, our data 
highlights the importance of pig-specific ERVs for mediating CTCF 
binding and TAD formation in pig spleen, which may further influence 
immune gene expression. Overall, this study improves our understand-
ing about the regulatory function of porcine TEs and expands current 
knowledge about the functional importance of TEs in mammals. 
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