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Abstract 

Background:  Functional imaging especially the SPECT bone scintigraphy has been accepted as the effective clinical 
tool for diagnosis, treatment, evaluation, and prevention of various diseases including metastasis. However, SPECT 
imaging is brightly characterized by poor resolution, low signal-to-noise ratio, as well as the high sensitivity and low 
specificity because of the visually similar characteristics of lesions between diseases on imaging findings.

Methods:  Focusing on the automated diagnosis of diseases with whole-body SPECT scintigraphic images, in this 
work, a self-defined convolutional neural network is developed to survey the presence or absence of diseases of 
concern. The data preprocessing mainly including data augmentation is first conducted to cope with the problem 
of limited samples of SPECT images by applying the geometric transformation operations and generative adversarial 
network techniques on the original SPECT imaging data. An end-to-end deep SPECT image classification network 
named dSPIC is developed to extract the optimal features from images and then to classify these images into classes, 
including metastasis, arthritis, and normal, where there may be multiple diseases existing in a single image.

Results:  A group of real-world data of whole-body SPECT images is used to evaluate the self-defined network, 
obtaining a best (worst) value of 0.7747 (0.6910), 0.7883 (0.7407), 0.7863 (0.6956), 0.8820 (0.8273) and 0.7860 (0.7230) 
for accuracy, precision, sensitivity, specificity, and F-1 score, respectively, on the testing samples from the original and 
augmented datasets.

Conclusions:  The prominent classification performance in contrast to other related deep classifiers including the 
classical AlexNet network demonstrates that the built deep network dSPIC is workable and promising for the multi-
disease, multi-lesion classification task of whole-body SPECT bone scintigraphy images.
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Background
Malignant tumors characterized by high morbidity and 
mortality are the major threat to human health. The 
oncological patients would develop bone metastasis 
when the solid tumors have invaded to the bone. Clini-
cal statistical findings show that over 60% of metastases 

originate from breast cancer [1, 2] and the rest stemming 
from thyroid, lung, and kidney cancers [3]. Generally, a 
patient suffered from bone metastasis will experience 
fractures and pain, bringing significant effects on sur-
vival time and quality of life. The early detection of bone 
metastases becomes thus crucial for reasonable choice of 
treatment strategy and increasing survivability.

The most commonly used clinical tool for survey-
ing the presence or absence of bone metastasis is func-
tional imaging. In contrast to the conventional structural 
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imaging modalities (e.g., CT, MRI and Ultrasound), which 
capture only the morphological/structural changes, the 
functional imaging techniques can reveal not only the 
morphological but also the functional variants in organs, 
tissues, and parts of the body by acquiring metabolism 
of radiopharmaceutical in the nuclear medicine domain 
[4]. Currently, the main techniques of nuclear medicine 
functional imaging include the single photon emission 
computed tomography (SPECT) and positron emission 
tomography (PET). Although PET enables better reso-
lution, SPECT is a more affordable and widely used tool 
due to the low-cost equipment and radiopharmaceuticals 
(i.e., 99mTc-MDP). SPECT has been accepted as an effec-
tive tool for initial diagnosis of bone and joint changes 
in patients with oncologic diseases since the early 1990s 
[5, 6]. More than 18 million SPECT scans are conducted 
each year in the United States [7].

The SPECT imaging is acquired after 3  h following 
intravenous injection of radiopharmaceutical (99mTc-
MDP), enabling two images of the anterior and poste-
rior views of the body. The SPECT image is stored in a 
DICOM file as a 2D matrix. The value of elements in the 
matrix indicates the intensity of radiopharmaceutical 
uptake and is represented by a 16-bit unsigned integer. 
Those occupying lesions like bone metastasis are seen as 
areas of increased radioactivity in SPECT imaging.

SPECT imaging is characterized by low signal-to-
noise ratio and inferior spatial resolution, with the size 
of a whole-body SPECT image being 256 × 1024. Man-
ual analysis of SPECT imaging findings by physicians is 
very time-consuming, laborious, and subjective. Auto-
mated analysis of SPECT images for accurate diagnosis 
of diseases becomes extremely desired. In the field of 
traditional machine learning, early studies [8, 9] utilized 
artificial neural networks to classify features of hot spots 
that were segmented from bone scintigraphy images. 
CADBOSS [10] is a computer-aided diagnosis system 
using image gridding to extract feature of the metastatic 
regions. The extracted features were further classified 
with an artificial neural network classifier to determine 
whether metastases are present or absent. Mac et al. [11] 
used k-nearest neighbor and support vector machine 
classifiers to identify objects that were extracted from 
the bone scintigraphy images using edge segmentation 
method together with the full lambda-schedule algo-
rithm. The parallelepiped classification was applied in 
[12] to map the radionuclide distribution in scintigraphic 
images, enabling to detect bone metastasis. The common 
limitation of these studies is that they identify diseases 
through classifying the manually extracted features of 
hot spots. However, manual features extracted by human 
researchers often suffer from insufficient capability and 
unsatisfied performance for clinical tasks [13].

Deep learning techniques especially the convolutional 
neural networks (CNNs) have gained huge success in 
computer vision due to their ability of automatically 
extracting hierarchical features from images in an opti-
mal way. CNNs-based image classification and object 
segmentation become ubiquitous in medical image 
analysis in recent years [14–16]. With bone scintigraphy 
images, a large number of CNNs-based works have been 
done for automated diagnosis of bone metastasis. The 
master’s thesis [17] from Lund University is the earliest 
work on identifying whether the hotspots in bone scin-
tigraphy images represent bone metastases caused by 
prostate cancer or other physiological process. A five-
branch CNN model has been developed to classify image 
patches of already found hotspots in the spine, with each 
branch corresponding an image patch. The trained model 
has reached an accuracy of 89% on the testing dataset. 
A CNN-based model consisting of three sub-networks 
(i.e., feature extraction, aggregation and classification) 
was proposed in [18] to determine the absence or pres-
ence of bone metastasis. The model was evaluated using 
1600 samples of bone scintigraphy images, demonstrat-
ing an accuracy of 95% with two-view inputs (i.e., the 
anterior and posterior image). Using the similar three-
stage network in [18], Zhao et al. [19] studied to classify 
bone scintigraphy images for identifying bone metastasis 
caused by various solid tumors, achieving an AUC value 
of 98.8% for breast cancer, 95.5% for prostate cancer, 
95.7% for lung cancer, and 97.1% for other cancers on a 
testing dataset consisting of 1223 cases. Papandrianos 
et al. [20–23] studied to classify bone scintigraphy images 
for diagnosis of bone metastasis caused by prostate can-
cer [20–22] and breast cancer [23] with simple CNN-
based models. Their models achieved a highest two-class 
classification accuracy of 97.38% for prostate cancer and 
an accuracy of 92.5% for breast cancer. Cheng et al. [24, 
25] used YOLO models [26, 27] to detect lesions of chest 
and pelvis bone metastasis in scintigraphic images from 
prostate and breast cancer patients. Their developed 
CNNs-based classification models achieved a mean pre-
cision of 90% for classifying the detected lesions in the 
chest [26], and a precision of 70% (81%) for classifying 
the detected lesions in the chest (pelvis) [27]. In our pre-
vious work [28], we developed a group of CNNs-based 
two-class classification models to identify bone metas-
tasis in the thoracic images clipped from whole-body 
SPECT images, obtaining a best accuracy of 98.7% on the 
testing samples of augmented dataset.

Existing research efforts mentioned above focus only 
on the automated classification of scintigraphy images to 
determine that whether an image contains bone metasta-
sis or not, falling into the line of two-class (binary) clas-
sification problem. However, it is not rare that different 
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diseases may be present in a single scintigraphy image 
because the whole-body SPECT imaging can show the 
whole skeletal structure of a patient. Moreover, there may 
be confusion in the manifestation of bone metastasis and 
those non-oncological diseases including arthropathies.

To automatically detect different diseases in whole-
body SPECT scintigraphy images, in this work, we self-
define a CNN-based classification network that is able to 
determine whether and what diseases being contained 
in given images, by classifying these images into classes 
(i.e., the normal, metastatic, arthritic, and metastatic & 
arthritic). Specially, different data augmentation methods 
are used to extend the dataset for coping with the prob-
lem of limited samples of SPECT images. CNN-based 
network dSPIC is developed to first extract optimal fea-
tures from whole-body SPECT images and then classify 
these images into classes of concern. A dataset consist-
ing of a group of real-word whole-body SPECT images is 
constructed to evaluate the self-defined end-to-end clas-
sification network.

The main contributions of this work can be concluded 
as follows

•	 First, we identify the research problem of automated 
multi-disease, multi-lesion diagnosis with whole-
body SPECT images and convert the problem into 
multi-class classification of scintigraphic images. To 
the best of our knowledge, this is the first work in the 
field of multi-class classification of SPECT images. 
By contrast, existing research efforts including our 
previous work in [28] were conducted for two-class 
classification of whole-body or partial SPECT scinti-
graphic images.

•	 Second, we develop a self-defined CNN-based clas-
sification network that is able to automatically 
extract hierarchal features of lesions from images 
in an optimal way and classify the high-level fea-
tures into classes of concern. This can alleviate, to a 
great extent, the insufficient capability and unsatis-
fied performance of handcrafted features extracted 
by human researchers in the field of conventional 
machine learning-based image analysis.

•	 Last, we use a group of clinical scintigraphic images 
to evaluate the self-defined network. The experi-
mental results show that our method performs well 
on detecting diseases in whole-body SPECT scin-
tigraphic images in terms of the defined evaluation 
metrics (i.e., accuracy, precision, sensitivity, specific-
ity, F-1 score, and AUC value).

The rest of this paper is organized as follows. The used 
data of SPECT images and the self-defined network will 
be detailed in Sect. 2. Experimental evaluation conducted 

on real-world data will be provided in Sect.  3. A brief 
discussion will be provided in Sect.  4. And in Sect.  5, 
we conclude this work and point out the future research 
directions.

Methods
In this section, the used dataset of whole-body SPECT 
bone scans is outlined, followed by a description of the 
data pre-processing and the developed deep classification 
network.

Dataset
The whole-body SPECT images used in this work were 
collected from the Department of Nuclear Medicine, 
Gansu Provincial Hospital in 2018. In the process of 
examination, patients were intravenously injected with 
radionuclides 99mTc-MDP (740 MBq), which were then 
acquired after about three hours by using a Siemens 
SPECT ECAM imaging equipment outside the body of 
the patients.

Patients with bone metastasis, arthritis or both of them 
are considered in this study, consisting of 181 female 
patients and 203 male patients. Figure 1 provides the dis-
tribution of patients with respect to gender and age.

Generally, SPECT imaging process outputs two images 
(i.e., the anterior- and posterior-view image) for every 
examination and each image is stored in a DICOM 
(Digital Imaging and Communications in Medicine) file. 
The collected 768 whole-body SPECT images from 384 
patients fall into four classes of concern, i.e., the normal 
(n = 334, ≈43.5%), metastatic (n = 174, ≈22.7%), arthritic 
(n = 252, ≈32.8%), and metastatic & arthritic (n = 8, 
≈1.0%). The lesion distribution shown in Fig.  2 reveals 
that the vertebra, rib, and femur are the top three skel-
etal areas where bone metastasis frequently occurs and 
arthritis often presents in knee joint.

We can see from the lesion distribution in Fig. 2 that, 
in general, there are more than one lesion in an image. 
Moreover, eight whole-body SPECT images in the meta-
static & arthritic class include metastatic and arthritic 
lesions simultaneously. The objective of this work is to 
develop a CNN-based classification method for multi-
disease, multi-lesion diagnosis with whole-body SPECT 
images.

Overview
Figure  3 shows the overall process of automated diag-
nosis of diseases in whole-body SPECT images by using 
CNN-based classification network, consisting of two 
main stages.

•	 Stage 1: Data preprocessing including intensity nor-
malization and data augmentation is utilized to first 
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Fig. 1  Distribution of patients included in the dataset of whole-body SPECT images. a Gender; and b Age
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Fig. 2  An illustration of lesion distribution in the selected whole-body SPECT images. a Bone metastasis with 907 lesions of 182 (174 + 8) images; 
and b Arthritis with 599 lesions of 260 (252 + 8) images

Fig. 3  Overview of the proposed CNN-based SPECT image classification method consisting of data preprocessing, feature extraction and feature 
classification
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keep the acquired varying intensity of radiopharma-
ceuticals within a fixed interval and then generate 
more samples of SPECT images. This can facilitate 
the CNN-based model extract more rich features 
from ‘big data’ of samples.

•	 Stage 2: A self-defined end-to-end classification net-
work, dSPIC, extracts hierarchical features from the 
augmented data of SPECT images and classify the 
high-level features into one of the four classes, i.e., 
the normal (N), metastatic (M), arthritic (A), and 
metastatic & arthritic (M&A).

In the subsequent sections, the data processing meth-
ods and the self-defined classification network, dSPIC, 
will be elaborated.

Data preprocessing
SPECT imaging with 99mTc-MDP often demonstrates 
intensive radiopharmaceutical uptake in bone with a 
large-mineralizing surface area (e.g., spine) compared 
to the shafts of long bones [29]. As illustrated in Fig. 4, 
the large variability in intensity of radiopharmaceuticals 
makes SPECT images significantly different from the 
natural images in which the value of pixel ranges from 
0 to 255. To mitigate the effect of the varying intensity 
on feature extraction and representation, in this work, 
each DICOM file will be self-adaptively normalized to 
keep every element within a fixed interval according to 
its maximum and minimum of intensity.

For xi (1 ≤ i ≤ m × n) denoting the intensity of the i-
th element in a SPECT image with size of m × n, let x_
max (x_min) be the maximum (minimum) of intensity 

in this image, a normalized value xN can be calculated 
using the min–max normalization method as follows.

For the whole-body SPECT images used in this work, 
m = 256 and n = 1024. The normalized SPECT images are 
organized into dataset D_1. The subsequent data augmen-
tation is conducted on the samples in dataset D_1.

It is widely accepted that the classification performance 
of CNN-based models depends on the size of dataset, with 
high classification accuracy always corresponding to the 
large dataset. For that reason, we harvest more samples 
of images by augmenting dataset D_1 with the parameter 
variation and sample generation techniques. A concomi-
tant effect of data augmentation is to improve robustness of 
CNN-based model for coping with the patient-related arti-
facts during imaging.

Data augmentation using parameter variation
For a point (xi, yi) in the given image X, we can calculate its 
corresponding point (xo, yo) in the mirror counterpart XM 
according to Eq. 2.

The outputted points in images XT and XR obtained via 
translating X by ± t pixels in horizontal or vertical direction 
and rotating X by ± r degrees in left or right direction can 
be calculated according to Eqs. 3 and 4.
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Fig. 4  An illustration of the maximum of uptake intensity from all SPECT images in the original dataset
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The values for t and r mentioned above are experimen-
tally determined in this work. Now, we obtain a new aug-
mented dataset D_2 that is outlined in Table 1. We can 
see from Table 1 that all diseased classes have been aug-
mented while the normal class keeps unchanged.

Data augmentation using sample generation
Generative adversarial network (GAN) [30] as one of the 
most emerging deep learning techniques can be used to 
generate new samples with the given images. The gener-
ated samples have entirely different distribution from the 
original ones. Deep convolutional generative adversarial 
network (DCGAN) [31] is the recent innovation of GAN. 
We apply DCGAN to generate samples with images in 
dataset D_1 and organize these generated samples in 
dataset D_3 (see Table 2).

Supervised classification network dSPIC
In this work, we self-define a deep SPECT Image Clas-
sification network (dSPIC) for automated diagnosis of 
diseases of concern. Table 3 outlines the network archi-
tecture of dSPIC, consisting of seven weight layers (i.e., 
the convolutional and fully connected), one added layer, 
and one Softmax layer.

Convolutional layer
This layer uses a linear filter to produce the feature maps. 
A total of five convolutional layers are included in dSPIC, 
denoting as < kernel_size, channel_number, stride_size, 
padding_size >. The size of convolutional kernel and 
stride keeps on decreasing while the number of chan-
nel increasing except from the one of the last convolu-
tion layer. Every convolutional layer has a group of filters 
with different kernel_size. In the first convolutional layer, 
the input 256 × 1024 SPECT image is convolved with 
each filter of 11 × 11 to calculate a feature map made of 
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neurons, which is followed by a pooling layer. Since the 
local connectivity of convolutional operation, dSPIC can 
learn filters that maximally respond to a local region (e.g., 
lesions) of the input, thus exploiting the spatial local cor-
relation of the input [32]. Similarly, the subsequent con-
volutional layers take the feature maps of immediately 
previous layers as inputs to convolve with each filter.

Pooling layer
This layer completes the downsampling operation that is 
typically applied after a convolution layer. Max and aver-
age pooling are special kinds of pooling where the maxi-
mum and average value is taken, respectively. The similar 
information from the neighborhood of a receptive field 
covered by a filter will be captured through outputting a 
dominant response within this local region, enabling the 
input be invariant to geometrical distortions. Specifically, 
the max pooling is used in dSPIC to partition an input 
image or feature map into a set of sub-regions with size 
of 3 × 3, and output the maximum value for each such 
sub-region.

The added layer
We introduce attention mechanism and residual mod-
ule [33] into the network to improve dSPIC focusing 
on those more important areas (i.e., lesions) on the fea-
ture maps by considering the important information, or 
reducing the training parameters and time. As depicted 

Table 1  The augmented dataset D_2

N normal, M metastatic, A arthritic, M&A metastatic and arthritic

N M A M&A

Samples 334 520 568 80

Ratio (%) 22.3 34.6 37.8 5.3

Table 2  The augmented dataset D_3

N normal, M  metastatic, a arthritic, M&A  metastatic and arthritic

N M A M&A

Samples 334 394 472 80

Ratio (%) 26.1 30.8 36.9 6.2

Table 3  The architecture of the self-defined dSPIC network

S stride, P padding, MaxPool max pooling

Layer Configuration

Convolution 11 × 11, 96, S = 4,      P  = 2

Pooling MaxPool, 3 × 3, S = 2

Added layer Attention/residual module

Convolution 5 × 5, 256, S = 1, P  = 2

Pooling MaxPool, 3 × 3, S = 2

Convolution 3 × 3, 384, S = 1, P  = 3

Convolution 3 × 3, 384, S = 1, P = 3

Convolution 3 × 3, 256, S = 1, P = 1

Fully connected 4096

Fully connected 4096

SoftMax 3
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in Fig. 5, the attention module consists of two sequential 
sub-modules, i.e., the channel attention module and spa-
tial attention module.

The channel attention module in Fig. 5 produces a 1D 
output F′ for an input of 2D feature map F. The vector 
F′ will be fed into the spatial attention module to obtain 
a refined 2D feature map M. Formally, M is calculated 
according to Eq. 6.

where ⊗ is the element-wise multiplication; and fC and fS 
is the channel and spatial function, respectively.

In detail, the channel attention F′ = fC and spatial atten-
tion M = fS are calculated according to Eqs. 7 and 8.

where σ denotes the sigmoid function, MLP is the multi-
layer perceptron, AvgPool (MaxPool) represents the 

(6)M = fS
(

fC(F)⊗ F
)

⊗ F,

(7)
fC(F) = σ

(

MLP
(

AvgPool(F)
)

+MLP(MaxPool(F))
)

,

(8)fS(F
′) = σ

(

f 7×7
([

AvgPool(F′);MaxPool(F′)
]))

,

average (max) pooling, and f 7×7 is a convolutional opera-
tion with the kernel size of 7 × 7.

The introduced residual modules is shown in Fig.  6 
where two 3 × 3 convolutional layers and a ReLU layer 
after the first convolutional layer are added.

Given an input of 2D feature map F, the residual mod-
ule will output a 2D output R, which is mathematically 
represented as follows.

where δ is the ReLU function, and f 3 × 3 is a convolutional 
operation with the kernel size of 3 × 3.

The skip connection indicating by the identify mapping 
path in Fig. 6 enables the same output with the input, i.e., 
R = F.

Fully connected layer
A fully connected layer has a set of full connections to 
all activations in its previous layer. The activations can 
be computed with a matrix multiplication followed by a 
bias offset. There are two fully connected layers in dSPIC 
network to make non-linear combination of the selected 
features at the end of the network.

Softmax layer
The network output nodes use the Softmax function for 
the number of the unordered classes. For the case that an 
image contains the metastatic and arthritic lesions simul-
taneously, the outputs of the top-1 and -2 probability 
indicate the classes, respectively. A Softmax function is 
defined in Eq. 10.

where f (xj) is the score of the j-th output node, xj is the 
network input to j-th output node, and n is the number 
of output nodes. In fact, all of the output values f (x) are a 
probability between 0 and 1, and their sum is 1.

Furthermore, the nonlinear function used in dSPIC 
network is the ReLU (rectified liner unit) function, which 
enables dSPIC to approximate arbitrarily complex func-
tions. The input of a non-linear processing layer is the 
output of its immediate previous convolution layer. For a 
given input x, ReLU is mathematically defined as follows.

The used optimizer in dSPIC is Adam (adaptive 
moment estimation) [34], which has been proved to be 
well suited for the problems with large-size data and 

(9)R = δ

(

f 3×3
(

δ

(

f 3×3(F)

))

+ F

)

,

(10)f (xj) =
exj

∑n
i=1 e

xi
,

(11)ReLU(x) = max(0, x)

Fig. 5  The attention module used in dSPIC, consisting of a channel 
sub-module and a spatial attention sub-module

Fig. 6  The residual module used in dSPIC
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parameters like whole-body SPECT images. Adam typi-
cally performs smaller updates for the frequent param-
eters and larger updates for the infrequent parameters. 
Let θt denote the parameter vector at timestep t, Eq. 12 
provides the Adam’s update rule [34].

where α is the stepsize, ε is a constant;  
mt = β1mt–1 + (1–β1)∙gt denotes the biased first 
moment estimate, and vt = β2vt–1 + (1–β2)∙βt

2 rep-
resents the biased second raw moment estimate. 
gt ← ∇θft(θt−1) denotes the gradients with respect to 
stochastic objective at timestep t; and β1, β2 ∈ [0, 1) are 
the exponential decay rates for the moment estimates.

To examine the effect of attention module and resid-
ual module on classification performance of dSPIC, two 
classifiers dSPIC-AM (attention module) and dSPIC-
RM (residual module) will be evaluated separately in the 
experimental validation section below.

Results
In this section, we provide an experimental evaluation of 
the self-defined dSPIC network using a set of real-world 
whole-body SPECT images, which have been organized 
into three different datasets, i.e., D_1 (original dataset 
without augmentation), D_2 (augmented dataset using 
parametric variation), and D_3 (augmented dataset with 
CGAN). This section begins with an illustration of the 
SPECT image annotation.

SPECT image annotation
Labelling SPECT image to obtain ground truth plays a 
crucial role for training a reliable supervised classifier. 
However, it is a time-consuming and laborious task due 
to the inferior spatial resolution of SPECT imaging. In 
this work, we develop an annotation system based on the 
openly available online tool LabelMe released by MIT 
(http://​label​me.​csail.​mit.​edu/​Relea​se3.0/), to facilitate 
manual annotation by nuclear medicine physicians as far 
as possible.

With LabelMe-based annotation system, SPECT imag-
ing findings including the DICOM file and the textual 
diagnostic report can be imported into the system in 
advance (see Fig. 7). In the labelling process, three nuclear 
medicine physicians from Department of Nuclear Medi-
cine, Gansu Provincial Hospital who are members of our 
research group were asked to manually label areas on 
the visual presentation of DICOM file (RGB format cur-
rently used but not limited to this) with a shape tool (e.g., 

(12)θt+1 = θt − α
�mt√�vt + ε

∣

∣

∣

∣

∣

∣

∣

∣

�mt =
mt

1− βt
1

�v = vt

1− βt
2

,

polygon and rectangle) in the toolbar. The labelled area 
will be annotated with a self-defined code combined with 
the name of disease or body part. The results of manual 
annotation for all SPECT images serve as ground truth in 
the experiments and form an annotation file together to 
feed into the classifiers.

The image annotation process was performed by phy-
sicians independently according to the diagnosis report 
consisting of diagnostic description and suggested solu-
tion (see Fig. 7). If the majority of them (i.e., at least two 
of them) think that an image is abnormal (i.e., at least one 
lesion presents in it), it is labeled as a positive one; other-
wise, it is labelled as a negative image. A labeled abnor-
mal SPECT image belongs to one of the disease classes, 
i.e., the metastatic, arthritic, and metastatic & arthritic.

Experimental setup
The evaluation metrics we use are accuracy, precision, 
recall, specificity, F-1 score and AUC (Area Under ROC 
Curve). In practice, a classified SPECT image falls into 
one of the four categories:

•	 True Positive (TP), which correctly identifies an 
abnormal image as positive;

•	 False Positive (FP), which incorrectly identifies a nor-
mal image as positive;

•	 False Negative (FN), which incorrectly identifies an 
abnormal image as normal; and

•	 True Negative (TN), which correctly identifies a nor-
mal image as normal.

Accordingly, we define accuracy, precision, sensitivity, 
specificity, and F-1 score in Eqs. 13–17.

It is desirable that a classifier should have both a high 
true positive rate (TPR = Sensitivity), and a low false pos-
itive rate (FPR = 1–Specificity) simultaneously. The ROC 

(13)Accuracy = TP + TN

TP + TN + FP + FN
,

(14)Precision = TP

TP + FP
,

(15)Sensitivity = Recall = TP

TP + FN
,

(16)Specificity = TN

TN + FP
,

(17)F − 1 = 2× Precision× Sensitivity

Precision+ Sensitivity

http://labelme.csail.mit.edu/Release3.0/
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curve shows the true positive rate (y-axis) against the 
false positive rate (x-axis), and the AUC value is defined 
as the area under the ROC curve. As a statistical expla-
nation, the AUC value is equal to the probability that a 
randomly chosen positive image is ranked higher than a 
randomly chosen negative image. Therefore, the closer to 
1 the AUC value is, the higher performance the classifier 
achieves.

We divide every dataset (D_1, D_2 and D_3) into 
parts: training set and testing set, with the ratio of them 
is 7: 3. It means that we use 70% of samples in each 
dataset to train the classifiers, and the rest 30% for test-
ing the classifiers. The parameters setting can been seen 
in Table 4.

The experiments are run in Tensorflow 2.0 on an Intel 
Core i7-9700 PC with 32 GB RAM running Windows 10.

Fig. 7  An illustration of labelling SPECT image by using the developed LabelMe annotation system

Table 4  Parameters setting of the multi-class, multi-lesion deep 
classification network dSPIC

Parameter Value

Learning rate 0.0001

Optimizer Adam

Batch size 8/16

Epoch 300
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Experimental results
In this section, we first examine the impacts of the size 
of the dataset and data augmentation on classification 
performance by providing quantitative results of evalu-
ation metrics obtained by dSPIC-AM and dSPIC-RM. 
Then the classifier with the highest performance will be 
used to provide a comparative analysis between some 
classical CNN-based classification networks with the 
same dataset.

Tables  5 and 6 present the average quantitative val-
ues of the evaluation metrics obtained by dSPIC-AM 
and dSPIC-RM, respectively. On the whole, dSPIC-AM 
outperforms dSPIC-RM on classifying SPECT images 
in terms of the defined evaluation metrics. Data 

augmentation positively contributes to improving classi-
fication performance, with an increase of 8.37% (6.30%) 
for accuracy (F-1 score) metric by the classifier dSPIC-
AM. Parametric variation is more suitable for augment-
ing samples with the current dataset of SPECT images 
than the DCGAN-based sample generation technique.

We can conclude that dSPIC-AM is the highest-per-
formance classifier with the best values of all evaluation 
metrics conduced on testing samples in dataset D_2. The 
strength of dSPIC-AM can be further demonstrated by 
the training and testing performance in Fig. 8.

We further show the ability of dSPIC-AM on identify-
ing SPECT images in classes of concern by providing the 
individual values for all evaluation metrics and the confu-
sion matrix conducted on the testing samples in dataset 
D_2 in Fig. 9.

To provide a comparative analysis between dSPIC-AM 
and other deep networks, we define a group of CNN-
based classification networks including the classical 
AlexNet network [35]. The corresponding classifiers have 
the similar structures but different network depth and 
parameters from dSPIC-AM (see Table 7).

With testing samples in dataset D_2, Fig.  10 provides 
the average quantitative values of evaluation metrics 
obtained by classifiers in Table  7 and dSPIC-AM. The 
corresponding AUC values are presented in Table 8.

The confusion matrices obtained by the classifiers in 
Table  7 and dSPIC-AM are depicted in Fig.  11, further 
showing the higher performance of dSPIC-AM on clas-
sifying SPECT images in different classes.

Table 5  Average quantitative values of evaluation metrics 
obtained by the classifier dSPIC-AM

Dataset Accuracy Precision Sensitivity Specificity F-1 score

D_1 0.6910 0.7412 0.6956 0.8273 0.7230

D_2 0.7747 0.7883 0.7863 0.8820 0.7860

D_3 0.7286 0.7407 0.7528 0.8514 0.7287

Table 6  Average quantitative values of evaluation metrics 
obtained by the classifier dSPIC-RM

Dataset Accuracy Precision Sensitivity Specificity F-1 score

D_1 0.6955 0.7324 0.6978 0.8345 0.7147

D_2 0.7558 0.7437 0.7566 0.8650 0.7530

D_3 0.7389 0.7606 0.7756 0.8543 0.7680

Fig. 8  The training and testing performance of dSPIC-AM on dataset D_2. a Accuracy and loss curves obtained by training classifier; and b ROC 
curve obtained by testing classifier with a value of 0.9272 for AUC​
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Discussion
In this section, we provide a brief discussion about the 

developed CNN-based network dSPIC on automated 
multi-disease, multi-lesion classification of whole-body 
SPECT images from the following aspects.

Attention module vs. residual module
The channel and spatial attention modules used in this 
work have the potential to make CNN-based network 
focusing on the areas of interesting (i.e., lesions) in 
large-size SPECT images. More representative features 
of lesions can thus be extracted from limited samples 

of SPECT images, enabling better performance on 
classifying high-level features into classes by dSPIC-

AM. By contrast, residual operations are often used to 
reduce training time and eliminate the degradation and 
gradient vanishing problem frequently faced by deep 
networks. So, the relatively lower values of evaluation 
metrics have been achieved by dSPIC-RM. This can be 
further confirmed by the performance of classifiers in 
Table 7. As shown in Fig. 9, the classifier SI_CLF + AM 
outperforms those with residual module and even the 
classical AlexNet network.

Precision Sensitivity Specificity F-1 score
Normal 0.6639 0.7168 0.8715 0.6893
Metastatic 0.8538 0.8156 0.8950 0.8384
Arthritic 0.7333 0.7374 0.8285 0.7353
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Fig. 9  Performance of dSPIC-AM on identifying SPECT images in classes of concern with testing samples in dataset D_2. a Individual values for all 
evaluation metrics; and b Confusion matrix

Table 7  Structures of the deep networks used for comparative analysis. (MaxPool(3) = 3 × 3 pooling layer)

SI_CLF SI_CLF + AM SI_CLF + RM SI_CLF + AM + RM AlexNet

11 × 11, 64, S = 4, P = 2 11 × 11, 64, S = 4,  P = 2 11 × 11, 64, S = 4, P = 2 11 × 11, 64, S = 4, P = 2 11 × 11, 64, S = 4, P = 2

MaxPool(3), S = 2 MaxPool(3), S = 2 MaxPool(3), S = 2 MaxPool(3), S = 2 MaxPool(3), S = 2

7 × 7, 128, S = 1, P = 2 AM RM RM 5 × 5, 256, S = 1, P = 2

MaxPool(3), S = 2 7 × 7, 128, S = 1, P = 2 7 × 7, 128, S = 1, P = 2 AM MaxPool(3), S = 2

5 × 5, 128, S = 1, P = 3 MaxPool(3), S = 2 MaxPool(3), S = 2 7 × 7, 128, S = 1, P = 2 3 × 3, 384, S = 1, P = 3

3 × 3, 256, S = 1, P = 3 5 × 5, 128, S = 1, P = 3 5 × 5, 128, S = 1, P = 3 MaxPool(3), S = 2 3 × 3, 384, S = 1, P = 3

3 × 3, 256, S = 1, P = 1 3 × 3, 256, S = 1, P = 3 3 × 3, 256, S = 1, P = 3 5 × 5, 128, S = 1, P = 3 FC (1024)

MaxPool(3), S = 2 3 × 3, 256, S = 1, P = 1 3 × 3, 256, S = 1, P = 1 3 × 3, 256, S = 1, P = 3 FC (1024)

FC (1024) AM MaxPool(3), S = 2 3 × 3, 256, S = 1, P = 1 Softmax (3)

FC (1024) MaxPool(3), S = 2 FC (1024) AM

Softmax (3) FC (1024) FC (1024) MaxPool(3), S = 2

FC (1024) Softmax (3) FC (1024)

Softmax (3) FC (1024)

Softmax (3)
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SI_CLF SI_CLF+AM SI_CLF+RM SI_CLF+AM+R
M AlexNet dSPIC-AM

Accuracy 0.7389 0.7705 0.7558 0.7284 0.7368 0.7747
Precision 0.7518 0.7741 0.7503 0.7206 0.7511 0.7883
Sensitivity 0.7305 0.7758 0.7566 0.7115 0.7258 0.7863
Specificity 0.8604 0.8728 0.8650 0.8442 0.8568 0.8820
F-1 score 0.7370 0.7731 0.7530 0.7144 0.7322 0.7861
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Fig. 10  Average quantitative values of evaluation metrics obtained by classifiers in Table 7 and dSPIC on testing samples in dataset D_2

Table 8  AUC values obtained by classifiers in Table 7 and dSPIC on testing samples in dataset D_2

Classifier SI_CLF SI_CLF + AM SI_CLF + RM SI_CLF + AM + RM AlexNet dSPIC-AM

AUC​ 0.8904 0.9105 0.9088 0.8859 0.8756 0.9272

Fig. 11  Confusion matrixes obtained by classifiers in Table 7 and dSPIC-AM on testing samples in dataset D_2. a SI_CLF; b SI_CLF + AM; c SI_
CLF + RM; d SI_CLF + AM + RM; e AlexNet; and f dSPIC-AM
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Impact of dataset size on classification performance
Dataset size is considered a major concern in medical 
domain [36]. The lack of large-scale dataset brings huge 
challenge to deep learning based classification mod-
els for extracting representative features from images, 
and hence the inferior classification performance. This 
is particularly true for our classification problem. The 
proposed classifiers dSPIC-AM/RM perform better on 
the augmented datasets (i.e., D_2 and D_3) than the 
original one (i.e., D_1). Although the huge difficulty 
of collecting large-scale labeled SPECT images, more 
samples are still needed for developing high-perfor-
mance CNN-based classifiers.

Parametric variation vs. DCGAN‑based sample generation
Sample generation was commonly widely used in the 
field of the deep learning based computer vision, where 
GAN model and its variant DCGAN are the top choice 
for generating samples. The generated samples, however, 
are fake and have different distribution from the original 
ones. This is why the proposed dSPIC network performs 
relatively better on dataset D_2 in which the samples 
augmented by using parametric variation including mir-
roring, translation, and rotation operations distribute 
identically.

Automated classification vs. manual diagnosis
The experimental results for evaluation metrics demon-
strate the automated classification performance by dSPIC 
compared to physicians’ manual diagnosis results that 
are served as ground truth in the LabelMe-based image 
annotation processing. The quantitative value for accu-
racy metric in Table 5 reveals that more than 77% of the 
testing samples have been correctly classified. The overall 
performance on distinguishing images between differ-
ent classes reaches up to 78.6% (i.e., F-1 score = 0.7860). 
However, it is still a challenging task to make an accu-
rate distinction between the normal and arthritic sam-
ples according to the evaluation metrics and confusion 
matrix depicted in Fig.  9. For all misclassified samples, 
we asked a nuclear medicine physician and an oncologist 
to check them one by one and analyze the reasons that 
cause misclassification. Figure  12 provides three typical 
examples of misclassified whole-body SPECT images, 
where lesions are manifested as the rectangle areas in the 
images. Now, we present the medical explanation from 
two experts as follows:

•	 The normal variants of radiopharmaceutical uptake 
can contribute to image misinterpretation. The 
higher concentration of activity in shoulder joints, 
pelvis, and knee joints in the normal image from a 
76-year-old male patient as illustrated in Fig. 12a was 

incorrectly detected as an arthritic one. The main 
reason is that the accumulation of radiopharmaceu-
tical in bone depends on local flow, extraction effi-
ciency and degree of osteoblastic activity.

•	 It is problematic to interpret hotspots (i.e., higher 
uptake) in the vertebrae/spine since degenera-
tive diseases are often indistinguishable from bone 
metastases with only SPECT bone imaging. So, the 
metastatic lesion in thoracic vertebra as depicted in 
Fig. 12b was incorrectly identified as normal. Moreo-
ver, asymmetrical uptake should be interpreted with 
some caution. The asymmetrical lesion in the right 
hip bone in Fig.  12b was clinically interpreted as 
bone metastasis by physicians.

•	 It is precisely that the symmetrical manifestation of 
hotspots in shoulder, elbow, hip, and knee joints, the 
arthritic image in Fig.  12c was incorrectly classified 
into the normal class. This further shows the diffi-
culty of automated diagnosis of diseases with SPECT 
bone imaging. Non-oncological indications, however, 
are very common in bone scintigraphy including 
arthropathies and other bone injuries.

For low-resolution SPECT bone images, reliable auto-
mated diagnosis of diseases is still a challenging task. 
Especially, when multiple lesions of different diseases 

Fig. 12  Misclassified examples by dSPIC on testing samples in 
dataset D_2. a The normal identified as arthritis; b The metastatic 
identified as normal; and c The arthritic identified as normal
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present in an image simultaneously, it will be more and 
more intractable to identify and distinguish them accu-
rately. Figure 13 provides examples of occurrence of the 
metastatic and arthritic lesions in a single whole-body 
SPECT image. As a result, the Top-1 probability for bone 
metastasis is 0.94 and 0.79 in two images, and the Top-2 
probability is 0.05 and 0.15 indicating arthritis.

We further examine the impact of pooling operation 
on classification performance by removing two pooling 
layers from our self-defined network dSPIC in Table  4. 
The experimental evaluation conducted on the testing 

samples in dataset D_2 obtains inferior performance (see 
Table  9), showing the necessity of pooling operation in 
CNN-based SPECT image classification with small-scale 
dataset. This is because pooling has the ability to elimi-
nate overfitting by reducing the number of parameters as 
well as make the network invariant to geometric trans-
formation (e.g., transformations, distortions and transla-
tions) in the input image.

In summary, the developed network dSPIC is work-
able for automated diagnose of diseases with whole-body 
SPECT bone scintigraphy images. However, we need to 
be clear that automated disease diagnosis with the low-
resolution, large-size SPECT images is still in its infancy. 
More attention needs to be paid to improve the diagnosis 
accuracy and robustness from both the medical and tech-
nical fields, by following the potential lines of research 
below.

•	 With large-scale dataset of whole-body scinti-
graphic images, more representative features can be 
extracted from images for each kind of diseases by 
CNNs-based deep classification network. This would 
contribute to improving the ability of distinguishing 
between classes of concern.

•	 Statistical analysis conducted on large-scale data of 
scintigraphic images and pathologic findings would 
have the potential to develop a multi-modal fusion 
method, enabling higher performance for automated 
detection of diseases with whole-body bone scintig-
raphy.

Conclusions
With SPECT imaging data collected from real-world 
clinical examinations, in this work, we have developed a 
CNN-based classification network, dSPIC, to automati-
cally diagnose potential diseases without handcrafted 
features by physicians. The process of data preprocess-
ing and data augmentation has been detailed. The built 
classification network has been elaborated. Experimen-
tal evaluation conducted on real-world SPECT images 
has been presented, achieving the best average of 0.7747, 
0.7883, 0.7863, 0.8820, and 0.7860 for accuracy, preci-
sion, sensitivity, specificity, and F-1 score, respectively.

Fig. 13  Examples of the metastasis and arthritis presenting in a 
single image simultaneously, with the metastatic and arthritic lesions 
delineating by rectangle and ellipse respectively

Table 9  A comparison of the classification performance obtained by dSPIC-AM with and without pooling layers on the testing 
samples in dataset D_2

Classifer Accuracy Precision Sensitivity Specificity F-1 score AUC​

dSPIC-AM with pooling 0.7747 0.7883 0.7863 0.8820 0.7860 0.9272

dSPIC-AM without pooling 0.7558 0.7561 0.7740 0.8642 0.7649 0.9060
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In the future, we plan to extend our work in the follow-
ing directions.

First, we intend to collect more real-world SPECT 
images to comprehensively evaluate the developed deep 
network. Accordingly, optimization and improvement 
will be done for developing more robust, effective, and 
efficient diagnosis method.

Second, we attempt to develop an integrated classifica-
tion method by introducing auxiliary information (e.g., 
geometric symmetry) into the network for more reliable 
diagnosis of various diseases with whole-body SPECT 
bone scans.

Last, we plan to develop other deep networks, exclusively 
targeting at the classification task of SPECT bone images 
for enlarging the current research domain of SPECT medi-
cal image analysis.
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