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Decision making on vestibular 
schwannoma treatment: 
predictions based 
on machine‑learning analysis
Oliver Profant2, Zbyněk Bureš5*, Zuzana Balogová3, Jan Betka4, Zdeněk Fík4, 
Martin Chovanec3 & Jan Voráček1

Decision making on the treatment of vestibular schwannoma (VS) is mainly based on the symptoms, 
tumor size, patient’s preference, and experience of the medical team. Here we provide objective tools 
to support the decision process by answering two questions: can a single checkup predict the need of 
active treatment?, and which attributes of VS development are important in decision making on active 
treatment? Using a machine‑learning analysis of medical records of 93 patients, the objectives were 
addressed using two classification tasks: a time‑independent case‑based reasoning (CBR), where each 
medical record was treated as independent, and a personalized dynamic analysis (PDA), during which 
we analyzed the individual development of each patient’s state in time. Using the CBR method we 
found that Koos classification of tumor size, speech reception threshold, and pure tone audiometry, 
collectively predict the need for active treatment with approximately 90% accuracy; in the PDA 
task, only the increase of Koos classification and VS size were sufficient. Our results indicate that VS 
treatment may be reliably predicted using only a small set of basic parameters, even without the 
knowledge of individual development, which may help to simplify VS treatment strategies, reduce the 
number of examinations, and increase cause effectiveness.

Vestibular schwannoma (VS) is the most common tumor of the temporal bone. It is a benign, mostly solitary and 
slowly growing tumor that grows from the Schwann cells of the vestibular portion of the 8th cranial nerve. VS 
causes approximately 80% of the tumors of the pontocerebellar angle, and around 8–10% of intracranial  tumors1. 
The symptomatology of VS is mainly caused by the compression or destruction of the surrounding structures, 
and an obstruction in the flow of cerebrospinal fluid, and comprise mainly asymmetric hearing  loss2,3, unilateral 
 tinnitus4, or balance disorders and  cefalea5.

Basically, there are two possible approaches to a patient with a VS: a wait-and-scan (WaS) strategy during 
which the patient undergoes regular checkups with no active treatment, and an active treatment of the tumor. 
A long WaS monitoring might eventually lead to an increased tumor size and subsequent complicated opera-
tion; however if there is no VS progress, such conservative treatment is economic and harmless to the patient. 
The active treatment (surgery or radiotherapy) is more beneficial in smaller  tumors6. Although there is always 
a chance that the tumor will not grow and no intervention would be necessary, the length of postponement of 
active intervention (even with relatively small tumor growth) can worsen the  results7–9. Therefore, an untimely 
decision on active treatment might lead to poorer results and unnecessary costs.

At the initial diagnosis and during the subsequent regular checkups, a number of diagnostic variables is 
gathered. Based on these variables and their dynamics, a decision on further treatment is made. However, con-
tributions of the individual variables to the final decision may vary; furthermore, for some variables the static 
values are important, while for other variables the dynamic change is the key. Knowledge of these principles is 
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important in two ways: it could optimize the diagnostic routine by eliminating the unnecessary procedures, and 
it could support the medical teams in their decisions by providing an objective reasoning of the patient’s state.

Machine learning techniques represent a promising tool for supporting decisions in many disciplines. Statisti-
cal processing seeks quantitative identification and an explanation of relationships among variables, however, 
the precision and reliability of the statistical description strongly depends on a priori assumptions and the size 
of the data sample. This is particularly limiting when it comes to multidimensional data. The approach of arti-
ficial intelligence (to which the machine learning belongs) can overcome these limitations by building a model 
using known training data, which is subsequently validated using validation data. This model is then utilizable 
for making predictions or decisions; its performance (correctness of its decisions or predictions) can be further 
assessed by testing data that were not available to the model during the learning phase.

The aim of this study was to address the following questions: (1) can a single examination (for example, the 
initial checkup at the time of VS diagnosis) reliably predict the need for active treatment? (2) If so, what are the 
diagnostic variables and their values that can lead to such a prediction? (3) When evaluating the dynamics of 
the patient’s state, which changes of which variables are the most important ones for the decision on further 
treatment? We address these issues using machine-learning methods of data  classification10, which is a promis-
ing analytical tool particularly in situations when the classical statistical processing is not suitable, e.g., due to 
extensive data dimensionality, insufficient size of the data sample, or when the necessary a priori assumptions are 
not met. We approach the problem from two viewpoints. First, we treat each checkup record as an independent 
entity and analyze which checkups resulted in a decision of active treatment (the so called case-based reason-
ing, CBR). Second, we take into account the dynamic changes of all the diagnostic variables of each patient and 
look for those dynamic changes that best characterize the actively treated patients (the so called personalized 
dynamic analysis, PDA). Data sets for both problems were processed with supervised machine learning meth-
ods to identify and justify the most reliable predictors of VS treatment. In both tasks, we seek the minimum set 
of variables (features) along with their values (static or dynamic), that lead to the most reliable prediction of 
active treatment. As a result, we present for each task a black-box automated classifier that predicts the active 
treatment when provided with the appropriate data, and also a transparent set of rules based on a decision tree. 
An overview of the methodology is shown in Fig. 1. It is important to note that our conclusions were derived 
entirely from a strictly cleaned data set, which contained no subjective or methodological assumptions that could 
possibly affect the discovered information. Such unbiased resulting structures can serve as a ground truth, either 
for subsequent expert evaluations or for the comparison of results with more knowledge-intensive approaches, 
including statistics.

Methods
We present the results of a semi-supervised analysis of 388 medical records, characterizing the wait-and-scan 
(WaS) phase of vestibular schwannoma development for 93 individually followed VS patients. Our group of 
patients was selected from approximately 400 patients with diagnosed VS, examined at the Department of Oto-
rhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University, University Hospital 
Motol between 2012 and 2018. The main input criterion was the selection for the WaS protocol based on the 
initial examination. The original set of source diagnostic variables was cleaned and restructured.

Data acquisition. Diagnostic data were obtained at the Department of Otorhinolaryngology and Head and 
Neck Surgery, 1st Faculty of Medicine, Charles University, University Hospital Motol, between 2012 and 2018. 
The examination procedures, and the informed consent, were approved by the Ethics Committee of the Univer-
sity Hospital Motol, in Prague. All the participants provided their written informed consent to participate in this 
study; signed written consents are stored at the Department. All procedures were performed in accordance with 
relevant guidelines and regulations and with the Declaration of Helsinki.

Figure 1.  An outsketch of the methodological process used in the analysis. After cleaning the data, the problem 
was solved in two parallel tasks (CBR and PDA). Using several feature selection methods followed by expert 
evaluation, the most important predictors of active VS treatment were identified. The identified set of predictors 
was processed by several classification methods to create models capable of predicting the active VS treatment 
based on the predictor values. The performance of the models was analyzed using various performance metrics.
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Data characteristics. The original data set included 388 records of 93 patients (55 females, 38 males; age 
median 59 years, 44 left-sided VS, 49 right-sided VS). For the 53 patients who were retained in the wait-and-scan 
regime, the median duration of the overall investigation period was 51 months inclusive of 5 checkups. Within 
the actively treated group, the median duration of the wait-and-scan regime lasted 37 months and required 3 
checkups.

The raw data obtained by commonly used diagnostic techniques were organized in a table, where each row 
represented a single diagnostic checkup which either resulted in active treatment or not, and where columns 
corresponded to diagnostic variables as follows:

• Pure tone audiometry [PTA (dB)]—pure-tone hearing thresholds measured separately for each ear at eight 
frequencies from 0.25 to 8 kHz in attenuated chamber,

• Speech audiometry (measured in the diseased ear in attenuated chamber)—Speech reception threshold [SRT 
(dB)], Speech discrimination score [SDS (%)], Maximum discrimination level [MDL (dB)], and Maximum 
discrimination ratio [MDR (%)],

• Magnetic resonance imaging-based descriptors (the size was evaluated on T2-weighted MRI):

o Size of VS: maximal 1D size [mm],
o Koos grading (Class 1–4).

• Derived row-based metrics for CBR, calculated from PTAs separately for each ear, and separately for two 
frequency ranges (full—whole set of frequencies up to 8 kHz, and basic—only frequencies up to 4 kHz):

o average PTA in dB, denoted as  PTAXARn where X can either be VS (diseased ear) or H (healthy ear), and 
n is either 8 (full range) or 4 (basic range); for example,  PTAVSAR8 is the average PTA of the diseased 
ear computed from frequencies up to 8 kHz,

o slope and intercept of linear fit of pure-tone thresholds in dB, denoted as  PTAXSRn and  PTAXIRn, 
respectively

o difference of average PTA between the two ears, denoted as  PTADAR4 or  PTADAR8.
o The resultant data set had 184 38-dimensional records.

• Derived column-based metrics for PDA, calculated from time-dependent changes of selected variables 
(including the row-based ones) separately for each patient:

o average, denoted as var_AC, where var is the variable from which the column-based average is com-
puted,

o slope, denoted as var_SC, for example  PTADAR4_SC stands for time-dependent slope of the inter-ear 
difference of average PTA computed over the basic frequency range,

o intercept, denoted as var_IC,
o last and total differences, denoted as var_LC and var_TD, respectively.
o The resultant data set had 42 24-dimensional records.

Several other functions were examined in the patients (auditory brainstem response (ABR), otoacoustic emis-
sions (OAE), vestibular function), however, they were either not recordable (ABR, OAE) or were not consistently 
provided over the course of time, therefore they were excluded from the current analysis.

Subjective characteristics of the patients, such as vertigo or tinnitus, were also gathered but were not included 
in the current analyses. The current study was designed as entirely non-parametric and data-driven; therefore 
to avoid any possible subjectivity we purposely suppressed the influence of non-deterministic factors, includ-
ing the patients’ subjective characteristics. For the same reason, all incomplete records were removed instead of 
artificially imputing the missing values. Additionally the phase of data transformation was omitted, as it usually 
leads to the normalization or equalization of data distributions. Although our restrictions caused the loss of some 
information, this approach avoids unjustified biases, is fully repeatable and extendable, and as such represents 
a core baseline model, which can later serve as a reliable benchmarking etalon for comparison with alternative 
ways of processing; namely including traditional parametric statistical techniques.

Data processing—general. The applied methodology follows the general Knowledge Discovery in Data-
bases process, introduced  in11  or12. The data were processed with supervised, internally transparent machine 
learning methods as follows:

• No a priori assumptions concerning the cumulative characteristics of data were made, so the presented results 
are not biased by any artificial modifications, like imputations or transformations.

• Only complete records were selected for further processing.
• Two complementary approaches: (1) static, anonymized CBR, and (2) personalized PDA, were applied to 

discover knowledge hidden in a multi-dimensional space.
• CBR assigns single medical records (rows) to the binary target decisions on the treatment (WaS/active), it 

considers neither the characteristics of individual patients, nor their history of VS progress.
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• PDA also performs binary classification, but works with the temporal courses of selected variables taken from 
the complete WaS checkup history of single patients. Thus, every processed sample summarizes the complete 
column-wise WaS history of the given patient.

• An interactive reduction of dimensionality (feature selection) preserving the meaning and relations among 
the original variables was performed, to exclude the less significant features, and simplify the problem and 
increase the generalization capabilities of the resulting structures.

• The data for all supervised learning tasks were equally balanced with respect to the target, and randomly 
divided into the training, validation, and test sets in the proportion 50:30:20. The first two partitions were 
used for learning and optimization of the desired type of discrimination function, the last subset contained 
unseen data and served for the numeric evaluation of classification performance.

The supervised elimination of redundant features. An initial reduction of dimensionality was per-
formed in all classification tasks, using the five below-listed techniques implemented with the StatExplore, HP 
Random Forest, Gradient Boosting, Variable Selection and HP Variable Selection nodes of SAS Enterprise Miner:

(1) Decision or classification  tree13–15 with Chi-square  split16.
(2) Random  forest17,18 with the Gini impurity index G19,20 as the node splitting metrics.
(3) Gradient  boosting21,22 using Gini impurity index for updating the decision tree.
(4) Logistic  regression23–25 with respect to the target class, applied to the results of forward stepwise  regression26 

of a gradually reduced set of pairwise (R-squared)  correlations27.
(5) Least absolute shrinkage and selection operator (LASSO)28,29.

In addition to these algorithms, an expert (manual) selection of the most significant features was performed, 
which is also the main output from the knowledge elicitation phase. At the end of this iterative process, we 
proposed the minimal set of variables efficiently characterizing the analyzed problem, based on the outputs of 
the previous five algorithmic methods. The primary criterion for selection of a given variable was its occurrence 
among the best ten candidates, which must be either greater or equal to 3, or its average ranking lower or equal 
to 5. Perspective combinations of such preliminarily selected candidates were interactively analyzed, to eliminate 
the least significant members and maximize the credibility of the discovered knowledge.

Supervised learning and classification. In the classification stage we used the following techniques:

(1) Decision tree, random forest, gradient boosting and logistic regression, all referred to in the previous sec-
tion.

(2) Support vector machine with radial basis function  kernel30–32.
(3) Feed-forward neural  network33,34.

The optimal classifier was selected as the best performing combination of the six feature selection techniques 
given in the previous section (logistic regression, decision tree, random forest, gradient boosting, LASSO, and 
interactive expert selection) with the six types of classifiers given here.

Performance metrics. To evaluate classification performance, several indicators were used:

• Accuracy (ACC)—the rate of correct classification for the evaluated data set:

where TP is the true positive, TN is the true negative, FP is the false positive, FN is the false negative, P is the  all 
real positive (P = TP + FN), N is the all real negative (N = TN + FP) cases.

• Sensitivity (also recall or true positive rate, TPR)—the ability to correctly classify TP cases:

• Specificity (also selectivity or true negative rate, TNR)—the ability to correctly classify TN cases:

• Precision (also positive predictive value, PPV)—the rate that the predicted positive is TP:

• Area under the Receiver operating characteristic curve (AUC)35,36. Practically applicable classifiers should 
have AUC > 0.6, while AUC > 0.9 indicates an excellent performance.

ACC =
TP + TN

TP + TN + FP + FN
=

TP + TN

P + N

TPR =
TP

TP + FN
=

TP

P

TNR =
TN

TN + FP
=

TN

N

PPV =
TP

TP + FP
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• Average square error (ASE)—squared metric difference between the target and continuous output of the 
discrimination function, divided by the number of samples.

Results
The general diagnostic data of the patients included in the analysis are illustrated in Fig. 2. These graphs show the 
number of subjects having a certain result of ABR and distortion products of OAE (DPOAE) examinations, as 
well as subjective characteristics such as hypacusis or tinnitus. Figure 3A depicts averaged audiograms recorded 
from both healthy and VS ears during the initial examination, plus the average audiogram of the diseased ears 
recorded immediately before the change from wait-and-scan to active treatment. Figure 3B shows the histo-
gram of Koos grades recorded during the initial examination in wait-and-scan patients, patients who were later 
changed to active treatment, and in the actively treated patients recorded immediately before the change from 
wait-and-scan to active treatment.

The section below summarizes the results of the two interrelated analytic phases, dimensionality reduction 
including knowledge extraction, and supervised learning for both CBR and PDA experiments.

CBR—dimensionality reduction and knowledge extraction. The output of this method is a set of 
the most important diagnostic characteristics (variables) along with their significant values. The method aims to 
provide a transparent set of rules which, using the values of the selected variables, can simply be used generally 
to support the decision on VS treatment.

Initially, the dimensionality of the full set of CBR variables was reduced with five algorithmic methods (see 
Table 1). Each of the methods provided 10 variables, rated as the most important for the prediction of VS treat-
ment. Using the variables suggested by the algorithmic methods we manually performed an expert ranking, 
resulting in an initial version of a reduced set of variables (denoted as  CBREXPINI). By interactive minimizations 
of this initial set we finally proposed a minimum set of variables  (CBREXPFIN), necessary for the reliable predic-
tion of VS treatment. Table 2 shows the performance for different sets of variables; it is obvious that the removal 
of unnecessary variables actually improves the prediction accuracy, and furthermore, the output generated by 
the expertly found features is comparable with the average performance of the three best automated supervised 
classifiers and feature selectors marked as  CBRCLASS (see Tables 5 and 6 in the next section). In addition, Table 2 
presents the quality of adaptation on known samples (an average of performance on training and validation data).

Figure 2.  Diagnostic data of the patients included in the analysis. The bars represent the number of subjects 
having a certain characteristic. N/A not available; n ABR/DPOAE response not present; p ABR/DPOAE 
response present; r ABR with signs of retrocochlear lesion; l ABR with prolonged latencies. Yes +  annoying 
tinnitus. Gray bars—actively treated patients; white bars—wait-and-scan patients.

Figure 3.  Hearing thresholds and tumor sizes of the patients included in the analysis. (A) Average audiograms 
recorded in the healthy and diseased ears in wait-and-scan patients and in the patients later changed to active 
treatment during the initial examination, plus the average audiogram of the diseased ear in the actively treated 
subjects recorded immediately before the change from wait-and-scan to active treatment. (B) Histogram of 
Koos grades identified in the actively treated and wait-and-scan patients during the initial examination, and in 
the actively treated subjects recorded immediately before the change from wait-and-scan to active treatment, the 
bars represent numbers of subjects having a certain Koos grade.
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Based on the aforementioned findings, we can claim that knowledge of the Koos classification, SRT, and three 
PTA-derived variables, provides sufficient information for a reliable VS surgery decision; even in the case of a 
single medical checkup. Therefore it may be feasible to exclude clinical tests of the less significant features, which 
can make the daily diagnostic routine faster and cheaper.

Using the individual variable values, it is now possible to decide whether to perform active treatment (Yes 
decision) or not (No decision). An important question is what the boundary values of the variables are, i.e., at 
which level each variable switches the decision from No to Yes. The answer, however, is not unique because the 
selected features can be assigned into numerous structurally different solutions with comparable performances. 
One possible solution is given in Fig. 4, and in detail in Table 3. By traversing this binary decision tree according 
to the rules, we finally arrive at the decision in the leaves; decision accuracy in the leaf nodes is approximately 
80%. The ability of the decision tree to also handle missing (N/A) values is yet another advantage of this tech-
nique. An example of several CBR records taken from our data and the corresponding decisions is shown in 
Table 4.

These experimental results confirmed the applicability of the variable set  CBREXPFIN for the reliable predic-
tions of VS surgery. The presented structural representation (i.e., the decision tree in Fig. 4) can help practitioners 
in a more informed analysis of diagnostic results.

CBR—supervised learning. The previous method gave a transparent set of significant variables and their 
values that can be directly used for the prediction or decision on VS treatment. However, its result is generally 
ambiguous; furthermore, our intention to minimize the variable set as much as possible might lead to a certain 
loss of accuracy. For such reasons, we also decided to create a black-box-like solution based on an automated fea-
ture selector followed by a classifier. We identified and parametrized perspective combinations of the six feature 
selectors with six classifiers. As in the previous method, the CBR data set was split into the training, validation, 
and test partitions, and batch processed for all the 36 combinations of feature selectors and classifiers. The results 
of classification accuracy are summarized in Table 5.

Table 5 shows that the gradient boosting algorithm is on average the best performing algorithm for both data 
processing phases (i.e., it works the best both as a feature selector and as a classifier). The globally best result 
was generated by its combination with neural network (89%). The performance of the fixed expert selection of 
variables in the  CBREXPFIN set is also remarkable, particularly when followed by a gradient boosting classifier.

Full results of the three best performing combinations are shown in Table 6, the corresponding Receiver 
operating characteristic (ROC) curves are depicted in Fig. 5. The slightly worse performance for the train and 

Table 1.  Predictors, extracted from CBR data, ordered according to their significance for applied 
dimensionality reduction method. Irrelevant variables were rejected from expert selection. Variables and 
metrics are expressed as follows (see “Methods”): (a) suffix 4 holds for the basic frequency range, suffix 8 holds 
for the full frequency range; (b) subscripts H and VS hold for the healthy or diseased ear, respectively, subscript 
D holds for the difference of averaged PTA values between the two ears; (c) tailing abbreviations have the 
following meaning: AR average row wise, IR intercept row wise, SR slope row wise.

Ord Decision tree Random forest
Gradient 
boosting

Logistic 
regression LASSO

Expert selection  (CBREXP)

Initial Num Avg Final

1 PTAVSSR8 Koos Koos Koos Koos Koos 5 1.2 Koos

2 Koos PTAVSSR8 PTAVSSR8 Size PTAHSR8 SRT 5 3.8 SRT

3 PTADAR4 SRT PTAHSR8 SRT Size PTAVSSR8 4 3.3 PTAVSSR8

4 SRT PTAVSAR4 SRT PTAVS0.25 PTAVSSR4 PTAHSR8 4 4.0 PTAHSR8

5 PTAHSR8 PTAVS3 Size PTAH8 SRT Size 4 5.0 -

6 PTAVSSR4 PTAHSR8 PTAVSIR8 PTAH0.5 PTAHIR8 PTAVSSR4 3 5.7 -

7 PTADAR8 PTAVSSR4 PTADAR4 PTAH2 SDS PTAVS0.25 3 7.0 -

8 PTAHIR8 PTAVS0.25 PTADAR8 PTAVS6 PTAVSSR8 PTAHIR8 3 7.7 -

9 PTAVS3 MDL PTAHIR8 PTAVS8 PTAVS0.25 PTADAR4 2 5.0 PTADAR4

10 Size PTAH8 PTAVS1 SDS MDR - - - -

Table 2.  Performance of gradually reduced expert set of variables for CBR data.

Variables Train and validation (AVG, %) Test (%)

Set Number ACC PPV TPR TNR AUC ASE ACC PPV TPR TNR AUC ASE

CBR 38 78 75 84 72 87 15 72 69 79 65 81 19

CBREXPINI 9 82 79 88 76 84 15 76 72 83 69 76 19

CBREXPFIN 5 84 81 90 78 88 14 81 78 88 74 78 17

CBRCLASS 38 86 84 91 82 92 11 88 85 93 82 87 12
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validation set, in comparison with the test set, was caused by a larger validation error. However, as the key 
performance indicator was behavior for unknown test data, we accepted this local decrease which was mainly 
caused by a small number of learning samples in comparison with the number of significant variables. Regard-
less, Table 6 shows that the absolute test accuracies, as well as biases and variances of the winning combinations, 
are sufficient for daily use.

To compare the results obtained from the traditional, two-stage processing with those obtained from a 
complementary one-shot algorithm, we processed the full CBR dataset with the Deep learning algorithm. A set 
of experiments employing this modern technique was performed on a fully connected thee-layered network. 
The layers included 38, 76, and 2 neurons with the rectified linear activation function. The network was trained 
with gradient descend back-propagation method. Such paradigm resulted in the following best performance:

Figure 4.  CBR decision tree. A decision tree for  CBREXPFIN variables, applied on CBR data.

Table 3.  Tabular representation of a decision tree for  CBREXPFIN variables, applied on CBR data.

Node ID Samples Node rule No Yes

1 184 PTAVSSR8 ≥ 2,3 or N/A 2 3

2 61 SRT ≥ 27.5 or N/A 4 5

3 123 PTAHSR8 ≥ 6.7 6 7

4 9 No

5 52 Yes

6 86 PTADAR4 ≥ 18.1 or N/A 8 9

7 37 No

8 17 Yes

9 69 PTAVSSR8 ≥ 7.1 10 11

10 39 No

11 30 Koos = 2 12 13

12 18 No

13 12 Yes
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Table 4.  Inferences for selected sample CBR records using a decision tree learned from  CBREXPFIN variables.

ID Koos SRT PTAVSSR8 PTAHSR8 PTADAR4 Real target Nodes visited Prediction

1 1 57 11.3 1.3 28.8 No 1, 3, 6, 9, 11, 12 No

2 1 30 4.7 0.2 5.0 Yes 1, 3, 6, 8 Yes

3 2 110 10.7 7.6 43.8 No 1, 3, 7 No

4 2 37 2.1 0.1 16.3 Yes 1, 2, 5 Yes

5 3 60 4.6 9.8 17.5 No 1, 3, 7 No

6 3 110 2.1 3.3 26.3 Yes 1, 2, 5 Yes

7 4 110 5.2 2.3 68.8 No 1, 3, 6, 9, 10 No

8 4 110 0 3.0 98.8 Yes 1, 2, 5 Yes

Table 5.  Performance of applied combinations of dimensionality reduction and classification techniques on 
test set for CBR and  CBREXPFIN data.

Feature selection 
method

Classification accuracy (ACC) for test set (%)

Decision tree Rand. Forest
Gradient 
boosting

Logistic 
regression

Supp. vect. 
machine Neural network Avg

Decision tree 
(CBR) 76 79 84 82 79 76 79

Random forest 
(CBR) 76 79 87 76 76 68 77

Gradient boosting 
(CBR) 84 82 86 84 76 89 84

Logistic regression 
(CBR) 67 78 68 86 83 85 78

LASSO (CBR) 74 79 79 76 74 82 77

Expert 
 (CBREXPFIN) 76 76 87 79 76 74 78

Avg 76 79 82 81 77 79 79

Table 6.  Detailed metrics for the three best performing classifiers for CBR data.

Classification (feature selection)

Train and validation (avg, %) Test (%)

ACC PPV TPR TNR AUC ASE ACC PPV TPR TNR AUC ASE

Neural network (Gradient boosting) 84 82 88 80 93 10 89 87 93 85 92 8

Gradient boosting  (CBREXPFIN) 84 81 89 79 89 13 87 84 94 80 86 15

Gradient boosting (random forest) 91 89 96 86 94 10 87 84 93 81 84 14

Figure 5.  Receiver operating characteristic (ROC) curves of the three best performing classifiers for CBR data. 
(A) Averaged ROC curves of training and validation sets, (B) ROC curves for the test sets.
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which is slightly worse than performance of classifiers with separate feature selection and classification stages. 
This result was partially determined by low cardinality of the processed dataset, as the Deep learning approach 
is suitable particularly for processing of extensive multidimensional datasets.

PDA—dimensionality reduction and knowledge extraction. While the CBR data set and the cor-
responding methods generated their predictions based only on a single medical checkup, the PDA data set takes 
into account the individual history of checkups for each patient. It is evident that the time-dependent develop-
ment of diagnostic variable values may bring important information into the decision process. Therefore, we also 
repeated the same ranking and specification procedures described for the CBR data set for the PDA data set, in 
order to minimize the number of input variables and to obtain a transparent set of decision rules. The variables 
suggested by the feature selectors and the structure of the resulting expert set  (PDAEXP) are shown in Table 7. 
Table 8 shows the detailed performance metrics of the gradually optimized variable set. As with the CBR data set, 
in this case we also see the positive effect of the lower number of inputs on the overall performance and primary 
role of size-oriented VS metrics.

The decision tree constructed from the  PDAEXPFIN variable set naturally suppressed both the PTA-related 
indicators, as is shown in Fig. 6 and Table 9. The result can be simply interpreted: if there is any change in Koos 
classification from the previous checkup, surgery is recommended. If the Koos class remains unchanged, the 
Size growth is checked and if the trend is positive, surgery is indicated. Generally, both identified variables are so 
significant that no other diagnostic procedures are necessary (neither the expertly identified PTA). Regardless, 
if they were performed, the results can enhance the existing CBR knowledge base.

PDA—supervised learning. Supervised PDA experiments suffered from the low number of samples and, 
consequently, the small size of the test set. Although this fact was efficiently compensated with the inherent 
dominancy of both the size-related variables, test classification outputs were discretized into several levels, as 
obvious from Table 10. The overall weaker performance of the interactively selected set of features  PDAEXPFIN 
was caused by its fixed and relatively wide structure in comparison with the other dimensionality reduction tech-

ACC = 82%, PPV = 78%,TPR = 89%,TNR = 75%,AUC = 88%,ASE = 13%

Table 7.  Predictors, extracted from PDA data set, ordered according to their significance for each 
dimensionality reduction method. Irrelevant variables were rejected from expert selection. Variables and 
metrics are expressed as follows (see “Methods”): (a) suffix 4 holds for the basic frequency range, suffix 8 holds 
for the full frequency range; (b) subscripts H and VS hold for the healthy or diseased ear, respectively, subscript 
D holds for the difference of averaged PTA values between the two ears; (c) tailing abbreviations have the 
following meaning: AR average row wise, IR intercept row wise, SR slope row wise, AC average column wise, IC 
intercept column wise, SC slope column wise, LD last difference, TD total difference.

Ord Decision tree
Random 
forest

Gradient 
boosting

Logistic 
regression LASSO

Expert selection  (PDAEXP)

Initial Num Avg Final

1 Size_LD Size_LD Koos_LD Size_LD Koos_LD Koos_LD 5 2 Koos_LD

2 Koos_LD Koos_LD Size_SC PTAVSAR4_SC PTADAR4_IC Size_LD 4 1.5 -

3 Size_AC Size_SC Size_LD Size_SC SRT_IC Size_SC 4 4.5 Size_SC

4 PTAVSAR4_AC SRT_LD PTAVSSC4 Koos_LD SRT_LD Koos_TD 3 6.7 -

5 Koos_TD Koos_TD SRT_SC PTADAR8_SC PTAVSAR8_IC PTADAR4_SC 3 7.7 PTADAR4_SC

6 PTAVSAR8_AC PTAVSAR8_IC PTAVSAR8_SC PTAVSAR8_SC PTADAR8_LD PTAVSAR4_SC 3 5.3 PTAVSAR4_SC

7 PTADAR8_IC PTADAR4_SC PTAVSAR4_LD PTAVSAR8_SC PTADAR8_IC PTADAR8_IC 3 7.7 –

8 PTADAR4_SC PTADAR4_LD PTADAR8_SC PTADAR4_SC PTAVSAR4_IC Size_AC 3 7.3 –

9 SRT_AC PTADAR8_AC PTADAR8_LD PTADAR8_IC Size_AC – – – –

10 Size_SC PTAVSAR4_SC Size_AC Koos_TD PTAVSAR4_
AC – – – –

Table 8.  Performance of gradually reduced set of variables for the PDA data set.

Variables Train and validation (Avg, %) Test (%)

Set Number ACC PPV TPR TNR AUC ASE ACC PPV TPR TNR AUC ASE

PDA 24 87 84 92 82 88 12 82 79 89 75 81 16

PDAEXPINI 8 87 84 92 82 88 12 82 79 89 75 81 16

PDAEXPFIN 4 87 85 92 82 90 11 82 79 89 75 81 16

PDACLASS 24 85 82 91 79 83 14 90 88 95 86 100 10
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niques. In this specific situation, LASSO algorithm demonstrated the best average feature selection capabilities 
and its main component, logistic regression, as one of the most powerful classification algorithms on a global 
scale. Such conclusions correspond with the general knowledge concerning the classification of over-determined 
binary  targets37, and were also confirmed with the detailed characteristics of the best performing algorithms 
for the PDA task, presented in Table 11. Accordingly, the PDA data analysis confirmed the statement that the 
interim growth of VS itself, is the strongest and sufficient predictor of VS surgery.

Discussion
Over recent years, several studies have addressed the possibility of predicting VS growth, or a change from a 
conservative to an active  treatment38–48. Their outcomes are, however, ambiguous; some studies are inconclusive 
or fail to find any significant predictor of VS  growth38,45. The majority of the previous results state that the tumor 
size and also the degree of vestibular disorder are the key variables which influence the switch from conservative 
to active treatment. The above mentioned studies mostly analyzed the individual progress of symptoms, i.e., they 
worked in a manner similar to our PDA. Two studies specifically tested the hypothesis that VS growth could 
be predicted by the available data at diagnosis (i.e., the approach similar to our CBR); the study of Herwadker 

Figure 6.  PDA decision tree. A decision tree for  PDAEXPFIN variables, applied on PDA data.

Table 9.  Tabular representation of a decision tree for  PDAEXPFIN data set.

Node ID Samples Node rule Yes No

1 42 Koos_LD < 0.01 2 3

2 31 Size_SC < 0.006 4 5

3 11 Yes

4 24 No

5 7 Yes

Table 10.  Performance of applied combinations of dimensionality reduction and classification techniques on 
test set for PDA and  PDAEXPFIN data.

Feature selection 
method

Classification accuracy (ACC) for test set (%)

Decision tree Rand forest
Gradient 
boosting

Logistic 
regression

Supp. vect. 
machine Neural network Avg

Decision tree 
(PDA) 80 80 80 90 80 70 80

Random forest 
(PDA) 80 70 80 70 90 70 77

Gradient boosting 
(PDA 80 80 80 90 80 80 82

Logistic regression 
(PDA) 80 60 80 80 90 90 80

LASSO (PDA) 90 90 90 90 80 90 88

Expert 
 (PDAEXPFIN) 79 79 79 63 63 68 72

Avg 82 77 82 81 81 78 80
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et al.49 found no significant predictors, while Wolbers et al.50 identified the long duration of hearing loss and 
intracanalicular localization of the tumor as the main predictors of a non-growing VS.

Here we present a novel approach to this issue which uses semi-supervised machine-learning techniques 
to create, parametrize, and evaluate four different models for the prediction of active treatment of vestibular 
schwannoma:

(1) CBR—prediction from static variables

a. automated black-box classifier providing predictions given the input data
b. transparent set of rules (a decision tree) to support the decision on VS treatment

(2) PDA—prediction from dynamic variables

a. automated black-box classifier providing predictions given the input data
b. transparent set of rules (a decision tree) to support the decision on VS treatment

The models were trained, validated, and tested using different subsets of the source data, which means that 
their performances (accuracy etc.) represent realistic values obtained with unknown data. In the applied meth-
ods, we concentrated on preservation of the original meaning of the individual attributes so that they remain 
transparent and interpretable during the entire classification process. This means that we used no multiplicative 
or other nonlinear transformations, but we instead employed only generalized linear models (LASSO, logistic 
regression, decision tree) and generalized (random) additive models, represented with the gradient boosting and 
random forest approaches. Although the latter two approaches are internally non-transparent, they still work 
with the original meaning of attributes.

The major findings state that using a simple decision tree it is possible to predict VS treatment, even from 
the static values of a few basic variables (Koos classification, speech reception threshold, and pure tone audiom-
etry), with approximately 80% accuracy. Ultimately a higher accuracy (89%) can be achieved using a black-box 
classifier on the static data. From the dynamic point of view, we found that VS treatment can be predicted using 
dynamics of solely size-oriented variables (Koos classification and 1D size), both with a decision tree and with 
the black-box classifier. The prediction accuracy is slightly higher than that of the CBR approach.

Besides the provided prediction mechanisms alone, our analyses also indicate that only pure-tone hearing 
thresholds in both ears, speech reception threshold in the diseased ear, and Koos classification, are necessary 
at the first checkup (these variables are used in the static predictions); while during the subsequent follow-up, 
mainly the size-derived metrics and their dynamics play a role in the decision process. These findings might help 
to make the procedures related to the monitoring and treatment of VS patients more time- and cost-efficient, by 
eliminating the unnecessary measurements.

Supervised feature selection. The selection of the most important variables is essential in classification 
tasks where the number of available samples is comparable with the number of input variables, as over-fitted 
structures are characterized by the poor classification of unknown samples and low generalization  ability51–54. 
Considering that both CBR and PDA tasks belong to this category, an initial reduction of dimensionality was 
unavoidable. Employing the outputs of five dimensionality reduction techniques, we manually performed an 
expert selection of the most significant features. We believe that the final selection, numerically over-performing 
the initial configuration, optimally characterizes the key diagnostic symptoms, based on which the reliable VS 
surgery decision can be made at the very earliest.

Supervised learning and classification. The supervision in learning lies in the fact that the searched dis-
crimination function is built from samples with a-priori known output membership. In contrast to the dimen-
sionality reduction, internal interpretability of the learned classifier is not required, which results in a black-
box-like nature. The previously introduced tree and regression-based techniques were re-used for the selection 
of significant variables but, as opposed to the manual interpretation of their results, performed in the feature 
selection process; this first stage was followed here by a learned classification algorithm.

The main mission of the classification task is the best performing inference, i.e. an accurate assignment of 
real-world clinical data to the predefined classes (in our case, wait-and-scan versus active treatment). Such 
black-box-like solutions are widely accepted in practice nowadays, especially in connection with deep learning 
 applications55. Moreover, the user can still interact, even with the nontransparent classifies, and analyze their 

Table 11.  Detailed metrics for three best performing classifiers on PDA data set.

Classification (feature selection)

Train and validation (avg, %) Test (%)

ACC PPV TPR TNR AUC ASE ACC PPV TPR TNR AUC ASE

Neural network (logistic regression) 85 82 91 79 88 14 90 88 95 86 100 10

Logistic regression (decision tree) 85 82 91 79 81 14 90 88 95 86 100 10

Logistic regression (gradient boosting) 85 82 91 79 80 15 90 88 95 86 100 10
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responses by manually adjusted inputs. An optimal classifier was selected as the best performing combination 
of a feature selection technique with a learned classifier. For the CBR data, it was found to be the combination of 
gradient boosting and a neural network; in the case of the PDA data set, the optimal performance was achieved 
using combinations of a logistic regression/neural network, or decision tree/logistic regression, or gradient 
boosting/logistic regression.

Potential limitations of our study and future directions. We are aware of the potential limitations of 
our study. Firstly, although we have assembled a relatively large amount of data from our participants, the final 
cleaned set contained a smaller number of records due to inconsistency in examination over the years (especially 
in the cases of ABR and OAE, as they were often not present during the initial examination), and unavailability 
of some variables in some of the records. A lower number of records may cause a decreased performance of the 
model, yet it avoids biases resulting from the usage of incomplete or potentially incorrect data. In the current 
analyses, we primarily focused on audiometric data, although information about potential vestibular pathology 
could be added to the decision making process in the future. Secondly, we omitted the patients’ subjective input 
to avoid any subjectivity in the data set; however, our clinical experience shows that the subjective worsening of 
symptoms (that does not necessarily match the objective measurements) might be a strong factor influencing the 
decision about further VS treatment. Thirdly, our approach to the VS treatment is not purely based on objective 
measures, but also on the patients’ preference and expectations, and also on the surgeons’ experience and skill 
level; therefore the presented model is not expected to replace those inputs, but to support the decision making 
in deciding whether to directly opt for surgery or wait and scan.

Based on our results the future perspectives of our research using the supervised machine learning approach 
will be the inclusion of not only audiometric but also the vestibular data from our subjects, which would lead 
to an even more complex prediction model of the VS behavior. The conclusions formulated from supervised 
learning will be further enhanced with unsupervised analyses, including the linear and nonlinear clustering of 
data and variables, applied to the full-dimensional data set.

Conclusions
Using semi-supervised machine-learning algorithms complemented with expert (manual) interactive analyses, 
we developed practical tools to support the decision process related to the treatment of vestibular schwannomas. 
These tools comprise of simple decision rules (decision trees) for both static and dynamic data offering accuracy 
of around 80%, and automated black-box classifiers offering even better performance. Our results already indicate 
that from the initial data obtained at diagnosis (size of the tumor (Koos classification and 1D size in T2 weighted 
MRI), speech perception (described by SRT) and pure tone average), it is possible to predict the need of VS active 
treatment. Furthermore, we propose minimum sets of diagnostic variables which are crucial for deciding on VS 
treatment. Overall, these findings can be used to make the diagnostic and decision-making procedures more 
time-and cost-efficient, by focusing on the important metrics and eliminating the unnecessary measurements.

Data availability
Data are available at the authors upon request.
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