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Abstract
Well-designed experiments

are likely to yield compelling evidence with efficient sample sizes. Bayes Factor Design

Analysis (BFDA) is a recently developed methodology that allows researchers to balance the informativeness and efficiency
of their experiment (Schénbrodt & Wagenmakers, Psychonomic Bulletin & Review, 25(1), 128-142 2018). With BFDA,
researchers can control the rate of misleading evidence but, in addition, they can plan for a target strength of evidence. BFDA
can be applied to fixed-N and sequential designs. In this tutorial paper, we provide an introduction to BFDA and analyze how
the use of informed prior distributions affects the results of the BFDA. We also present a user-friendly web-based BFDA
application that allows researchers to conduct BFDAs with ease. Two practical examples highlight how researchers can use

a BFDA to plan for informative and efficient research designs.

Keywords Sample size - Design analysis - Bayes factor - Power analysis - Statistical evidence

Introduction

A well-designed experiment strikes an appropriate balance
between informativeness and efficiency (Schonbrodt &
Wagenmakers, 2018). Informativeness refers to the fact
that the ultimate goal of an empirical investigation is
to collect evidence, for instance concerning the relative
plausibility of competing hypotheses. By carefully planning
experiments, researchers can increase the chance of
obtaining informative results (Platt, 1964).! Perhaps the
simplest way to increase informativeness is to collect more

Platt (1964) referred to the method of planning for informative
results as “strong inference”. One of the main components of strong
inference is “Devising a crucial experiment [...], with alternative
possible outcomes, each of which will, as nearly as possible, exclude
one or more of the hypotheses.” (p. 347)
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data. Large-N experiments typically result in lower rates of
misleading evidence (Ioannidis, 2005), increased stability
and precision of parameter estimates (Lakens & Evers,
2014), and a higher replicability of experiments (Etz &
Vandekerckhove, 2016). However, sample sizes are subject
to the constraints of time, money, and effort?>—hence,
the second desideratum of a well-designed experiment is
efficiency: data collection is costly and this drives the
need to design experiments such that they yield informative
conclusions with as few observations as possible. There is
also an ethical argument for efficiency, as it is not just the
resources of the experimenter that are at stake, but also the
resources of the participants.

In sum, a carefully planned experiment requires that
researchers negotiate the trade-off between informativeness
and efficiency (Dupont & Plummer, 1990). One useful
approach to navigate the trade-off is to conduct a
prospective design analysis (Gelman & Carlin, 2013). This
method for planning experiments aims to ensure compelling
evidence while avoiding sample sizes that are needlessly
large. Design analyses can be conducted in both frequentist
and Bayesian analysis frameworks (Kruschke, 2013; Cohen,
1992). The most prominent example of prospective design
analyses is the frequentist power analysis (Gelman & Carlin,
2014), which builds on the idea of controlling the long-term

2In addition, when already large sample sizes are further increased, the
incremental effect on statistical power is only small (Lachin, 1981).
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probability of obtaining significant results given a certain
population effect (Cohen, 1988, 1992).

However, the frequentist power analysis has important
shortcomings. First, it focuses solely on controlling the rates
of false positives and false negatives in significance testing.
Other aspects of the informativeness of experiments, such
as the expected strength of evidence or the stability and
unbiasedness of parameter estimates are neglected (Gelman
& Carlin, 2013, 2014; Schonbrodt & Wagenmakers, 2018).
Second, frequentist power analysis heavily relies on a
priori effect size estimates, which are informed by external
knowledge (Gelman & Carlin, 2013). This is problematic
insofar as effect size estimates derived from academic
literature are likely to be inflated due to publication bias
and questionable research practices (Perugini et al., 2014;
Simmons et al., 2011; Vevea & Hedges, 1995); to date,
there is no optimal method for correcting the biased
estimates (Carter et al., 2017). Alternatively, frequentist
power analysis can be based on the smallest effect size one
wants to detect. However, this approach is used less often in
practice (Anderson et al., 2017) and in many cases, defining
the minimal important effect size is difficult (Prentice &
Miller, 1992).

Recently, several alternative approaches for prospective
design analysis have been proposed that can at least
partly overcome the shortcomings of frequentist power
analysis (e.g., Gelman & Carlin, 2014; Schonbrodt &
Wagenmakers, 2018). This paper will focus on one of
them: Bayes Factor Design Analysis (BFDA; Schonbrodt
& Wagenmakers, 2018), a method based on the concept
of Bayesian hypothesis testing and model comparison
(Jeffreys, 1961; Kass & Raftery, 1995; Wagenmakers et al.,
2010; Wrinch & Jeffreys, 1921).

One of the advantages of BFDA is that it allows
researchers to plan for compelling evidence. In a BFDA,
the strength of empirical evidence is quantified by Bayes
factors (Jeffreys, 1961; Kass & Raftery, 1995). Compared to
the conventional power analysis, this means a shift from the
focus on the rate of wrong decisions to a broader perspective
on informativeness of experiments. Just as a frequentist
prospective power analysis, a BFDA is usually conducted in
the planning phase of experimental design, that is before the
data collection starts. However, it could also be conducted
and sensibly interpreted “on-the-go” during data collection
(Rouder, 2014; Schonbrodt & Wagenmakers, 2018), which
can also be considered as an advantage over the current
standard approach toward design analyses. Furthermore,
BFDA can be applied both to fixed-N designs, where
the number of observations is determined in advance, and
to sequential designs, where the number of observations
depends on an interim assessment of the evidence collected
so far (Schonbrodt & Wagenmakers, 2018; Schonbrodt
etal., 2017).

The present article is directed to applied researchers
who are already familiar with the basic concepts of
Bayesian data analysis and consider using BFDA for
planning experiments.? It has the following objectives: (1)
to provide an accessible introduction to BFDA; (2) to
introduce informed analysis priors to BFDA which allow
researchers more freedom in specifying the expectations
about effect size under the alternative hypothesis; (3) to
demonstrate how the use of informed analysis priors in
BFDA impacts experimental efficiency; (4) to present a
user-friendly software solution to conduct BFDAs; and
(5) to provide a step-by-step instruction for two common
application examples of BFDA. Thus, this tutorial-style
paper not only provides an application-oriented introduction
to the method proposed by Schonbrodt and Wagenmakers
(2018), but also makes new contributions by introducing
informed priors and a ready-to-use software solution.

The outline of this paper is as follows. First, we briefly
describe Bayes factors and introduce informed analysis
priors as a means of incorporating prior information about
effect sizes in study designs. Then, we explain the BFDA
method in greater detail, addressing both fixed-N and
sequential designs. Using two typical analysis priors as
an example, we then examine the effects of informed and
default analysis priors on the results of a BFDA. Next, we
present an interactive web application for BFDA alongside
step-by-step instructions for two application examples. The
article concludes by discussing possible extensions and
implications for empirical research.

Bayes factors as a measure of strength
of evidence

The Bayes factor was originally developed by Harold
Jeffreys (1935), building on earlier work published with
his co-author Dorothy Wrinch (Wrinch and Jeffreys, 1919,
1921, 1923) as well as on the work of J. B. S. Haldane
(Haldane, 1932; Etz & Wagenmakers, 2017). The Bayes
factor quantifies the evidence in favor of one statistical
model compared to another (Kass & Raftery, 1995).
Mathematically, it is defined as the ratio of two marginal
likelihoods: The likelihood of the data under the null
hypothesis (#o) and the likelihood of the data under the
alternative hypothesis ().

_ pD[H)
~ p(D[Ho)
The Bayes factor can be understood as an updating factor
for prior beliefs. For example, when the hypotheses Ho and

BFo ey

3A comprehensive introduction to Bayesian inference is beyond the
scope of this article. The interested reader is referred to Etz et al.
(2018) for an overview of introductory materials on Bayesian statistics.
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‘H, are deemed equally probable a priori, so that p(H;) =
p(Ho) = 0.5, a Bayes factor of BFjp = 6 means that after
conducting the experiment, 7 is deemed six times more
likely than Ho — corresponding to a posterior probability of
86% for H1 and 14% for Ho (Kass & Raftery, 1995).

The Bayes factor plays a central role in Bayesian
hypothesis testing (Lewis & Raftery, 1997; Berger, 2006a).
Whereas decisions about the rejection of hypotheses
are based on p-values in frequentist hypothesis testing,
decision rules in Bayesian hypothesis testing are based on
Bayes factors (Good, 2009, p. 133ff). Usually, defining
decision rules implies defining a lower and upper decision
boundary on Bayes factors. If a resulting Bayes factor is
larger than the upper boundary, it is regarded as good-
enough evidence for the alternative hypothesis. If a Bayes
factor is smaller than the lower boundary, it is regarded
as good-enough evidence for the null hypothesis. If a
resulting Bayes factor lies between the boundaries, the
evidence is deemed inconclusive (Bernardo & Rueda,
2002). In order to define decision boundaries and interpret
evidence from the Bayes factor, researchers often rely on
a rough heuristic classification scheme of Bayes factors
(Lee & Wagenmakers, 2014). One specification of this
classification scheme is depicted in Table 1.

A complete Bayesian decision making process also
involves the specification of utilities, that is, the value
judgments associated with decision options (e.g., Good,
2009; Lindley, 1991; Berger, 1985). However, many
Bayesian statisticians focus exclusively on evidence and
inference, ignoring the context-dependent specification of
utilities. The decision rules for Bayes factors discussed here
are decision rules for evidence (i.e., what level of evidence
is deemed sufficiently compelling?). These rules may be
influenced by prior model plausibility and by utilities, but
these elements of the decision process are not specified
separately and explicitly.

Table 1 A heuristic classification scheme for Bayes factors BFjo (Lee
and Wagenmakers 2013, p. 105; adjusted from Jeffreys, 1961)

Bayes factor Evidence category

> 100 Extreme evidence for H
30 - 100 Very strong evidence for H
10-30 Strong evidence for H;
3-10 Moderate evidence for H
1-3 Anecdotal evidence for H
1 No evidence

173-1 Anecdotal evidence for H
1/10 - 1/3 Moderate evidence for H
1/30 - 1/10 Strong evidence for H,
1/100 - 1/30 Very strong evidence for Hy
< 1/100 Extreme evidence for H
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The use of Bayes factors as a measure of evidential
strength provides several advantages. First, Bayes factors
can quantify evidence for Ho and H; (Kass & Raftery,
1995). This means that in contrast to p-values, they
can distinguish between absence of evidence and the
evidence of absence (Altman & Bland, 1995; Dienes, 2014).
Bayes factors also do not require the two models to be
nested, which increases researchers’ freedom in formulating
relevant hypotheses (Kass & Raftery, 1995). Another
advantage of Bayes factors is that their interpretation
remains meaningful despite optional stopping (Rouder,
2014). This allows sequential research designs where the
decision about the continuation of sampling depends on the
value of the Bayes factor (Schonbrodt et al., 2017).

Bayes factors with informed priors

As stated before, the Bayes factor is defined as the ratio
of the marginal likelihood of the data under the null and
the alternative hypothesis, respectively. In the simplest case
both hypotheses, Ho and Hi, are point hypotheses which
means that they assume that the parameter in question
(e.g., the effect size) takes one specific value (e.g., “Ho:
The parameter 6 is 0.”, “H;: The parameter 6 is 17).
In this case, the Bayes factor is equivalent to a simple
likelihood ratio. However, hypotheses often rather assume
that the parameter in question lies within a certain range of
values (e.g., Hi: “The parameter 0y is larger than 0, and
smaller values of 6y are more likely than larger values.”).
In this case, the hypothesis is specified as a distribution that
assigns a probability (density) to parameter values. We call
this distribution the prior distribution on parameters. The
marginal likelihood can then be calculated by integrating
over the parameter space, so that

p(DIHy) =fP(D|9k, Hy)m (O | Hy) dbg, (2)

where 6y is the parameter under Hy, (0| Hy) is its prior
density, and p(D|6k, Hy) is the probability density of the
data D given a certain value of the parameter 6; (Kass &
Raftery, 1995; Rouder et al., 2009).

Opinions differ as to how much information should
be included in the prior distribution on parameters, that
is, w(6x|Hy). So-called “objective” Bayesians favor non-
informative distributions which do not put too much weight
on single parameter values and are constructed to fulfill
general desiderata (Rouder et al., 2009; Ly et al., 2016).
Objective Bayesians advocate default prior distributions
that do not rely on the idiosyncratic understanding of a
theory and on the potentially flawed subjective elicitation
of an informative prior distribution (Berger, 2006b). In
contrast, so-called “subjective” Bayesians argue that “the
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Prior Distributions on Effect Size

t-Distribution (u=0.35, r = 0.102, df = 3)
——  Cauchy-Distribution (u= 0, r =42/ 2)

Density

Fig. 1 Informed and default prior distribution on effect size § used
in this article. Default prior distribution proposed by Rouder et al.
(2009) for Bayesian #-tests, informed prior distribution elicited by
Gronau et al. (2017) for a replication study in social psychology.
Figure available under a CC-BY4.0 license at osf.io/3f5qd/

search for the objective prior is like the search for the Holy
Grail” (Fienberg, 2006, p. 431). Subjective Bayesians claim
that no statistical analysis can be truly objective, and they
critique objective Bayesians for using prior distributions
that are at best inaccurate reflections of the underlying
theory (Goldstein, 2006).

In its original version, BFDA was applied to Bayesian
hypothesis testing with objective priors (Schonbrodt &
Wagenmakers, 2018). In this paper, we introduce subjective
priors to BFDA and investigate how their use impacts design
efficiency. As in the original paper, we will use Bayesian
t-tests with directional hypotheses to illustrate the procedure.
As proposed by Rouder et al. (2009), we will use a central
Cauchy distribution with a scale parameter of r = +/2/2
as a default (“objective”) prior distribution on effect size
8. This prior is also a default setting in current statistical
software covering Bayesian statistics like the BayesFactor
package (Morey & Rouder, 2015) for the R Environment for
Statistical Computing (R Development Core Team, 2011)
and JASP (The JASP Team, 2018). The informed prior
distribution investigated in this paper was originally elicited
by Gronau et al. (2017) for a replication study in the field
of social psychology and, in our opinion, can serve as
an example for a typical informed prior for the field of
psychology. It is a shifted and scaled t-distribution with a
location parameter of u = 0.35, 3 degrees of freedom, and
a scale parameter of r = 0.102. Both prior distributions
(objective and informed) are depicted in Fig. 1.

Bayes Factor Design Analysis for fixed-N
and sequential designs

One important step of experimental planning is to determine
the sample size of the experiment. In fixed-N designs, the

sample size is determined before conducting an experiment
based on pre-defined desiderata for the expected strength of
evidence and the probability of decision errors (Schonbrodt
& Wagenmakers, 2018). In sequential designs, instead of
a fixed sample size a decision rule is set before the start
of the experiment. This decision rule determines when
the sampling process will be stopped. Researchers can
decide at every stage of the experiment on the basis of
the decision rule whether to (1) accept the hypothesis
being tested; (2) reject the hypothesis being tested; or (3)
continue the experiment by making additional observations
(Wald, 1945). For example, a researcher might aim for a
strength of evidence of 6, and thus collect data until the
Bayes factor (BFjp) is larger than 6 or smaller than 1/6.
Sequential designs are particularly easy to use in a Bayesian
framework since the Bayes factor is robust against optional
stopping, so no correction mechanism needs to be employed
for looking at the data before the experiment is concluded
(Rouder, 2014; Schonbrodt et al., 2017).* Additionally, it
is guaranteed that finite decision boundaries will eventually
be reached, since the Bayes factor approaches 0 or co when
the data are overwhelmingly informative which happens
when the sample size becomes very large (a property called
consistency; Ly et al., 2016).

BFDA can help researchers plan experiments with both
fixed-N and sequential designs. The target outcomes of
BFDAs depend on the choice of design. In fixed-N designs,
a BFDA provides researchers with a distribution of Bayes
factors, that is, of the expected strength of evidence. Large
Bayes factors pointing towards the wrong hypothesis can
be interpreted as misleading evidence because they likely
lead to decision errors. Researchers define “large Bayes
factors” based on two boundaries, e.g., “all Bayes factors
that are smaller than 1/10 or larger than 10 are counted
as strong evidence for the null and alternative hypothesis,
respectively”.

For sequential designs, the BFDA results in a large
number of sampling trajectories. Each sampling trajectory
mimics one possible experimental sequence, for example
“a researcher starts with ten participants and adds one
participant at a time until the Bayes factor of the
collected data is larger than 6, which happens at the 21st
participant”. In sequential designs, the end point of the
sampling trajectory, which is the final sample size of
the experiment, is a random variable. Hence, the most
interesting information a BFDA can provide in sequential
designs is a probability distribution of this random variable,
that is a probability distribution of final sample sizes.

4For a discussion on whether optional stopping creates bias, see
Schonbrodt et al. (2017, pp. 330-332) and Schonbrodt & Wagenmakers
(2018, pp. 139f).
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Fig. 2 Flowchart of the BFDA simulation process. Rectangles show actions, diamonds represent decisions, and parallelograms depict outputs.
Typically, the simulation is conducted once under the null and once under the alternative hypothesis. Figure available under a CC-BY4.0 license

at osf.io/3f5qd/

Additionally, a BFDA can estimate the percentage of
trajectories that will arrive at the “wrong” boundary, that is
at the upper boundary when the null hypothesis is true or at
the lower boundary when the alternative hypothesis is true.
This percentage of trajectories can be interpreted as rate of
misleading evidence in sequential designs (Schonbrodt &
Wagenmakers, 2018).

BFDA is based on Monte Carlo simulations. The
simulation procedure is displayed in a flowchart in Fig. 2
and can be summarized as follows Schonbrodt and
Wagenmakers (2018):

1. Simulate a population that reflects the effect size under
Hi. If the effect size under H; is composite (e.g.,
Hy : & ~ t(0.35,3,0.102)), draw a value of § from
the respective distribution. In the example analysis used
in this article, we simulate two subpopulations with
normal distributions. In the following sections, we will
refer to simulated populations with effect sizes of § =
0.2, =0.35,6 =0.8,and § = 0.

2. Draw a random sample of size N from the simulated
subpopulations. For the fixed-N design, the sample size
corresponds to the pre-determined sample size. For the
sequential design, the initial sample size corresponds
to a minimum sample size, which is either required
by the test (e.g., for an independent-sample z-test, this
sample size is equal to 2 observations per group) or

@ Springer

set to a reasonable small number. In our example, we
chose a minimum sample size of ten observations per
group.

3. Compute the Bayes factor for the simulated data set.
In sequential design, increase the sample size by 1 if
the Bayes factor does not exceed one of the decision
thresholds and compute the resulting Bayes factor with
the new sample. Continue doing so until either of the
thresholds is reached (e.g., BFj9 < 1/6 or BFjy > 6).

4. Repeat steps 1 to 3 m times, e.g., m = 10, 000.

5. In order to obtain information on the design under the
Ho, steps 1 to 4 must be repeated under Hy, that is,
with two populations that have a standardized mean
difference of § = 0.

For the fixed-N design, the simulation results in a
distribution of Bayes factors under 7; and another
distribution of Bayes factors under . To derive rates
for false-positive and false-negative evidence, one can set
decision thresholds and retrieve the probability that a study
ends up in the “wrong” evidential categories according to
these thresholds. For the sequential design, the simulation
results in a distribution of N that is conditional on the set
evidence thresholds. The rates of misleading evidence can
be derived by analyzing the percentage of cases which fell
into the “wrong” evidential category, that is, arrived at the
wrong boundary.
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Bayes Factor Design Analysis with informed
priors

As in earlier work (O’Hagan et al., 2005; Walley
et al., 2015), Schonbrodt and Wagenmakers (2018)
distinguish “design priors” and “analysis priors”. Both are
prior distributions on parameters, but have different pur-
poses. Design priors are used before data collection as data
generating model to simulate (sub)populations. Analysis
priors are used for Bayesian statistical analysis of the col-
lected data (Schonbrodt & Wagenmakers, 2018; O’Hagan
et al., 2005).

As both kinds of priors represent beliefs about the true
state of nature under the hypotheses in question, some
researchers may feel this distinction is artificial. This
holds especially true when design priors are distributions,
that is, when simulated effect sizes are generated from
distributions. The introduction of informed priors to BFDA
makes the distinction unnecessary and can therefore yield
more intuitive results.

The following sections explore the impact of the choice
of priors on design efficiency and informativeness in greater
depth. It is important to note that in practice the choice of
priors should always be based on theoretical considerations
and not only on their influence on design properties.
However, we will show that the choice of priors is an
important aspect of a design that needs to be considered in
the planning of experiments.

Bayes Factor Design Analysis for fixed-N
designs

In the fixed-N design, sample size and expected population
effect size are defined by the researcher. Questions that can
be answered by a BFDA for this design are:

What Bayes factors can I expect?

What is the probability of misleading evidence?

What sample size do I need to obtain true positive or
true negative evidence with a high probability?

In the following sections, we will tackle these questions
and explore the effects of the choice of analysis prior for
different design priors and sample sizes. In our examples,
we use four different effect sizes as a design prior: § = 0
as data generating model under Hp, § = 0.2 as a small
effect size which is somewhat larger than what would be
expected if there was a null effect but somewhat smaller
than what would be expected from the informed analysis

prior distribution, § = 0.35 as a true effect size which
perfectly matches the mode of the informed analysis prior
distribution, and 6 = 0.8 as a large effect size which is

still within the typical range for the field of psychology

(Perugini et al., 2014), but which is considerably larger than
what would be expected from the informed analysis prior.
Additionally, we will consider sample sizes between N = 10
and N = 500 observations per group, which is typical for
the field of psychology (Fraley & Vazire, 2014; Marszalek
etal., 2011).

Expected Bayes factors

As can be seen in Fig. 3, expected Bayes factors increase
with increasing sample size if the true effect size is larger
than zero. If there is no difference between groups (6 = 0),
the expected Bayes factor approaches zero. This implies that
the mean log Bayes factor decreases to —oo when sample
size increases. In other words, when sample size increases,
so does the evidence for the true data generating model.
However, evidence for the null hypothesis accumulates at
a slower rate than evidence for the alternative hypothesis
(Johnson & Rossell, 2010). In Fig. 3, this can be seen from
the smaller gradient of the panel for § = 0.

As expected, the choice of the analysis prior influences
the expected Bayes factor. If the true effect size lies within
the highest density region of the informed prior distribution
(e.g., § = 0.2,8 = 0.35), the evidence accumulates faster
when the informed prior distribution is used compared to
when a default prior is used. In contrast, if the true effect
size is much larger than the mode of the informed prior
distribution (e.g., § = 0.8), the expected Bayes factor for
a given sample size is slightly larger for the default prior
approach. This can be understood as a higher “riskiness”
of the choice of the informed prior. Researchers who plan
a study can be more conservative by choosing broader
analysis priors—these are less efficient in general (e.g., they
yield lower Bayes factors for the same sample size) but
more efficient when the true effect size does not match the
prior expectations. Alternatively, researchers who already
have specific expectations about the population parameter
can make riskier predictions by choosing informed prior
distributions—these are potentially more efficient, but only
when the true effect size matches the expectations.

When data are generated under the null hypothesis (top
left panel in Fig. 3), there is no unconditional efficiency
gain for informed or default analysis priors. If the sample
size is smaller than 100 observations per group, the expected
evidence for the null hypothesis is stronger in the default
prior approach. For larger sample sizes, the informed prior
approach yields stronger evidence.

Probability of misleading evidence
Rates of misleading evidence can only be determined in a

decision-making context. These rates are dependent on the
choice of cut-off values that guide the decision towards Hy

@ Springer



1048

Behav Res (2019) 51:1042-1058

8=0
1
w
o 13
k-]
3 18
] Default Prior
& 1204 Tt
---------- Informed Prior
1/50
T T T T T 1
0 100 200 300 400 500
Sample Size per Group
8=0.35
. Informed Prior
w 1000000 Default Prior
o
E 10000
o
8
53 100
ww
1-= T T T T 1
0 100 200 300 400 500

Sample Size per Group

Fig.3 Expected Bayes factors for different true effect sizes. Expected
Bayes factors are defined as the raw Bayes factors corresponding
to the mean log Bayes factors for a specific sample size. Evidence

or Hi. In a Bayesian framework, cut-off values are usually
determined in terms of Bayes factors by choosing an upper
and a lower decision boundary. Typically, these boundaries
are chosen symmetrically. This means that the upper and
lower boundary are defined as bpr and 1/bpF, respectively.

Figure 4 shows the expected rates of misleading evidence
for symmetric boundaries given different true effect sizes.
What may come as a surprise is that the rate of misleading
evidence does not decrease continuously with increasing
sample size. This happens because evidence is mostly
inconclusive for small sample sizes, that is, the Bayes factor
is larger than the lower boundary but smaller than the
upper boundary. For example, if § = 0 and we choose
N = 10 per group and decision boundaries of 1—10 and 10,
the resulting evidence is inconclusive in over 99% of the
cases. Therefore, the evidence is misleading in only a very
small number of cases, but it also does not often motivate
any decision either. This illustrates an important difference
compared to standard frequentist statistics: While there are
mostly only two possible outcomes of an experiment in
frequentist statistics, namely, a decision for or against the
null hypothesis, the absence of evidence is a possible third
outcome in Bayesian hypothesis testing.’

Analogous to frequentist statistics, rates of misleading
evidence decrease as effect size and sample size increase. In
addition, the choice of decision boundaries also influences
the quality of decisions: the higher the boundaries, the lower
the rates of misleading evidence. Figure 4 shows that the
informed and default prior approach have distinct properties

STn frequentist statistics, there also exist tests that allow for this
three-way distinction, e.g., the Wald test (Wald, 1943), but these are
seldomly used in practice.
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accumulates more slowly when the null hypothesis is true (§ = 0)
than when it is false. Figure available under a CC-BY4.0 license at
osf.io/3f5qd/

in terms of error rates. While rates of false-positive evidence
are mostly lower for the default analysis prior, rates of
false-negative evidence are mostly lower for the informed
analysis prior. This may be important when planning a study
because sample size or decision boundaries may need to be
adjusted accordingly depending on the prior distribution.

Sample sizes to obtain true positive or true negative
evidence with a high probability

An important characteristic of a good experiment is its
ability to provide compelling evidence for a hypothesis
when this hypothesis is true. In fixed-N designs this can
be achieved by determining the number of observations
needed to obtain strong positive evidence (when H; is true)
or strong negative evidence (when #y is true) with a high
probability. Just as rates of misleading evidence, these rates
of true positive and true negative evidence also depend on
the chosen Bayes factor boundaries. The question here is:
“Which sample size is required to obtain a Bayes factor that
exceeds the ‘correct’ boundary with a high probability, say
80%?”

If the design prior is larger than zero, this critical sample
size can be obtained by repeatedly conducting a fixed-
N BFDA for increasing sample sizes and computing the
20% quantile of each Bayes factor distribution. The critical
sample size is reached when the 20% quantile of the Bayes
factor distribution exceeds the Bayes factor boundary (this
means that for this sample size 80% of the Bayes factors
are larger than the boundary). Figure 5 depicts the required
sample sizes for symmetric boundaries between 3 and 6 for
different true effect sizes when using either a default or an
informed analysis prior.


https://osf.io/3f5qd/

Behav Res (2019) 51:1042-1058

1049

Lower Boundary: 1/5
Upper Boundary: 5

Lower Boundary: 1/10
Upper Boundary: 10

Lower Boundary: 1/20
Upper Boundary: 20

[0} [0) [0)
o g 0.03 ] E" 0.03 g 0.03
Je e _c e _ T I
L 0.00 —y T T T T 7 W 0.00 - T T T T 7 0.00 —p T T T T i
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Sample Size per Group Sample Size per Group Sample Size per Group
N 2 2 02 2 02
? o o } o }
> [ = R R T Z e
w - 00 - T T T T 7 W 00— T T T T i W 00— T T T T 1
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Sample Size per Group Sample Size per Group Sample Size per Group
L0
(Sp] % 0.1 % 0.1 % 0.1
S& } g } g }
z o~ z z
I L 00-p T T T T 7 W 00— T T T T 7 L 0.0 T T T T 1
o 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Sample Size per Group Sample Size per Group .
Sample Size per Group
[oo] Q Q Q
< 0.01 < 0.01 < 0.01
© © ©
] © o C o
f/o E 000 I.L T T T T 1 E OOO T T T T T 1 E OOO T T T T T 1
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Sample Size per Group

3 —— Default Prior
: Informed Prior !

Sample Size per Group

Sample Size per Group
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Clearly, if the true effect size is large, smaller sample
sizes are sufficient to detect an effect. For example, when
the true effect size is § = 0.35 and the default analysis prior
is used, 185 observations per group are needed to obtain
a Bayes factor larger than 5 with a probability of 80%.
In contrast, only 33 observations per group are needed to
obtain the same evidence strength with the same probability
for § = 0.8. When the null hypothesis is true in the
population (§ = 0), 340 observations are needed to gain
the same strength of evidence in favor of the null. The
largest sample sizes are required when the true effect size
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lies close to zero but does not equal zero. The reason is
that it is difficult to determine whether in this region Ho
or ‘H; was the data generating process, so Bayes factors
will often meander between the boundaries or arrive at
the wrong boundary. There are also perceivable differences
between the default and informed prior approach. In
general, smaller samples are required if an informed
analysis prior is used. This corroborates the findings
mentioned in earlier sections of this paper, that the informed
prior approach is more diagnostic for smaller sample
sizes.
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Fig.5 Required sample sizes per group to obtain true positive (if | is true) or true negative (if Ho is true) evidence with an 80% probability for
symmetric decision boundaries between 3 and 6 and different effect sizes §. Largest sample sizes are required if the true effect size is small but

non-zero. Figure available under a CC-BY4.0 license at osf.io/3f5qd/
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In practice, if researchers want to plan for strong
evidence independently of whether the null or the alternative
hypothesis is valid in the population, they can compute the
critical sample size for both hypotheses and plan for the
larger sample size. For instance, if 185 observations per
group are needed to obtain true positive evidence in 80% of
the time (if H1 is true) and 340 observations per group to
obtain true negative evidence in 80% of the time (if HO is
true), it is sensible to aim for the higher sample size because
before the experiment is conducted it is not clear whether
the effect size is zero or non-zero in the population. Of
course, researchers can also set different criteria for decision
bounds or true evidence rates depending on the hypothesis.

Bayes Factor Design Analysis for sequential
designs

In sequential designs, sampling is continued until the
desired strength of evidence is reached; consequently, the
evidence is now fixed. However, prior to conducting the
experiment, it is unknown at which sample size these
boundaries will be reached and how often Bayes factor
trajectories arrive at the wrong boundary (see Fig. 6). Thus,
we can ask the following two questions in a BFDA for
sequential designs:

1. Which sample sizes can be expected?
2.  What is the probability of misleading evidence?

Expected sample sizes

Since the final sample size in a sequential design is a random
variable, one of the most urgent questions researchers have
when planning sequential designs is what sample size they
can expect. BFDA answers this question with a distribution
of sample sizes. The quantiles of this distribution can be
used to plan experiments. For example, researchers might
be interested in a plausible estimate for the expected sample
size. Since the distribution is skewed, the median provides a
good measure for this central tendency. When planning for
resources, researchers might also be interested in a plausible
estimate for the maximum sample size they can expect.
In this case, it is reasonable to look at a large quantile of
the distribution, for example the 95% quantile. Figure 7
displays the median and the 95% quantile of sample size
distributions for symmetric decision boundaries between 3
and 30 (corresponding to lower boundaries from % to % and
upper boundaries from 3 to 30). For small to medium effect
sizes, the required sample sizes are clearly smaller when
informed analysis priors are used. For large effect sizes
(e.g., 6 = 0.8), the default analysis prior approach is more
efficient. However, for large effect sizes the required sample

@ Springer

sizes are small in general, and consequently the efficiency
gain is relatively modest. When the null hypothesis is true
in the population, there is a striking difference in the 95%
quantile of the sample size distribution. This shows that in
this case it is more likely that it takes very long until the
Bayes factor trajectory reaches a threshold when the default
analysis prior is used.

Probability of misleading evidence

In sequential designs, misleading evidence is defined as
Bayes factor trajectories that arrive at the “wrong” decision
boundary, that is, at the Ho boundary when H; is correct
and vice versa (Schonbrodt et al., 2017). As can be seen
in Fig. 6, misleading evidence occurs mainly when Bayes
factor trajectories end early, that is when sample sizes are
still small.®

Figure 8 displays rates of misleading evidence in
sequential designs. One can observe a rapid decline in
error rates when symmetrical decision boundaries are raised
from 3 to about 10. When they are further increased,
error rates improve only marginally. This finding is
important for balancing informativeness and efficiency
in the planning stage of an experiment with sequential
designs. To ensure informativeness of experiments, rates
of misleading evidence can be controlled, but this usually
comes at the cost of efficiency in terms of sample size.
In sequential designs, a good balance can be found by
increasing decision boundaries (and thereby sample sizes)
until error rates change only marginally.

When comparing designs with default and informed
analysis priors, the same pattern as in the fixed-N design
can be observed. While models with informed priors yield
comparatively less false-negative evidence, models with
default priors yield less false-positive evidence. However,
these differences disappear with large decision boundaries.

A Shiny App for Bayes Factor Design Analysis

In the previous sections, we have highlighted how, in the
planning stage of an experiment, a BFDA can help balance
important aspects of informativeness and efficiency, namely
the expected strength of evidence, the rates of misleading
evidence, and the (expected) sample size. Yet, conducting
a BFDA may be troublesome to some researchers because
(a) it requires advanced knowledge of programming as
it is not yet an integral part of statistical software; and
(b) Monte Carlo simulations are computationally intensive
and therefore time-consuming. In the second part of this

This property can be described by a Conditional Accuracy Function
(Luce, 1986)
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article, we therefore want to introduce a user-friendly
app which makes BFDA accessible to researchers without
programming experience or access to high-performance
computers. First, we provide a short overview on the app,
then we demonstrate its application in two examples by
giving step-by-step instructions on how to use the app to
answer two questions on design planning.

We used the Shiny package for R to create the BFDA app
(Chang et al., 2017). Shiny is an open source R package
that provides a web framework for building dynamic web
applications with an R-based graphical user interface. The
core of the app is a large database of precomputed Monte
Carlo simulation results, which allows users to conduct
a BFDA quickly. Depending on the available computer
power, one simulation can easily take an entire day, and our
database solution overcomes this computational hurdle. In
total, we conducted 42 different simulations spanning 21
different true effect sizes. Our simulation code is based on
the BFDA package for R (Schonbrodt, 2016) and is available
under CC-BY4.0 license on https://osf.io/3f5qd/.

The app consists of two parts, one for fixed-N designs
and the other for sequential designs. The app allows
users to conduct all analyses mentioned in the previous
sections; in addition, it provides summary plots for a
preliminary analysis as well as additional figures for single-
case scenarios (e.g., distribution of Bayes factors in fixed-N
design for a specific sample size). Moreover, it allows users
to download dynamic, time-stamped BFDA reports.

Users can choose effect sizes between § = 0.2 and § =
1.2 under the alternative hypothesis, symmetric decision
boundaries between 3 and 30, and (for the fixed-N design)
sample sizes between 10 and 200 per group. This parameter
range is typical for the field of psychology (Fraley & Vazire,
2014; Lee & Wagenmakers, 2014; Marszalek et al., 2011;
Perugini et al., 2014). Users can also evaluate how their
experimental design behaves when the null hypothesis is
true, that is, when § = 0. They can also choose between the
two analysis priors that are used throughout this article (see
Fig. 1).

The BFDA app is an interactive and open-source
application. This means that users can decide what
information should be displayed and integrated in the
analysis report. The source code of the app as well
as all simulated results are openly accessible and can
be downloaded from GitHub (https://github.com/astefan1/
Bayes-Factor-Design- Analysis- App) and the OSF platform
(https://osf.io/3f5qd/), respectively. This allows users who
want to adapt the BFDA simulation when it does not meet
their needs.

In the following sections, we introduce two application
examples for the BFDA app, tackling typical questions
that a researcher could have in the planning stage of an
experiment.
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Two step-by-step application examples
Fixed-N design: can I find evidence for the null?

One of the main advantages of the Bayesian method is
that it makes it possible to quantify evidence in favor of
the null hypothesis (Altman & Bland, 1995; Dienes, 2014).
Yet, finding evidence for the null hypothesis is typically
more difficult than for the alternative hypothesis (Jeffreys,
1961, p. 257). This is also illustrated in Fig. 3, which shows
that as sample size increases, Bayes factors decrease at a
lower rate for § = 0 than they increase when 6 > 0. This
implies that larger sample sizes are needed to gain the same
strength of evidence for H as for H;.

This leads to a potential asymmetry in evidential value of
experiments: If the sample size of an experiment is small,
it may be likely to gain strong evidence for the alternative
hypothesis if ; is true but highly unlikely to gain strong
evidence for the null hypothesis if H is true. Thus, for small
sample sizes the possible informativeness of the Bayesian
method is not fully exploited, because it is only possible to
distinguish between “evidence for #;” and “inconclusive
evidence”.

In this example, we use BFDA to assess whether it is
possible to gain strong evidence for the null hypothesis
in a particular research design. We consider the following
scenario: A recent study on researchers’ intuition about
power in psychological research found that roughly 20%
of researchers follow a rule-of-thumb when designing
experiments (Bakker et al., 2016). The authors specifically
mention the “20 subjects per condition” rule, which states
that 20 observations per cell guarantee sufficient statistical
power (Simmons et al., 2011). In an independent sample
t-test this corresponds to two groups of 20 observations
each.

Is a sample size of 20 observations per group sufficient
to obtain strong evidence for the null? We will answer this
question step-by-step by using the BFDA app (see Fig. 9).
The app can be accessed under http://shinyapps.org/apps/
BFDA/.

1. Choosing a design: As our question involves a specific
sample size, we need to choose the tab for fixed-N
design.

2. Choosing the priors: In our example, we did not specify
whether we want to use default or informed analysis
priors. However, it could be interesting to compare
whether the results are robust to the choice of prior, so
we will select both in this example. The selection of the
design prior (expected effect size under the alternative
hypothesis, see slider on the left) is not relevant in our
example, because we are solely interested in the null
hypothesis, that is § = 0.
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Fig. 9 Screenshot from the Bayes Factor Design Analysis (BFDA) app.
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Purple numbers are added to describe the procedure of answering the

question: Is it possible to find (strong) evidence for the null with a specific sample size?

Choosing a sample size: As defined in the question,
we are interested in a design with 20 observations per
group, so the slider should be adjusted to 20.
Choosing a decision boundary: We will choose a
boundary of 10, which demarcates the threshold
between moderate and strong evidence according to
the classification by Lee and Wagenmakers (2014,
see Table 1). This choice of boundaries corresponds
to an upper boundary of 10 and a lower boundary
of %.
Select information that should be displayed: We are
interested in the expected distribution of Bayes factors.
Thus, we will select the options “Distribution of Bayes
Factors” (yielding graphic output), “Median Bayes
Factors” (as an estimate for the expected Bayes factor),
and “5%, 25%, 75%, and 95% Quantiles” (to get a
numeric summary of the entire distribution)

The results of the precomputed Monte Carlo
simulations are displayed in the panel on the right

of Fig. 9. On top, a table with the medians of the
Bayes factor distribution is displayed. For the informed
analysis prior, the median Bayes factor under Hj is
0.53, and for the default analysis prior it is 0.31. The
table underneath shows the 5%, 25%, 75%, and 95%
quantiles of the Bayes factor distribution. We can see
that for both analysis priors, the 5% quantile equals
0.13. The figures at the bottom show that in most
cases, the evidence is inconclusive given the selected
boundaries as indicated by the large yellow areas. Bayes
factors smaller than % can only be expected in 0.6%
of the cases for default priors and in 2% of the cases
for informed priors. Combining these results, one can
conclude that it is highly improbable that a Bayesian
t-test with N = 20 per group yields strong evidence
for the null hypothesis, even if the null hypothesis
is true. The sample size is too small to fully exploit
the advantages of the Bayesian method and should
therefore be increased.
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Download report: To store the results, a time-stamped
report in pdf format can be downloaded by clicking
on the download button on the right top of the page.
The report contains the results as well as the selected
options for the design analysis. The report for our first
application example can be downloaded from https://
osf.io/3f5qd/.

Sequential design: how large will my sample be?

In sequential designs, sampling continues until a certain
decision boundary is reached. Thus, researchers cannot
know the exact sample size prior to the study. However,
planning for financial and organizational resources often
requires at least a rough idea about the final sample size.
In our second example we therefore want to show how a
BFDA can answer the question: “How large will my sample
be?”

We will again explain how to use the BFDA app to

answer the question step-by-step (see Fig. 10). The app can
be accessed under http://shinyapps.org/apps/BFDA/.

1.

Choosing a design: As we are interested in the expected
sample size in a sequential design, we need to choose
the sequential design tab.
Choosing a design prior: Try to answer the question:
“What effect size would you expect if your alternative
hypothesis is true?” This is the same question that
you have to ask yourself if you want to construct a
reasonable informed analysis prior. So one possibility
to choose the effect size is to choose the mode of the
informed analysis prior. However, it is also possible
to follow the approach of a safeguard power analysis
(Perugini et al., 2014) and choose a smaller effect size
to avoid underestimating the true sample size or to use
the smallest effect size of interest. We will follow a
safeguard power approach in the example and choose an
expected effect size of § = 0.2. Theoretically, it would
also be possible to use a distribution of effect sizes as a
data generating model which illustrates the uncertainty
about the data generating process, but this option is
not included in our app since it would necessitate
the storage of additional precomputed Monte Carlo
simulations which would dramatically slow down the
app. The simulation code is, however, easy to adjust
(see example on the OSF platform: https://osf.io/
3f5qd/). Thus, if users like to conduct these new
simulations, they can make use of our open source code.
In the next two steps, we are going to customize the
summary plot on the top of the app. The summary plot
shows the expected (median) sample sizes per group
for different symmetric decision boundaries given the
selected effect size. Analyzing the summary plot at first
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can help balance evidence strength and sample size in
the choice of decision boundaries.

Choosing an analysis prior: The summary plot allows
us to check easily how much the sample size estimates
depend on the choice of the prior distribution. We
therefore choose both the default and the informed prior
distribution on effect size.

Selecting additional information on the dispersion of
the sample size distribution: Especially for researchers
with scarce resources, it may be useful to obtain
boxplot-like information on upper (and lower) bounds
of the distribution. The BFDA app includes the option
to display the quartiles and the 5% and 90% (see Fig.
10) quantile of the distribution. However, the question
we want to answer refers mainly to the expected sample
size, so we do not tick these options.

The summary plot shows a steep increase in expected
sample sizes when decision boundaries increase.
Moreover, it reveals a considerable sensitivity of the
method for the choice of the analysis prior, namely
considerable smaller sample sizes for informed than
for default priors. For the following analyses, we will
choose a relatively small symmetric decision boundary
of 6, classified as “moderate evidence” by Lee and
Wagenmakers (2014), assuming that it represents a
reasonable starting point for a good trade-off between
efficiency and informativeness. In practice, this trade-
off is dependent on the available resources, on the stage
of the research process, and on the desired strength of
evidence.

Choosing an analysis prior: As before, we will choose
both the default and the informed prior distribution to
be able to compare the results.

Select information that should be displayed: We select
both numeric (medians, 5%, 25%, 75%, and 95%
quantiles) and pictorial representations (violin plots)
of the distribution of sample sizes from the list. We
could have chosen more options, but these suffice to
demonstrate the case.

The results of the Monte Carlo simulations are
displayed on the right of Fig. 10. First, statistics
of the distribution of sample sizes are displayed for
Ho and H;. We can see that the expected sample
sizes are a little smaller when the null hypothesis is
correct than when the alternative hypothesis is correct.
Moreover, as in the summary plot, we can see that
under the alternative hypothesis, the expected sample
size is smaller when the informed analysis prior is
used. Remember, however, that these gains in efficiency
come at the cost of higher type I error rates. Under
the null hypothesis, the choice of the analysis prior has
little effect on the expected sample sizes. For default
priors, we can see from the quartiles tables that the 80%
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Fig. 10 Screenshot from the Bayes factor design analysis (BFDA)
app. Purple numbers are added to describe the procedure of answer-
ing the question: “How large will my sample size be in a sequential

design given certain decision boundaries and true effect sizes?” Figure
available under a CC-BY4.0 license at osf.io/3f5qd/

quantile of the sample size distribution under H is 235
per group. For informed priors it is 130. If planning
for resources requires a definite maximum sample size
(e.g., in grant applications), these are good estimates
that can be used for these purposes. Due to the skewness
of the distribution, our original question on the expected
sample size can be answered best with the medians:
For informed prior distributions, the expected sample

size is 56 observations per group, for default prior
distributions 76 observations (if 1 is true). The figure
at the bottom of the page gives a visual representation of
the distribution of sample sizes. It combines traditional
violin plots with boxplots and a jitter representation of
the raw data. Note that due to the extreme skewness
of the distribution the y-axis is log-scaled for enhanced
readability.
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8. Download report: As in the fixed-N design, it is also
possible to download a time-stamped dynamic report
of the results. This can be achieved by clicking on the
download button on the left sidebar panel. The report
for the analyses of our second application example can
be downloaded from https://osf.io/3f5qd/.

Conclusions

In this article, we demonstrated the effects of the choice
of priors on the results of a Bayes Factor Design Analysis
(BFDA) and introduced a Shiny app which facilitates
conducting a BFDA for the practical user. We provided a
detailed, tutorial-style overview on the principles of BFDA
and on the questions that can be answered through a BFDA
and illustrated how these questions can be answered using
the BFDA app.

When comparing informativeness and efficiency of
designs with different analysis priors, it is clear that for
most effect sizes within the typical range of psychology,
fewer participants are required in the informed-prior design.
This becomes especially clear in sequential designs where
frequently fewer than half as many participants are required
in informed-prior designs than in default-prior designs.
Additionally, informed-prior designs also yield higher
expected Bayes factors in a fixed-N design. This indicates
that informed-prior designs are more efficient in terms of
sample size and more informative in terms of expected
strength of evidence than default-prior designs. However,
informed-prior designs with a highest density region at
small effect sizes also coincide with higher false-positive
error rates compared to default-prior designs. This has to be
taken into consideration when judging the informativeness
of these designs.

Although comparing designs with default and informed
prior distributions is sensible on a conceptual level, because
it yields information on how “objective” and “subjective”
designs behave in general, it is not possible to infer rec-
ommendations for or against specific prior distributions. In
our opinion, the prior distributions should represent intu-
itions about effect sizes under the investigated hypotheses
in a specific case, and not be chosen merely because of
their expected effects in a design analysis. What we can
infer from our results is that it pays to include available
information in the prior distribution, because this enhances
informativeness. However, if the true effect size differs
greatly from the location of an informed prior distribution,
the relative benefit of informed priors becomes negligible or
can even turn into a disadvantage. It may therefore be pru-
dent to plan such that the results will likely be compelling
regardless of the prior distribution that is used.

@ Springer

In the paper and the accompanying app, we demonstrate
the effects of the choice of analysis priors using only two
prior distributions as an example. However, these results
can be generalized to other default and informed analysis
priors. The more the alternative hypothesis differs from
the null hypothesis, the easier will it generally be to gain
evidence for one or the other. This means that analysis
priors which incorporate more information will generally
have an efficiency advantage over relatively vague analysis
priors. The specific BFDA results for other priors than the
ones used in this paper can be obtained by adjusting the
parameters of the analysis prior in the code of the simulation
procedure which we provide online together with this paper
on https://osf.io/3f5qd/ or with the BFDA R package starting
from version 0.4.0 (Schonbrodt & Stefan, 2018).

Although BFDA is only applied to #-tests in this paper,
the procedure of BFDA can also be generalized to other
hypothesis tests. For example, similar analyses may be
developed for ANOVAs (for an application, see Field et al.,
2018) or for the comparison of two proportions as is popular
in medicine. The main challenge here is to develop suitable
data generating processes for the simulation algorithm
which can be used as a design prior in the BFDA.

The BFDA approach we present in this paper shares
many similarities with the generalized Bayesian power
analysis approach presented by Kruschke (2013) and
Kruschke and Liddell (2018) who also present a simulation-
based method for design analyses in a Bayesian context.
However, these authors focus on parameter estimation.
Thus, instead of focusing on the Bayes factor as a
measure of evidence strength, their analysis results are
centered around indicators of the posterior distribution.
They also propose a different standard for the definition
of design priors. Specifically, they do not support the idea
of a smallest effect size as a basis for the definition of
design priors and use only distributed design priors. Most
importantly, the current approach presented in this paper
extends previous expositions of generalized Bayesian power
analysis to sequential Bayesian designs.

The process of BFDA presented in this paper follows
exactly the plan outlined by Schonbrodt and Wagenmakers
(2018). By providing a method to plan for efficiency and
informativeness in sequential designs, their approach allows
for increased flexibility in research designs compared to
designs based on frequentist power analyses. From a
Bayesian perspective, research designs could, however, be
even more flexible. Theoretically, it would be possible to
ask at any point in the sampling procedure: Is the expected
gain in evidence worth the effort of collecting the next
datum? However, this approach requires knowledge about
the expected change in Bayes factors given the collected
data, about the social and financial costs of data collection,
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and about the utility of changes in the Bayes factor.
Determining these parameters is difficult at the moment and
awaits future research.

In sum, the BFDA is a powerful tool that researchers
can use to balance efficiency and informativeness in the
planning stage of their experiments. Our interactive Shiny
app supports this endeavor by making computationally
intensive Monte Carlo simulations redundant for one class
of standard designs and by providing a graphical user
interface, so that no programming experience is required to
conduct the analyses. Although it currently covers only the
independent sample #-test and only two prior distributions,
the app can be extended to other designs, as both
simulation results and source code of the app are openly
accessible. With this article, we hope to have provided
an accessible introduction to BFDA and have encouraged
more researchers to adopt BFDA as an additional tool for
planning informative experiments.
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