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Mechanosensing and mechanotransduction are vital processes in mechanobiology and
play critical roles in regulating cellular behavior and fate. There is increasing evidence that
purinergic P2 receptors, members of the purinergic family, play a crucial role in cellular
mechanotransduction. Thus, information on the specific mechanism of P2 receptor-
mediated mechanotransduction would be valuable. In this review, we focus on
purinergic P2 receptor signaling pathways and describe in detail the interaction of P2
receptors with other mechanosensitive molecules, including transient receptor potential
channels, integrins, caveolae-associated proteins and hemichannels. In addition, we
review the activation of purinergic P2 receptors and the role of various P2 receptors in
the regulation of various pathophysiological processes induced by mechanical stimuli.
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INTRODUCTION

Mechanotransduction refers to the conversion by cells of external mechanical signals into internal
biochemical signals (Maurer and Lammerding, 2019). Mechanotransduction enables living
organisms to sense a range of mechanical stimuli, including shear stress, stretch-induced strain
and osmotic pressure (Wang et al., 2019). Mechanosensors are an important class of molecules that
directly and rapidly convert mechanical signals into biochemically relevant signals (Cox et al., 2019).
Activation of mechanosensors is the first step in mechanotransduction. There are extensive reviews
on mechanotransduction and the ways in which mechanical forces regulate cellular function (Wu
et al., 2018; Ozkale et al., 2020). An increasing body of evidence indicates that purinergic P2 receptors
(P2Rs) are involved in multiple mechanotransduction pathways.

P2Rs are specialized membrane receptors, which are ubiquitously expressed in various cells and induce
biological effects by selectively combining with extracellular nucleotides, such as tri-phosphate nucleosides
and di-phosphate nucleosides (Coddou et al., 2011; Di Virgilio et al., 2018). P2Rs encompass a complex
network of membrane receptors, including P2X purinergic receptors (P2XRs) and P2Y purinergic
receptors (P2YRs). P2XRs are ligand-gated ion channels, while P2YRs are members of seven-
membrane-spanning G protein-coupled receptors. Based on differences in their structural and
functional characteristics, P2XRs and P2YRs are further subdivided into seven P2X (1–7) subtypes
and eight P2Y (1, 2, 4, 6, 11–14) subtypes, respectively (Antonioli et al., 2019).

Adenosine triphosphate (ATP) release and subsequent activation of purinergic receptors are
critical in mechanotransduction (Moehring et al., 2018). Cells can directly respond to mechanical
stress in the extracellular environment through G protein-coupled receptors and mechanosensitive
cation channels (Kefauver et al., 2020; Marullo et al., 2020). In this review, we summarize recent
findings on P2R-mediated mechanotransduction and review the role of P2Rs in mechanical force-
mediated pathophysiological process.
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MECHANISMS OF P2RS AS
MECHANOTRANSDUCERS

The response of cells to mechanical stimuli involves activation of
P2Rs and subsequent initiation of intracellular downstream
signaling. Elucidation of the mechanisms underlying P2Rs-
mediated mechanotransduction could shed light on the
optimum approach to target P2Rs in the clinical setting.
Multiple mechanosensitive molecules, including transient
receptor potential (TRP) channels, integrins, caveolae-
associated proteins, hemichannels and piezo1, have been
identified that are involved in P2Rs-mediated
mechanotransduction.

Interactions of P2Rs With TRP Channels
The TRP channel family is a type of tetrameric complex located
mainly in the plasma membrane, which can be activated directly
by a mechanical stimulus (Liu and Montell, 2015; Haustrate et al.,
2020). There is evidence supporting mechanical signals inducing
interactions between TRP channels and P2Rs, which is mainly
reflected in ATP release-mediated coupling of them. For example,
in gastrointestinal epithelia, stretch-induced activation of
transient receptor potential vanilloid 4 (TRPV4) triggers
vesicular nucleotide transporter (VNUT)-mediated ATP
exocytosis and increases plasma membrane permeability,
resulting in ATP release. ATP release then leads to the
activation of P2Rs, and further regulates the production of
visceral pain. These findings imply that TRPV4 plays an
essential role in P2Rs activation (Mihara et al., 2020). An
interaction between transient receptor potential vanilloid 1
(TRPV1) and P2XRs in bladder afferent neurons also appears
to be essential for the mechanotransduction during bladder filling
(Grundy et al., 2018). Thus, TRPV1 may play a role in mediating
bladder mechanosensitivity.

Moreover, in an experiment on cutaneous wound healing,
ATP release triggered by mechanical stress activated P2Y2R,
which induced long-lasting Ca2+ influx into keratinocytes
through transient receptor potential canonical 6 (TRPC6)
(Takada et al., 2014). In another study, under the action of
fluid, endogenously released ATP affected the opening of the
TRPV4 and transient receptor potential canonical 1 (TRPC1) by
activating P2X4R, thereby regulating the intracellular Ca2+

concentration of endothelial cells (Li et al., 2015). Thus,
current research strongly suggests that interactions between
TRP channels and P2Rs regulate mechanosensory signal
transduction. However, as apparent in these studies, P2Rs are
not intrinsically mechanosensitive. Whether other interactions
between P2Rs and TRP channels exist that do not depend on ATP
deserves further study. Studies on the conformation and
distribution of P2Rs and TRP channels could shed light on
other potential protein–protein interactions.

Interactions of P2Rs With Integrins
The integrin family forms integrin adhesion sites with various
enzymes and membrane-associated proteins located between the
extracellular matrix and the cytoskeleton (Osugi et al., 2019).
These adhesion sites are essential for integrin-dependent cell

adhesion, proliferation, migration and survival (Nolte and
Margadant, 2020). A remarkable feature of integrin-mediated
adhesion is mechanosensitivity (Sun et al., 2016).

Based on the membrane colocalization of P2Rs and integrins,
Cabahug-Zuckerman et al. utilized immunohistochemistry
combined with structured illumination super-resolution
microscopy for further exploration and then they observed the
‘osteocyte mechanical body’, a specialized mechanotransduction
complex, which composed of pannexin 1, P2X7R, T-type Ca2+

channel and αVβ3 integrins (Cabahug-Zuckerman et al., 2018).
The presence of this specialized mechanotransduction complex
may help to explain the remarkable mechanosensitivity of
osteocytes. Such unique mechanotransduction mediated by
P2X7R and αVβ3 integrin also appears to be an ATP-based
signaling pathway. As P2X7R may mediate the release of ATP
(Johnsen et al., 2019), it is necessary to identify the source of ATP.
Previous research has also shed light on the role of interactions
between P2Y2R and αVβ3/5 integrins in human umbilical vein
endothelial cells. Differed from the ATP-based way, the novel
spot focused on the Arg-Gly-Asp integrin-binding domain in this
research. This domain directly mediates the coupling of P2Y2R
and αVβ3/5 integrins. Subsequently, integrin signaling pathways
mediated by P2Y2R activate cofilin-1, which modulates shear
stress-induced endothelial cytoskeletal alterations, wound
closure, and cell alignment (Sathanoori et al., 2017).

As is clear from the above, the interplay between integrins and
P2R is vital in maintaining mechanotransduction. Investigations
of P2X7R-mediated ATP release are important because both the
ligand required for P2X7R and the substance it releases may be
ATP. Furthermore, analyses of protein–protein interaction
domains of P2Y2R and integrins may reveal potential targets
for drug therapy.

Interaction of P2Rs With
Caveolae-Associated Proteins
Caveolae-associated proteins, such as caveolin-1 (Cav-1),
caveolin-2 (Cav-2) and caveolin-3 (Cav-3), are essential for the
formation and maintenance of the structure of caveolae in cell
membranes (Low and Nicholson, 2015). As one of the main raft
scaffolding proteins, Cav-1 is involved in mechanotransduction
by coupling membrane-bound receptors to downstream signaling
molecules (Martinez et al., 2016). Existing evidence points to an
important role for Cav-1 in P2R-mediated mechanotransduction.
For example, when enterochromaffin cells are mechanically
stimulated, Cav-1 associated with cholesterol-rich micro-
domains in caveolae forms a scaffold to support the activation
of P2Y1R, subsequently leading to the release of 5-
hydroxytryptamine (5-HT), which is involved in mucosal
secretory reflexes, motility and transmission of information
related to visceral pain sensations (Linan-Rico et al., 2016). A
recent study using a mechanical injury model system revealed the
presence of P2Y2R in Cav-1 raft micro-domains of astrocytoma
cells (Martinez et al., 2019). In this study, Cav-1 modulated the
cell survival rate by regulating Akt and ERK1/2 phosphorylation,
mediated by P2Y2R. The resulting scaffold formed by Cav-1 is
essential for P2Y2R signaling. Moreover, P2Y2R and Cav-1 also
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play a functional role in alveoli via ATP-dependent way, resulting
in the regulation of surfactant secretion. Noteworthy, P2Y2R does
not exist in the scaffold formed by Cav-1. In this process, in
response to mechanical distension, ATP release from alveolar
type Ⅰ cells stimulates exocytosis of lamellar bodies of alveolar type
Ⅱ cells by increasing the intracellular Ca2+ level (Diem et al.,
2020).

The interaction of Cav-1 with P2XRs has been previously
reported, including Cav-1 acting as a regulatory switch to ensure
the efficient activity of P2Rs. In osteoblasts, Cav-1 attenuates
P2X7R-mediated mechanotransduction via endocytosis. During
this process, Cav-1 detaches from P2X7R and is transported to
the cytoplasm (Gangadharan et al., 2015). Additionally, shear
stress seems to induce mitochondrial ATP generation of
endothelial cells through Cav-1. ATP-mediated P2X4R
activation then evokes a Ca2+ wave (Yamamoto et al., 2018).
In terms of the interaction between Cav-1 and P2Rs, there has
been little study on the contact sites or domains between Cav-1
and P2Rs. More research is needed to provide evidence of a direct
relation between Cav-1 and P2Rs.

Functional Interplay of P2Rs With Pannexin
and Connexin Hemichannels
There is compelling evidence to support a crucial role of ATP
release-mediated coupling of mechanosensitive hemichannels
and P2Rs in mechanotransduction. The pannexin family is a
class of channel-forming proteins that form large, non-selective
plasma membrane channels, which enable the movement of
molecules and ions (Chiu et al., 2018; Michalski et al., 2020).
The pannexin 1-P2X7R signaling complex is important in
mechanotransduction in bone and urinary system (Negoro
et al., 2014; Seref-Ferlengez et al., 2016). A pannexin 1-
dependent mechanosensitive mechanism modulates ATP
signaling and is essential for load-induced skeletal responses
and transmission of bladder wall distension signaling
(Negoroet al., 2014; Seref-Ferlengez et al., 2019). Under
mechanical stretch applied to atrial myocytes, ATP released by
pannexin 2 activates P2Rs to induce macrophage migration
(Oishi et al., 2012). However, the identity of the specific P2Rs
involved in the aforementioned processes remains unknown. In
addition, a pannexin 1-dependent mechanosensitive mechanism
that modulates P2YRs rather than P2XRs promoted the survival
of metastatic cells during the process of intravascular deformation
induced by membrane stretch (Furlow et al., 2015).

Connexins, in particular connexin 43, are post-translational
phosphorylated proteins involved in mechanotransduction
(Plotkin et al., 2015; Delvaeye et al., 2018). P2Rs are known to be
involved in connexin channel-dependent mechanotransduction. For
instance, in human periodontal ligament cells, continuous
compressive forces induce ATP release from connexin 43. During
this process, ATP increases the expression and the synthesis of
osteopontin and receptor activator of nuclear factor kB ligand by
binding to P2Rs (Luckprom et al., 2011). Similarly, in response to
mechanical loading, connexin 43-dependent ATP release in
chondrocyte accelerated the synthesis of proteoglycan by
activating P2Rs (Garcia and Knight, 2010). Coupling of P2Rs and

other connexin family members mediated by ATP release has been
demonstrated (Svenningsen et al., 2013). In this study, ATP release
mediated by connexin 30 and subsequent P2Y2R activation played an
important role in regulating renal salt and water reabsorption,
maintaining fluid and the electrolyte balance and normal blood
pressure. In another study, when bovine corneal endothelial cells
underwent severe short-term deformation in response to a local
mechanical stimulus, connexin 43-dependent ATP release induced
the activation of P2Y1R and P2Y2R on plasmamembrane of adjacent
cells and subsequent Ca2+ wave propagation (Iyyathurai et al., 2016).

As mentioned above, coupling of the hemichannels and P2Rs
mediated by ATP release is essential for mechanotransduction.
Supplementary Table S1 lists down the key components in the
above-mentioned purinergic receptor signaling. Remarkable, the
functional characteristics of piezo1 channels are similar to those
of hemichannels, as outlined in a recent comprehensive review
(Wei et al., 2019). Despite this similarity, the relationship of
mechanically activated cation piezo2 with P2Rs has not been
reported. Additionally, as a prominent mechanical cue,
extracellular matrix stiffness regulates the chondrogenic
response of mesenchymal stem cells to hydrostatic pressure by
altering P2Rs sensitivity or by some other mechanism that is
downstream of P2Rs activation, although the exact type of P2Rs is
still unclear (Steward et al., 2016). Based on the current literature
on mechanosensor-mediated activation of the purinergic
signaling pathway, extracellular mechanical stimuli cannot
induce P2R activation directly. Further work is needed to shed
light on the effect of mechanical stimuli on P2Rs.

INVOLVEMENT OF P2RS IN MECHANICAL
FORCE MEDIATED
PATHOPHYSIOLOGICAL PROCESS
Mechanical forces, such as shear stress, stretch and microgravity,
cause physical deformation of cell structure (Cox et al., 2019),
which has been a hotspot in cellular biomechanics for decades.
Shear stress is the frictional force exerted on cells by a fluid
environment (Klems et al., 2020). Mechanical stretch mainly
comes from the distension of organs or tissues. These
mechanical forces are common in bone and in the
gastrointestinal, circulatory and urinary systems (Miyamoto
et al., 2014; Kauffenstein et al., 2016; Linan-Rico et al., 2016;
Xu et al., 2017). The development and morphogenesis of living
organisms require the generation of mechanical forces, which is a
critical apart of mechanobiology (Yu et al., 2018).

P2Rs-Mediated Mechanotransduction in
the Cardiovascular System
P2Rs are involved in cardiovascular pathological processes, such
as vascular inflammation and atherosclerosis (Wang et al., 2017).
As shown in a clinical study, P2Y2R and Gq/G11 (G proteins)
control blood pressure by mediating endothelium
mechanotransduction (Wang et al., 2015). Another study
reported that exposure of endothelium to disturbed blood flow
appears to generate multiple inflammatory signals, including p38
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signaling, E-selectin and Interleukin-8 secretion, which is
regulated by ATP-dependent P2X7R (Green et al., 2018). In
this process, P2X7R promotes endothelium inflammation at
atheroprone sites by transducing ATP signals into p38
activation. According to the literature, P2X7R might represent
a potential therapy for improving endothelial dysfunction and
subsequently atherosclerosis. Based on a study on
cardiomyocytes, purinergic signaling appears to be related to
mechanical stress-induced cardiac fibrosis (Nishida et al., 2008).
In this study, pannexin 1-dependent P2Y6R activation in
cardiomyocytes induced the expression of fibrogenic factors,
which activated cardiac fibroblasts in a paracrine manner.
Additionally, in rat atrial myocytes, an increase in Ca2+ influx
induced by shear stress during a hemodynamic disturbance was
abolished by pharmacological blockade of P2Y1R. Thus, it can be
seen that P2Y1R plays an important role in regulation of cardiac
contraction (Kim and Woo, 2015).

Regulation of Bone Mechanotransduction
by P2Rs
Themechanical environment in which bone cells are embedded is
a dynamic combination of various mechanical stimuli, including
shear stress, strain and osmotic pressure (Qin et al., 2020). Like in
the cardiovascular system, the shear stress of fluid flow is the main
force stimulation applied to osteocytes in bone. The abundance of
P2Rs in bone points to their potential role in bone homeostasis
(Ottensmeyer et al., 2018).

In a murine calvarial osteoblast MC3T3-E1 cell line, when
compressive force was applied to MC3T3-E1 cells by
centrifugation, the pressure increased extracellular ATP via
induction of VNUT (Inoue et al., 2020). Subsequently, VNUT-
mediated ATP release inhibited osteoblast differentiation through
P2X7R and/or P2Y2R. A recent study also reported that P2Y14R,
the only P2YR stimulated by uridine diphosphate sugars,
contributed to the differentiation of osteoblasts under a
mechanical stimulus, which was confirmed in primary murine
osteoblasts and a C2C12-BMP2 osteoblastic cell line
(Mikolajewicz and Komarova, 2020). Another study indicated
that ATP release induced by low-intensity pulsed ultrasound
promotes osteoblast proliferation and osteogenic responses via
the activation of P2X7R (Manaka et al., 2015). In addition,
P2Y13R contributes to mediation of osteogenic responses to
mechanical loading by regulating ATP metabolism in
osteoblasts (Wang et al., 2013). Based on a micro-CT analysis
of osteoclasts from P2Y2R−/− mice, activation of P2Y2R under
mechanical loading regulates bone resorption and mineralization
by enhancing ATP release (Orriss et al., 2017).

Roles of P2Rs in Other Pathophysiological
Processes
P2Rs are activated in other organs and systems, such as the
gastrointestinal system and bladder. For example, endogenous
ATP released after abnormal intestinal wall extension induces
visceral pain by activating P2X2R and P2X3R on nociceptive
neurons (Wynn et al., 2004). In the process of mucosal stroking

reflex of the guinea pig distal colon, 5-HT activates intrinsic primary
afferent neurons, and ATP release activates P2Y1R on secretomotor
cholinergic neurons, leading to an increase in short circuit current/
chloride ion secretion (Cooke et al., 2004). Unlike the
aforementioned model, in the touch/stretch reflex of the distal
colon of rats, 5-HT release caused activation of P2Y1R, P2Y2R and
P2Y4R, resulting in a net increase in chloride secretion (Christofi
et al., 2004). P2Y1R also seems to play a major role in increasing 5-
HT levels in response to amechanical stimulus of the ileummucosal
epithelium of the guinea pig (Patel, 2014). Interestingly, in this
research, the P2Rs inhibitor had no impact on 5-HT levels in the
distal colon. This finding is likely due to differences in interactions
between 5-HT and P2Rs in different regions of the gastrointestinal
tract. Elucidating the underlying mechanism will benefit our
understanding of gastrointestinal tract signaling. In addition, a
study has shown that P2X3R plays an important role in colon
mechanotransduction and hypersensitivity (Shinoda et al., 2009).
However, the specific mechanism of action of P2X3R remains to be
confirmed.

During bladder filling, ATP release and subsequent P2YRs
activation mediates the storage capacity of the urinary bladder
in response to membrane stretch, indicating the importance of
P2YRs to the physiological function of the bladder (Mansfield
and Hughes, 2014). When urothelial cells are stretched, ATP-
dependent P2Rs activation leads to the release of Ca2+, thereby
preventing an overactive bladder and fecal incontinence (Guan
et al., 2018). In mice, the absence of P2Y6R in dorsal root
ganglia leads to an increase in the afferent sensitivity of
traction stimulation signals, resulting in frequent
micturition and a decrease in bladder capacity (Kira et al.,
2017).

From a functionality point of view, these literatures point to a
key role for P2Rs as mechanotransducers in multiple organs and
systems. Supplementary Figure S1 illustrates a proposed
relationship between P2Rs and mechanosensitive molecules,
and P2Rs mediated-pathophysiological process. Antagonists
or agonists of P2YRs are widely used to treat various
diseases, such as dry eye syndrome and inflammation
(Jacobson et al., 2020). However, the lack of availability of
selective agonists for P2XRs remains a problem (Illes et al.,
2021). Moreover, given that most drugs still being tested in
preclinical experiments, rigorous clinical investigations and
subsequent development of new medications targeting P2Rs
are required.

CONCLUSION

In response to extracellular mechanical stimulus, the interaction
of P2Rs with TRP channels, integrins, Cav-1 or hemichannels
initiates complex signaling cascades, contributing to changes in
the pathophysiological state. Therefore, targeting P2Rs, offers
great promise as a novel therapeutic strategy in dysregulated
mechanotransduction. Significant advancements have deepened
our understanding of the structure and functions of P2Rs in
mechanotransduction. Activation of P2Rs seems to be a
downstream event caused by the release of nucleotides
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exposed to a mechanical stimulus. The potential function of
P2Rs as direct mechanosensors needs further research.
Fortunately, the widespread availability of single-molecule
localization microscopy in the area of sub-cellular structures
means it is now possible to study interactions between
membrane channel proteins and their accessory subunits
(Stone et al., 2017). Such studies hold promise in shedding
light on the study of the interaction between P2Rs and
mechanosensitive molecules.

Future directions for research include studies on:1) the
potential role of mechanical stress in direct activation P2Rs,
independently of chemical agonists; 2) the protein–protein
interaction domains between P2Rs and mechanosensors; 3)
ATP release-mediated coupling of the mechanosensitive ion
channel piezo2 and P2Rs; 4) the relationship between
extracellular matrix stiffness and P2Rs; 5) the role of other
P2Rs in mechanotransduction, such as P2X6R, P2Y11R and
P2Y12R; 6) and the development and testing of drugs that
target P2Rs in mechanotransduction.
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